

Understanding the

LINUX
KERNEL

Other Linux resources from O’Reilly

Related titles Building Embedded Linux
Systems

Linux Device Drivers

Linux in a Nutshell

Linux Network
Administrator’s Guide

Linux Pocket Guide

Linux Security Cookbook™

Linux Server Hacks™

Linux Server Security

Running Linux

SELinux

Understanding Linux
Network Internals

Linux Books
Resource Center

linux.oreilly.com is a complete catalog of O’Reilly’s books on
Linux and Unix and related technologies, including sample
chapters and code examples.

ONLamp.com is the premier site for the open source web plat-
form: Linux, Apache, MySQL, and either Perl, Python, or PHP.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Understanding the

LINUX
KERNEL

THIRD EDITION

Daniel P. Bovet and Marco Cesati

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Understanding the Linux Kernel, Third Edition
by Daniel P. Bovet and Marco Cesati

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram

Production Editor: Darren Kelly

Production Services: Amy Parker

Cover Designer: Edie Freedman

Interior Designer: David Futato

Printing History:

November 2000: First Edition.

December 2002: Second Edition.

November 2005: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Linux series designations, Understanding the Linux Kernel, Third Edition, the
image of a man with a bubble, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN-10: 0-596-00565-2

ISBN-13: 978-0-596-00565-8

[M] [9/07]

v

Table of Contents

Preface . xi

1. Introduction . 1
Linux Versus Other Unix-Like Kernels 2
Hardware Dependency 6
Linux Versions 7
Basic Operating System Concepts 8
An Overview of the Unix Filesystem 12
An Overview of Unix Kernels 19

2. Memory Addressing . 35
Memory Addresses 35
Segmentation in Hardware 36
Segmentation in Linux 41
Paging in Hardware 45
Paging in Linux 57

3. Processes . 79
Processes, Lightweight Processes, and Threads 79
Process Descriptor 81
Process Switch 102
Creating Processes 114
Destroying Processes 126

4. Interrupts and Exceptions . 131
The Role of Interrupt Signals 132
Interrupts and Exceptions 133

vi | Table of Contents

Nested Execution of Exception and Interrupt Handlers 143
Initializing the Interrupt Descriptor Table 145
Exception Handling 148
Interrupt Handling 151
Softirqs and Tasklets 171
Work Queues 180
Returning from Interrupts and Exceptions 183

5. Kernel Synchronization . 189
How the Kernel Services Requests 189
Synchronization Primitives 194
Synchronizing Accesses to Kernel Data Structures 217
Examples of Race Condition Prevention 222

6. Timing Measurements . 227
Clock and Timer Circuits 228
The Linux Timekeeping Architecture 232
Updating the Time and Date 240
Updating System Statistics 241
Software Timers and Delay Functions 244
System Calls Related to Timing Measurements 252

7. Process Scheduling . 258
Scheduling Policy 258
The Scheduling Algorithm 262
Data Structures Used by the Scheduler 266
Functions Used by the Scheduler 270
Runqueue Balancing in Multiprocessor Systems 284
System Calls Related to Scheduling 290

8. Memory Management . 294
Page Frame Management 294
Memory Area Management 323
Noncontiguous Memory Area Management 342

9. Process Address Space . 351
The Process’s Address Space 352
The Memory Descriptor 353
Memory Regions 357

Table of Contents | vii

Page Fault Exception Handler 376
Creating and Deleting a Process Address Space 392
Managing the Heap 395

10. System Calls . 398
POSIX APIs and System Calls 398
System Call Handler and Service Routines 399
Entering and Exiting a System Call 401
Parameter Passing 409
Kernel Wrapper Routines 418

11. Signals . 420
The Role of Signals 420
Generating a Signal 433
Delivering a Signal 439
System Calls Related to Signal Handling 450

12. The Virtual Filesystem . 456
The Role of the Virtual Filesystem (VFS) 456
VFS Data Structures 462
Filesystem Types 481
Filesystem Handling 483
Pathname Lookup 495
Implementations of VFS System Calls 505
File Locking 510

13. I/O Architecture and Device Drivers . 519
I/O Architecture 519
The Device Driver Model 526
Device Files 536
Device Drivers 540
Character Device Drivers 552

14. Block Device Drivers . 560
Block Devices Handling 560
The Generic Block Layer 566
The I/O Scheduler 572
Block Device Drivers 585
Opening a Block Device File 595

viii | Table of Contents

15. The Page Cache . 599
The Page Cache 600
Storing Blocks in the Page Cache 611
Writing Dirty Pages to Disk 622
The sync(), fsync(), and fdatasync() System Calls 629

16. Accessing Files . 631
Reading and Writing a File 632
Memory Mapping 657
Direct I/O Transfers 668
Asynchronous I/O 671

17. Page Frame Reclaiming . 676
The Page Frame Reclaiming Algorithm 676
Reverse Mapping 680
Implementing the PFRA 689
Swapping 712

18. The Ext2 and Ext3 Filesystems . 738
General Characteristics of Ext2 738
Ext2 Disk Data Structures 741
Ext2 Memory Data Structures 750
Creating the Ext2 Filesystem 753
Ext2 Methods 755
Managing Ext2 Disk Space 757
The Ext3 Filesystem 766

19. Process Communication . 775
Pipes 776
FIFOs 787
System V IPC 789
POSIX Message Queues 806

20. Program Execution . 808
Executable Files 809
Executable Formats 824
Execution Domains 827
The exec Functions 828

Table of Contents | ix

A. System Startup . 835

B. Modules . 842

Bibliography . 852

Source Code Index . 857

Index . 905

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xi

Preface

In the spring semester of 1997, we taught a course on operating systems based on
Linux 2.0. The idea was to encourage students to read the source code. To achieve
this, we assigned term projects consisting of making changes to the kernel and per-
forming tests on the modified version. We also wrote course notes for our students
about a few critical features of Linux such as task switching and task scheduling.

Out of this work—and with a lot of support from our O’Reilly editor Andy Oram—
came the first edition of Understanding the Linux Kernel at the end of 2000, which
covered Linux 2.2 with a few anticipations on Linux 2.4. The success encountered by
this book encouraged us to continue along this line. At the end of 2002, we came out
with a second edition covering Linux 2.4. You are now looking at the third edition,
which covers Linux 2.6.

As in our previous experiences, we read thousands of lines of code, trying to make
sense of them. After all this work, we can say that it was worth the effort. We learned
a lot of things you don’t find in books, and we hope we have succeeded in conveying
some of this information in the following pages.

The Audience for This Book
All people curious about how Linux works and why it is so efficient will find answers
here. After reading the book, you will find your way through the many thousands of
lines of code, distinguishing between crucial data structures and secondary ones—in
short, becoming a true Linux hacker.

Our work might be considered a guided tour of the Linux kernel: most of the signifi-
cant data structures and many algorithms and programming tricks used in the kernel
are discussed. In many cases, the relevant fragments of code are discussed line by
line. Of course, you should have the Linux source code on hand and should be will-
ing to expend some effort deciphering some of the functions that are not, for sake of
brevity, fully described.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

On another level, the book provides valuable insight to people who want to know
more about the critical design issues in a modern operating system. It is not specifi-
cally addressed to system administrators or programmers; it is mostly for people who
want to understand how things really work inside the machine! As with any good
guide, we try to go beyond superficial features. We offer a background, such as the
history of major features and the reasons why they were used.

Organization of the Material
When we began to write this book, we were faced with a critical decision: should we
refer to a specific hardware platform or skip the hardware-dependent details and
concentrate on the pure hardware-independent parts of the kernel?

Others books on Linux kernel internals have chosen the latter approach; we decided
to adopt the former one for the following reasons:

• Efficient kernels take advantage of most available hardware features, such as
addressing techniques, caches, processor exceptions, special instructions, pro-
cessor control registers, and so on. If we want to convince you that the kernel
indeed does quite a good job in performing a specific task, we must first tell
what kind of support comes from the hardware.

• Even if a large portion of a Unix kernel source code is processor-independent
and coded in C language, a small and critical part is coded in assembly lan-
guage. A thorough knowledge of the kernel, therefore, requires the study of a
few assembly language fragments that interact with the hardware.

When covering hardware features, our strategy is quite simple: only sketch the features
that are totally hardware-driven while detailing those that need some software sup-
port. In fact, we are interested in kernel design rather than in computer architecture.

Our next step in choosing our path consisted of selecting the computer system to
describe. Although Linux is now running on several kinds of personal computers and
workstations, we decided to concentrate on the very popular and cheap IBM-compat-
ible personal computers—and thus on the 80×86 microprocessors and on some sup-
port chips included in these personal computers. The term 80 × 86 microprocessor
will be used in the forthcoming chapters to denote the Intel 80386, 80486, Pentium,
Pentium Pro, Pentium II, Pentium III, and Pentium 4 microprocessors or compatible
models. In a few cases, explicit references will be made to specific models.

One more choice we had to make was the order to follow in studying Linux com-
ponents. We tried a bottom-up approach: start with topics that are hardware-
dependent and end with those that are totally hardware-independent. In fact, we’ll
make many references to the 80×86 microprocessors in the first part of the book,
while the rest of it is relatively hardware-independent. Significant exceptions are
made in Chapter 13 and Chapter 14. In practice, following a bottom-up approach
is not as simple as it looks, because the areas of memory management, process

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

management, and filesystems are intertwined; a few forward references—that is,
references to topics yet to be explained—are unavoidable.

Each chapter starts with a theoretical overview of the topics covered. The material is
then presented according to the bottom-up approach. We start with the data struc-
tures needed to support the functionalities described in the chapter. Then we usu-
ally move from the lowest level of functions to higher levels, often ending by showing
how system calls issued by user applications are supported.

Level of Description
Linux source code for all supported architectures is contained in more than 14,000 C
and assembly language files stored in about 1000 subdirectories; it consists of
roughly 6 million lines of code, which occupy over 230 megabytes of disk space. Of
course, this book can cover only a very small portion of that code. Just to figure out
how big the Linux source is, consider that the whole source code of the book you are
reading occupies less than 3 megabytes. Therefore, we would need more than 75
books like this to list all code, without even commenting on it!

So we had to make some choices about the parts to describe. This is a rough assess-
ment of our decisions:

• We describe process and memory management fairly thoroughly.

• We cover the Virtual Filesystem and the Ext2 and Ext3 filesystems, although
many functions are just mentioned without detailing the code; we do not dis-
cuss other filesystems supported by Linux.

• We describe device drivers, which account for roughly 50% of the kernel, as far
as the kernel interface is concerned, but do not attempt analysis of each specific
driver.

The book describes the official 2.6.11 version of the Linux kernel, which can be
downloaded from the web site http://www.kernel.org.

Be aware that most distributions of GNU/Linux modify the official kernel to imple-
ment new features or to improve its efficiency. In a few cases, the source code pro-
vided by your favorite distribution might differ significantly from the one described
in this book.

In many cases, we show fragments of the original code rewritten in an easier-to-read
but less efficient way. This occurs at time-critical points at which sections of pro-
grams are often written in a mixture of hand-optimized C and assembly code. Once
again, our aim is to provide some help in studying the original Linux code.

While discussing kernel code, we often end up describing the underpinnings of many
familiar features that Unix programmers have heard of and about which they may be
curious (shared and mapped memory, signals, pipes, symbolic links, and so on).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

Overview of the Book
To make life easier, Chapter 1, Introduction, presents a general picture of what is
inside a Unix kernel and how Linux competes against other well-known Unix systems.

The heart of any Unix kernel is memory management. Chapter 2, Memory Addressing,
explains how 80×86 processors include special circuits to address data in memory and
how Linux exploits them.

Processes are a fundamental abstraction offered by Linux and are introduced in
Chapter 3, Processes. Here we also explain how each process runs either in an unprivi-
leged User Mode or in a privileged Kernel Mode. Transitions between User Mode and
Kernel Mode happen only through well-established hardware mechanisms called inter-
rupts and exceptions. These are introduced in Chapter 4, Interrupts and Exceptions.

In many occasions, the kernel has to deal with bursts of interrupt signals coming from
different devices and processors. Synchronization mechanisms are needed so that all
these requests can be serviced in an interleaved way by the kernel: they are discussed in
Chapter 5, Kernel Synchronization, for both uniprocessor and multiprocessor systems.

One type of interrupt is crucial for allowing Linux to take care of elapsed time; fur-
ther details can be found in Chapter 6, Timing Measurements.

Chapter 7, Process Scheduling, explains how Linux executes, in turn, every active
process in the system so that all of them can progress toward their completions.

Next we focus again on memory. Chapter 8, Memory Management, describes the
sophisticated techniques required to handle the most precious resource in the sys-
tem (besides the processors, of course): available memory. This resource must be
granted both to the Linux kernel and to the user applications. Chapter 9, Process
Address Space, shows how the kernel copes with the requests for memory issued by
greedy application programs.

Chapter 10, System Calls, explains how a process running in User Mode makes
requests to the kernel, while Chapter 11, Signals, describes how a process may send
synchronization signals to other processes. Now we are ready to move on to another
essential topic, how Linux implements the filesystem. A series of chapters cover this
topic. Chapter 12, The Virtual Filesystem, introduces a general layer that supports
many different filesystems. Some Linux files are special because they provide trap-
doors to reach hardware devices; Chapter 13, I/O Architecture and Device Drivers,
and Chapter 14, Block Device Drivers, offer insights on these special files and on the
corresponding hardware device drivers.

Another issue to consider is disk access time; Chapter 15, The Page Cache, shows
how a clever use of RAM reduces disk accesses, therefore improving system perfor-
mance significantly. Building on the material covered in these last chapters, we can
now explain in Chapter 16, Accessing Files, how user applications access normal
files. Chapter 17, Page Frame Reclaiming, completes our discussion of Linux mem-
ory management and explains the techniques used by Linux to ensure that enough

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

memory is always available. The last chapter dealing with files is Chapter 18, The
Ext2 and Ext3 Filesystems, which illustrates the most frequently used Linux filesys-
tem, namely Ext2 and its recent evolution, Ext3.

The last two chapters end our detailed tour of the Linux kernel: Chapter 19, Process
Communication, introduces communication mechanisms other than signals avail-
able to User Mode processes; Chapter 20, Program Execution, explains how user
applications are started.

Last, but not least, are the appendixes: Appendix A, System Startup, sketches out
how Linux is booted, while Appendix B, Modules, describes how to dynamically
reconfigure the running kernel, adding and removing functionalities as needed.
The Source Code Index includes all the Linux symbols referenced in the book; here
you will find the name of the Linux file defining each symbol and the book’s page
number where it is explained. We think you’ll find it quite handy.

Background Information
No prerequisites are required, except some skill in C programming language and per-
haps some knowledge of an assembly language.

Conventions in This Book
The following is a list of typographical conventions used in this book:

Constant Width
Used to show the contents of code files or the output from commands, and to
indicate source code keywords that appear in code.

Italic
Used for file and directory names, program and command names, command-line
options, and URLs, and for emphasizing new terms.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/understandlk/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, it means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

Acknowledgments
This book would not have been written without the precious help of the many stu-
dents of the University of Rome school of engineering “Tor Vergata” who took our
course and tried to decipher lecture notes about the Linux kernel. Their strenuous
efforts to grasp the meaning of the source code led us to improve our presentation
and correct many mistakes.

Andy Oram, our wonderful editor at O’Reilly Media, deserves a lot of credit. He was
the first at O’Reilly to believe in this project, and he spent a lot of time and energy
deciphering our preliminary drafts. He also suggested many ways to make the book
more readable, and he wrote several excellent introductory paragraphs.

We had some prestigious reviewers who read our text quite carefully. The first edi-
tion was checked by (in alphabetical order by first name) Alan Cox, Michael Kerrisk,
Paul Kinzelman, Raph Levien, and Rik van Riel.

The second edition was checked by Erez Zadok, Jerry Cooperstein, John Goerzen,
Michael Kerrisk, Paul Kinzelman, Rik van Riel, and Walt Smith.

This edition has been reviewed by Charles P. Wright, Clemens Buchacher, Erez
Zadok, Raphael Finkel, Rik van Riel, and Robert P. J. Day. Their comments, together
with those of many readers from all over the world, helped us to remove several
errors and inaccuracies and have made this book stronger.

—Daniel P. Bovet
Marco Cesati

July 2005

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Introduction

Linux* is a member of the large family of Unix-like operating systems. A relative new-
comer experiencing sudden spectacular popularity starting in the late 1990s, Linux
joins such well-known commercial Unix operating systems as System V Release 4
(SVR4), developed by AT&T (now owned by the SCO Group); the 4.4 BSD release
from the University of California at Berkeley (4.4BSD); Digital UNIX from Digital
Equipment Corporation (now Hewlett-Packard); AIX from IBM; HP-UX from
Hewlett-Packard; Solaris from Sun Microsystems; and Mac OS X from Apple Com-
puter, Inc. Beside Linux, a few other opensource Unix-like kernels exist, such as
FreeBSD, NetBSD, and OpenBSD.

Linux was initially developed by Linus Torvalds in 1991 as an operating system for
IBM-compatible personal computers based on the Intel 80386 microprocessor. Linus
remains deeply involved with improving Linux, keeping it up-to-date with various
hardware developments and coordinating the activity of hundreds of Linux develop-
ers around the world. Over the years, developers have worked to make Linux avail-
able on other architectures, including Hewlett-Packard’s Alpha, Intel’s Itanium,
AMD’s AMD64, PowerPC, and IBM’s zSeries.

One of the more appealing benefits to Linux is that it isn’t a commercial operating
system: its source code under the GNU General Public License (GPL)† is open and
available to anyone to study (as we will in this book); if you download the code (the
official site is http://www.kernel.org) or check the sources on a Linux CD, you will be
able to explore, from top to bottom, one of the most successful modern operating
systems. This book, in fact, assumes you have the source code on hand and can
apply what we say to your own explorations.

* LINUX® is a registered trademark of Linus Torvalds.

† The GNU project is coordinated by the Free Software Foundation, Inc. (http://www.gnu.org); its aim is to
implement a whole operating system freely usable by everyone. The availability of a GNU C compiler has
been essential for the success of the Linux project.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Introduction

Technically speaking, Linux is a true Unix kernel, although it is not a full Unix operat-
ing system because it does not include all the Unix applications, such as filesystem
utilities, windowing systems and graphical desktops, system administrator com-
mands, text editors, compilers, and so on. However, because most of these programs
are freely available under the GPL, they can be installed in every Linux-based system.

Because the Linux kernel requires so much additional software to provide a useful
environment, many Linux users prefer to rely on commercial distributions, available on
CD-ROM, to get the code included in a standard Unix system. Alternatively, the code
may be obtained from several different sites, for instance http://www.kernel.org. Sev-
eral distributions put the Linux source code in the /usr/src/linux directory. In the rest of
this book, all file pathnames will refer implicitly to the Linux source code directory.

Linux Versus Other Unix-Like Kernels
The various Unix-like systems on the market, some of which have a long history and
show signs of archaic practices, differ in many important respects. All commercial
variants were derived from either SVR4 or 4.4BSD, and all tend to agree on some
common standards like IEEE’s Portable Operating Systems based on Unix (POSIX)
and X/Open’s Common Applications Environment (CAE).

The current standards specify only an application programming interface (API)—
that is, a well-defined environment in which user programs should run. Therefore,
the standards do not impose any restriction on internal design choices of a compli-
ant kernel.*

To define a common user interface, Unix-like kernels often share fundamental design
ideas and features. In this respect, Linux is comparable with the other Unix-like
operating systems. Reading this book and studying the Linux kernel, therefore, may
help you understand the other Unix variants, too.

The 2.6 version of the Linux kernel aims to be compliant with the IEEE POSIX stan-
dard. This, of course, means that most existing Unix programs can be compiled and
executed on a Linux system with very little effort or even without the need for
patches to the source code. Moreover, Linux includes all the features of a modern
Unix operating system, such as virtual memory, a virtual filesystem, lightweight pro-
cesses, Unix signals, SVR4 interprocess communications, support for Symmetric
Multiprocessor (SMP) systems, and so on.

When Linus Torvalds wrote the first kernel, he referred to some classical books on
Unix internals, like Maurice Bach’s The Design of the Unix Operating System (Pren-
tice Hall, 1986). Actually, Linux still has some bias toward the Unix baseline

* As a matter of fact, several non-Unix operating systems, such as Windows NT and its descendents, are
POSIX-compliant.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linux Versus Other Unix-Like Kernels | 3

described in Bach’s book (i.e., SVR2). However, Linux doesn’t stick to any particu-
lar variant. Instead, it tries to adopt the best features and design choices of several
different Unix kernels.

The following list describes how Linux competes against some well-known commer-
cial Unix kernels:

Monolithic kernel
It is a large, complex do-it-yourself program, composed of several logically dif-
ferent components. In this, it is quite conventional; most commercial Unix vari-
ants are monolithic. (Notable exceptions are the Apple Mac OS X and the GNU
Hurd operating systems, both derived from the Carnegie-Mellon’s Mach, which
follow a microkernel approach.)

Compiled and statically linked traditional Unix kernels
Most modern kernels can dynamically load and unload some portions of the ker-
nel code (typically, device drivers), which are usually called modules. Linux’s
support for modules is very good, because it is able to automatically load and
unload modules on demand. Among the main commercial Unix variants, only
the SVR4.2 and Solaris kernels have a similar feature.

Kernel threading
Some Unix kernels, such as Solaris and SVR4.2/MP, are organized as a set of ker-
nel threads. A kernel thread is an execution context that can be independently
scheduled; it may be associated with a user program, or it may run only some
kernel functions. Context switches between kernel threads are usually much less
expensive than context switches between ordinary processes, because the former
usually operate on a common address space. Linux uses kernel threads in a very
limited way to execute a few kernel functions periodically; however, they do not
represent the basic execution context abstraction. (That’s the topic of the next
item.)

Multithreaded application support
Most modern operating systems have some kind of support for multithreaded
applications—that is, user programs that are designed in terms of many rela-
tively independent execution flows that share a large portion of the application
data structures. A multithreaded user application could be composed of many
lightweight processes (LWP), which are processes that can operate on a com-
mon address space, common physical memory pages, common opened files, and
so on. Linux defines its own version of lightweight processes, which is different
from the types used on other systems such as SVR4 and Solaris. While all the
commercial Unix variants of LWP are based on kernel threads, Linux regards
lightweight processes as the basic execution context and handles them via the
nonstandard clone() system call.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Introduction

Preemptive kernel
When compiled with the “Preemptible Kernel” option, Linux 2.6 can arbitrarily
interleave execution flows while they are in privileged mode. Besides Linux 2.6,
a few other conventional, general-purpose Unix systems, such as Solaris and
Mach 3.0, are fully preemptive kernels. SVR4.2/MP introduces some fixed pre-
emption points as a method to get limited preemption capability.

Multiprocessor support
Several Unix kernel variants take advantage of multiprocessor systems. Linux 2.6
supports symmetric multiprocessing (SMP) for different memory models, includ-
ing NUMA: the system can use multiple processors and each processor can han-
dle any task—there is no discrimination among them. Although a few parts of
the kernel code are still serialized by means of a single “big kernel lock,” it is fair
to say that Linux 2.6 makes a near optimal use of SMP.

Filesystem
Linux’s standard filesystems come in many flavors. You can use the plain old
Ext2 filesystem if you don’t have specific needs. You might switch to Ext3 if you
want to avoid lengthy filesystem checks after a system crash. If you’ll have to
deal with many small files, the ReiserFS filesystem is likely to be the best choice.
Besides Ext3 and ReiserFS, several other journaling filesystems can be used in
Linux; they include IBM AIX’s Journaling File System (JFS) and Silicon Graph-
ics IRIX’s XFS filesystem. Thanks to a powerful object-oriented Virtual File Sys-
tem technology (inspired by Solaris and SVR4), porting a foreign filesystem to
Linux is generally easier than porting to other kernels.

STREAMS
Linux has no analog to the STREAMS I/O subsystem introduced in SVR4,
although it is included now in most Unix kernels and has become the preferred
interface for writing device drivers, terminal drivers, and network protocols.

This assessment suggests that Linux is fully competitive nowadays with commercial
operating systems. Moreover, Linux has several features that make it an exciting
operating system. Commercial Unix kernels often introduce new features to gain a
larger slice of the market, but these features are not necessarily useful, stable, or pro-
ductive. As a matter of fact, modern Unix kernels tend to be quite bloated. By con-
trast, Linux—together with the other open source operating systems—doesn’t suffer
from the restrictions and the conditioning imposed by the market, hence it can freely
evolve according to the ideas of its designers (mainly Linus Torvalds). Specifically,
Linux offers the following advantages over its commercial competitors:

Linux is cost-free. You can install a complete Unix system at no expense other than
the hardware (of course).

Linux is fully customizable in all its components. Thanks to the compilation
options, you can customize the kernel by selecting only the features really

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linux Versus Other Unix-Like Kernels | 5

needed. Moreover, thanks to the GPL, you are allowed to freely read and mod-
ify the source code of the kernel and of all system programs.*

Linux runs on low-end, inexpensive hardware platforms. You are able to build a
network server using an old Intel 80386 system with 4 MB of RAM.

Linux is powerful. Linux systems are very fast, because they fully exploit the fea-
tures of the hardware components. The main Linux goal is efficiency, and
indeed many design choices of commercial variants, like the STREAMS I/O sub-
system, have been rejected by Linus because of their implied performance pen-
alty.

Linux developers are excellent programmers. Linux systems are very stable; they
have a very low failure rate and system maintenance time.

The Linux kernel can be very small and compact. It is possible to fit a kernel image,
including a few system programs, on just one 1.44 MB floppy disk. As far as we
know, none of the commercial Unix variants is able to boot from a single floppy
disk.

Linux is highly compatible with many common operating systems. Linux lets you
directly mount filesystems for all versions of MS-DOS and Microsoft Windows,
SVR4, OS/2, Mac OS X, Solaris, SunOS, NEXTSTEP, many BSD variants, and so
on. Linux also is able to operate with many network layers, such as Ethernet (as
well as Fast Ethernet, Gigabit Ethernet, and 10 Gigabit Ethernet), Fiber Distrib-
uted Data Interface (FDDI), High Performance Parallel Interface (HIPPI), IEEE
802.11 (Wireless LAN), and IEEE 802.15 (Bluetooth). By using suitable librar-
ies, Linux systems are even able to directly run programs written for other oper-
ating systems. For example, Linux is able to execute some applications written
for MS-DOS, Microsoft Windows, SVR3 and R4, 4.4BSD, SCO Unix, Xenix,
and others on the 80x86 platform.

Linux is well supported. Believe it or not, it may be a lot easier to get patches and
updates for Linux than for any proprietary operating system. The answer to a
problem often comes back within a few hours after sending a message to some
newsgroup or mailing list. Moreover, drivers for Linux are usually available a
few weeks after new hardware products have been introduced on the market. By
contrast, hardware manufacturers release device drivers for only a few commer-
cial operating systems—usually Microsoft’s. Therefore, all commercial Unix
variants run on a restricted subset of hardware components.

With an estimated installed base of several tens of millions, people who are used to
certain features that are standard under other operating systems are starting to
expect the same from Linux. In that regard, the demand on Linux developers is also

* Many commercial companies are now supporting their products under Linux. However, many of them
aren’t distributed under an open source license, so you might not be allowed to read or modify their source
code.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Introduction

increasing. Luckily, though, Linux has evolved under the close direction of Linus and
his subsystem maintainers to accommodate the needs of the masses.

Hardware Dependency
Linux tries to maintain a neat distinction between hardware-dependent and hard-
ware-independent source code. To that end, both the arch and the include directo-
ries include 23 subdirectories that correspond to the different types of hardware
platforms supported. The standard names of the platforms are:

alpha
Hewlett-Packard’s Alpha workstations (originally Digital, then Compaq; no
longer manufactured)

arm, arm26
ARM processor-based computers such as PDAs and embedded devices

cris
“Code Reduced Instruction Set” CPUs used by Axis in its thin-servers, such as
web cameras or development boards

frv
Embedded systems based on microprocessors of the Fujitsu’s FR-V family

h8300
Hitachi h8/300 and h8S RISC 8/16-bit microprocessors

i386
IBM-compatible personal computers based on 80x86 microprocessors

ia64
Workstations based on the Intel 64-bit Itanium microprocessor

m32r
Computers based on the Renesas M32R family of microprocessors

m68k, m68knommu
 Personal computers based on Motorola MC680×0 microprocessors

mips
Workstations based on MIPS microprocessors, such as those marketed by Sili-

con Graphics

parisc
 Workstations based on Hewlett Packard HP 9000 PA-RISC microprocessors

ppc, ppc64
Workstations based on the 32-bit and 64-bit Motorola-IBM PowerPC micropro-
cessors

s390
IBM ESA/390 and zSeries mainframes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linux Versions | 7

sh, sh64
Embedded systems based on SuperH microprocessors developed by Hitachi and
STMicroelectronics

sparc, sparc64
Workstations based on Sun Microsystems SPARC and 64-bit Ultra SPARC
microprocessors

um
User Mode Linux, a virtual platform that allows developers to run a kernel in
User Mode

v850
NEC V850 microcontrollers that incorporate a 32-bit RISC core based on the
Harvard architecture

x86_64
Workstations based on the AMD’s 64-bit microprocessors—such Athlon and
Opteron—and Intel’s ia32e/EM64T 64-bit microprocessors

Linux Versions
Up to kernel version 2.5, Linux identified kernels through a simple numbering
scheme. Each version was characterized by three numbers, separated by periods. The
first two numbers were used to identify the version; the third number identified the
release. The first version number, namely 2, has stayed unchanged since 1996. The
second version number identified the type of kernel: if it was even, it denoted a sta-
ble version; otherwise, it denoted a development version.

As the name suggests, stable versions were thoroughly checked by Linux distribu-
tors and kernel hackers. A new stable version was released only to address bugs and
to add new device drivers. Development versions, on the other hand, differed quite
significantly from one another; kernel developers were free to experiment with differ-
ent solutions that occasionally lead to drastic kernel changes. Users who relied on
development versions for running applications could experience unpleasant sur-
prises when upgrading their kernel to a newer release.

During development of Linux kernel version 2.6, however, a significant change in the
version numbering scheme has taken place. Basically, the second number no longer
identifies stable or development versions; thus, nowadays kernel developers intro-
duce large and significant changes in the current kernel version 2.6. A new kernel 2.7
branch will be created only when kernel developers will have to test a really disrup-
tive change; this 2.7 branch will lead to a new current kernel version, or it will be
backported to the 2.6 version, or finally it will simply be dropped as a dead end.

The new model of Linux development implies that two kernels having the same ver-
sion but different release numbers—for instance, 2.6.10 and 2.6.11—can differ sig-
nificantly even in core components and in fundamental algorithms. Thus, when a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Introduction

new kernel release appears, it is potentially unstable and buggy. To address this
problem, the kernel developers may release patched versions of any kernel, which are
identified by a fourth number in the version numbering scheme. For instance, at the
time this paragraph was written, the latest “stable” kernel version was 2.6.11.12.

Please be aware that the kernel version described in this book is Linux 2.6.11.

Basic Operating System Concepts
Each computer system includes a basic set of programs called the operating system.
The most important program in the set is called the kernel. It is loaded into RAM
when the system boots and contains many critical procedures that are needed for the
system to operate. The other programs are less crucial utilities; they can provide a
wide variety of interactive experiences for the user—as well as doing all the jobs the
user bought the computer for—but the essential shape and capabilities of the system
are determined by the kernel. The kernel provides key facilities to everything else on
the system and determines many of the characteristics of higher software. Hence, we
often use the term “operating system” as a synonym for “kernel.”

The operating system must fulfill two main objectives:

• Interact with the hardware components, servicing all low-level programmable
elements included in the hardware platform.

• Provide an execution environment to the applications that run on the computer
system (the so-called user programs).

Some operating systems allow all user programs to directly play with the hardware
components (a typical example is MS-DOS). In contrast, a Unix-like operating sys-
tem hides all low-level details concerning the physical organization of the computer
from applications run by the user. When a program wants to use a hardware
resource, it must issue a request to the operating system. The kernel evaluates the
request and, if it chooses to grant the resource, interacts with the proper hardware
components on behalf of the user program.

To enforce this mechanism, modern operating systems rely on the availability of spe-
cific hardware features that forbid user programs to directly interact with low-level
hardware components or to access arbitrary memory locations. In particular, the
hardware introduces at least two different execution modes for the CPU: a nonprivi-
leged mode for user programs and a privileged mode for the kernel. Unix calls these
User Mode and Kernel Mode, respectively.

In the rest of this chapter, we introduce the basic concepts that have motivated the
design of Unix over the past two decades, as well as Linux and other operating sys-
tems. While the concepts are probably familiar to you as a Linux user, these sections
try to delve into them a bit more deeply than usual to explain the requirements they
place on an operating system kernel. These broad considerations refer to virtually all

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Basic Operating System Concepts | 9

Unix-like systems. The other chapters of this book will hopefully help you under-
stand the Linux kernel internals.

Multiuser Systems
A multiuser system is a computer that is able to concurrently and independently exe-
cute several applications belonging to two or more users. Concurrently means that
applications can be active at the same time and contend for the various resources
such as CPU, memory, hard disks, and so on. Independently means that each applica-
tion can perform its task with no concern for what the applications of the other users
are doing. Switching from one application to another, of course, slows down each of
them and affects the response time seen by the users. Many of the complexities of
modern operating system kernels, which we will examine in this book, are present to
minimize the delays enforced on each program and to provide the user with
responses that are as fast as possible.

Multiuser operating systems must include several features:

• An authentication mechanism for verifying the user’s identity

• A protection mechanism against buggy user programs that could block other
applications running in the system

• A protection mechanism against malicious user programs that could interfere
with or spy on the activity of other users

• An accounting mechanism that limits the amount of resource units assigned to
each user

To ensure safe protection mechanisms, operating systems must use the hardware
protection associated with the CPU privileged mode. Otherwise, a user program
would be able to directly access the system circuitry and overcome the imposed
bounds. Unix is a multiuser system that enforces the hardware protection of system
resources.

Users and Groups
In a multiuser system, each user has a private space on the machine; typically, he
owns some quota of the disk space to store files, receives private mail messages, and
so on. The operating system must ensure that the private portion of a user space is
visible only to its owner. In particular, it must ensure that no user can exploit a sys-
tem application for the purpose of violating the private space of another user.

All users are identified by a unique number called the User ID, or UID. Usually only
a restricted number of persons are allowed to make use of a computer system. When
one of these users starts a working session, the system asks for a login name and a
password. If the user does not input a valid pair, the system denies access. Because
the password is assumed to be secret, the user’s privacy is ensured.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Introduction

To selectively share material with other users, each user is a member of one or more
user groups, which are identified by a unique number called a user group ID. Each
file is associated with exactly one group. For example, access can be set so the user
owning the file has read and write privileges, the group has read-only privileges, and
other users on the system are denied access to the file.

Any Unix-like operating system has a special user called root or superuser. The sys-
tem administrator must log in as root to handle user accounts, perform maintenance
tasks such as system backups and program upgrades, and so on. The root user can
do almost everything, because the operating system does not apply the usual protec-
tion mechanisms to her. In particular, the root user can access every file on the sys-
tem and can manipulate every running user program.

Processes
All operating systems use one fundamental abstraction: the process. A process can be
defined either as “an instance of a program in execution” or as the “execution con-
text” of a running program. In traditional operating systems, a process executes a sin-
gle sequence of instructions in an address space; the address space is the set of
memory addresses that the process is allowed to reference. Modern operating sys-
tems allow processes with multiple execution flows—that is, multiple sequences of
instructions executed in the same address space.

Multiuser systems must enforce an execution environment in which several pro-
cesses can be active concurrently and contend for system resources, mainly the CPU.
Systems that allow concurrent active processes are said to be multiprogramming or
multiprocessing.* It is important to distinguish programs from processes; several pro-
cesses can execute the same program concurrently, while the same process can exe-
cute several programs sequentially.

On uniprocessor systems, just one process can hold the CPU, and hence just one
execution flow can progress at a time. In general, the number of CPUs is always
restricted, and therefore only a few processes can progress at once. An operating sys-
tem component called the scheduler chooses the process that can progress. Some
operating systems allow only nonpreemptable processes, which means that the sched-
uler is invoked only when a process voluntarily relinquishes the CPU. But processes
of a multiuser system must be preemptable; the operating system tracks how long
each process holds the CPU and periodically activates the scheduler.

Unix is a multiprocessing operating system with preemptable processes. Even when
no user is logged in and no application is running, several system processes monitor
the peripheral devices. In particular, several processes listen at the system terminals
waiting for user logins. When a user inputs a login name, the listening process runs a
program that validates the user password. If the user identity is acknowledged, the

* Some multiprocessing operating systems are not multiuser; an example is Microsoft Windows 98.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Basic Operating System Concepts | 11

process creates another process that runs a shell into which commands are entered.
When a graphical display is activated, one process runs the window manager, and
each window on the display is usually run by a separate process. When a user cre-
ates a graphics shell, one process runs the graphics windows and a second process
runs the shell into which the user can enter the commands. For each user command,
the shell process creates another process that executes the corresponding program.

Unix-like operating systems adopt a process/kernel model. Each process has the illu-
sion that it’s the only process on the machine, and it has exclusive access to the oper-
ating system services. Whenever a process makes a system call (i.e., a request to the
kernel, see Chapter 10), the hardware changes the privilege mode from User Mode to
Kernel Mode, and the process starts the execution of a kernel procedure with a
strictly limited purpose. In this way, the operating system acts within the execution
context of the process in order to satisfy its request. Whenever the request is fully
satisfied, the kernel procedure forces the hardware to return to User Mode and the
process continues its execution from the instruction following the system call.

Kernel Architecture
As stated before, most Unix kernels are monolithic: each kernel layer is integrated
into the whole kernel program and runs in Kernel Mode on behalf of the current pro-
cess. In contrast, microkernel operating systems demand a very small set of functions
from the kernel, generally including a few synchronization primitives, a simple
scheduler, and an interprocess communication mechanism. Several system processes
that run on top of the microkernel implement other operating system–layer func-
tions, like memory allocators, device drivers, and system call handlers.

Although academic research on operating systems is oriented toward microkernels,
such operating systems are generally slower than monolithic ones, because the
explicit message passing between the different layers of the operating system has a
cost. However, microkernel operating systems might have some theoretical advan-
tages over monolithic ones. Microkernels force the system programmers to adopt a
modularized approach, because each operating system layer is a relatively indepen-
dent program that must interact with the other layers through well-defined and clean
software interfaces. Moreover, an existing microkernel operating system can be eas-
ily ported to other architectures fairly easily, because all hardware-dependent com-
ponents are generally encapsulated in the microkernel code. Finally, microkernel
operating systems tend to make better use of random access memory (RAM) than
monolithic ones, because system processes that aren’t implementing needed func-
tionalities might be swapped out or destroyed.

To achieve many of the theoretical advantages of microkernels without introducing
performance penalties, the Linux kernel offers modules. A module is an object file
whose code can be linked to (and unlinked from) the kernel at runtime. The object
code usually consists of a set of functions that implements a filesystem, a device

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Introduction

driver, or other features at the kernel’s upper layer. The module, unlike the external
layers of microkernel operating systems, does not run as a specific process. Instead, it
is executed in Kernel Mode on behalf of the current process, like any other statically
linked kernel function.

The main advantages of using modules include:

A modularized approach
Because any module can be linked and unlinked at runtime, system program-
mers must introduce well-defined software interfaces to access the data struc-
tures handled by modules. This makes it easy to develop new modules.

Platform independence
Even if it may rely on some specific hardware features, a module doesn’t depend
on a fixed hardware platform. For example, a disk driver module that relies on
the SCSI standard works as well on an IBM-compatible PC as it does on
Hewlett-Packard’s Alpha.

Frugal main memory usage
A module can be linked to the running kernel when its functionality is required
and unlinked when it is no longer useful; this is quite useful for small embedded
systems.

No performance penalty
Once linked in, the object code of a module is equivalent to the object code of
the statically linked kernel. Therefore, no explicit message passing is required
when the functions of the module are invoked.*

An Overview of the Unix Filesystem
The Unix operating system design is centered on its filesystem, which has several
interesting characteristics. We’ll review the most significant ones, since they will be
mentioned quite often in forthcoming chapters.

Files
A Unix file is an information container structured as a sequence of bytes; the kernel
does not interpret the contents of a file. Many programming libraries implement
higher-level abstractions, such as records structured into fields and record address-
ing based on keys. However, the programs in these libraries must rely on system calls
offered by the kernel. From the user’s point of view, files are organized in a tree-
structured namespace, as shown in Figure 1-1.

* A small performance penalty occurs when the module is linked and unlinked. However, this penalty can be
compared to the penalty caused by the creation and deletion of system processes in microkernel operating
systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of the Unix Filesystem | 13

All the nodes of the tree, except the leaves, denote directory names. A directory node
contains information about the files and directories just beneath it. A file or direc-
tory name consists of a sequence of arbitrary ASCII characters,* with the exception of
/ and of the null character \0. Most filesystems place a limit on the length of a file-
name, typically no more than 255 characters. The directory corresponding to the
root of the tree is called the root directory. By convention, its name is a slash (/).
Names must be different within the same directory, but the same name may be used
in different directories.

Unix associates a current working directory with each process (see the section “The
Process/Kernel Model” later in this chapter); it belongs to the process execution con-
text, and it identifies the directory currently used by the process. To identify a spe-
cific file, the process uses a pathname, which consists of slashes alternating with a
sequence of directory names that lead to the file. If the first item in the pathname is
a slash, the pathname is said to be absolute, because its starting point is the root
directory. Otherwise, if the first item is a directory name or filename, the path-
name is said to be relative, because its starting point is the process’s current direc-
tory.

While specifying filenames, the notations “.” and “..” are also used. They denote the
current working directory and its parent directory, respectively. If the current work-
ing directory is the root directory, “.” and “..” coincide.

Figure 1-1. An example of a directory tree

* Some operating systems allow filenames to be expressed in many different alphabets, based on 16-bit
extended coding of graphical characters such as Unicode.

/

dev home bin usr...

fd0 hda... ls cp...... ...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Introduction

Hard and Soft Links
A filename included in a directory is called a file hard link, or more simply, a link.
The same file may have several links included in the same directory or in different
ones, so it may have several filenames.

The Unix command:

$ ln p1 p2

is used to create a new hard link that has the pathname p2 for a file identified by the
pathname p1.

Hard links have two limitations:

• It is not possible to create hard links for directories. Doing so might transform
the directory tree into a graph with cycles, thus making it impossible to locate a
file according to its name.

• Links can be created only among files included in the same filesystem. This is a
serious limitation, because modern Unix systems may include several filesys-
tems located on different disks and/or partitions, and users may be unaware of
the physical divisions between them.

To overcome these limitations, soft links (also called symbolic links) were introduced
a long time ago. Symbolic links are short files that contain an arbitrary pathname of
another file. The pathname may refer to any file or directory located in any filesys-
tem; it may even refer to a nonexistent file.

The Unix command:

$ ln -s p1 p2

creates a new soft link with pathname p2 that refers to pathname p1. When this com-
mand is executed, the filesystem extracts the directory part of p2 and creates a new
entry in that directory of type symbolic link, with the name indicated by p2. This new
file contains the name indicated by pathname p1. This way, each reference to p2 can
be translated automatically into a reference to p1.

File Types
Unix files may have one of the following types:

• Regular file

• Directory

• Symbolic link

• Block-oriented device file

• Character-oriented device file

• Pipe and named pipe (also called FIFO)

• Socket

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of the Unix Filesystem | 15

The first three file types are constituents of any Unix filesystem. Their implementa-
tion is described in detail in Chapter 18.

Device files are related both to I/O devices, and to device drivers integrated into the
kernel. For example, when a program accesses a device file, it acts directly on the I/O
device associated with that file (see Chapter 13).

Pipes and sockets are special files used for interprocess communication (see the sec-
tion “Synchronization and Critical Regions” later in this chapter; also see
Chapter 19).

File Descriptor and Inode
Unix makes a clear distinction between the contents of a file and the information
about a file. With the exception of device files and files of special filesystems, each
file consists of a sequence of bytes. The file does not include any control informa-
tion, such as its length or an end-of-file (EOF) delimiter.

All information needed by the filesystem to handle a file is included in a data struc-
ture called an inode. Each file has its own inode, which the filesystem uses to identify
the file.

While filesystems and the kernel functions handling them can vary widely from one
Unix system to another, they must always provide at least the following attributes,
which are specified in the POSIX standard:

• File type (see the previous section)

• Number of hard links associated with the file

• File length in bytes

• Device ID (i.e., an identifier of the device containing the file)

• Inode number that identifies the file within the filesystem

• UID of the file owner

• User group ID of the file

• Several timestamps that specify the inode status change time, the last access
time, and the last modify time

• Access rights and file mode (see the next section)

Access Rights and File Mode
The potential users of a file fall into three classes:

• The user who is the owner of the file

• The users who belong to the same group as the file, not including the owner

• All remaining users (others)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Introduction

There are three types of access rights—read, write, and execute—for each of these
three classes. Thus, the set of access rights associated with a file consists of nine dif-
ferent binary flags. Three additional flags, called suid (Set User ID), sgid (Set Group
ID), and sticky, define the file mode. These flags have the following meanings when
applied to executable files:

suid
A process executing a file normally keeps the User ID (UID) of the process
owner. However, if the executable file has the suid flag set, the process gets the
UID of the file owner.

sgid
A process executing a file keeps the user group ID of the process group. How-
ever, if the executable file has the sgid flag set, the process gets the user group ID
of the file.

sticky
An executable file with the sticky flag set corresponds to a request to the kernel
to keep the program in memory after its execution terminates.*

When a file is created by a process, its owner ID is the UID of the process. Its owner
user group ID can be either the process group ID of the creator process or the user
group ID of the parent directory, depending on the value of the sgid flag of the par-
ent directory.

File-Handling System Calls
When a user accesses the contents of either a regular file or a directory, he actually
accesses some data stored in a hardware block device. In this sense, a filesystem is a
user-level view of the physical organization of a hard disk partition. Because a pro-
cess in User Mode cannot directly interact with the low-level hardware components,
each actual file operation must be performed in Kernel Mode. Therefore, the Unix
operating system defines several system calls related to file handling.

All Unix kernels devote great attention to the efficient handling of hardware block
devices to achieve good overall system performance. In the chapters that follow, we
will describe topics related to file handling in Linux and specifically how the kernel
reacts to file-related system calls. To understand those descriptions, you will need to
know how the main file-handling system calls are used; these are described in the
next section.

Opening a file

Processes can access only “opened” files. To open a file, the process invokes the sys-
tem call:

fd = open(path, flag, mode)

* This flag has become obsolete; other approaches based on sharing of code pages are now used (see Chapter 9).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of the Unix Filesystem | 17

The three parameters have the following meanings:

path
Denotes the pathname (relative or absolute) of the file to be opened.

flag
Specifies how the file must be opened (e.g., read, write, read/write, append). It
also can specify whether a nonexisting file should be created.

mode
Specifies the access rights of a newly created file.

This system call creates an “open file” object and returns an identifier called a file
descriptor. An open file object contains:

• Some file-handling data structures, such as a set of flags specifying how the file
has been opened, an offset field that denotes the current position in the file from
which the next operation will take place (the so-called file pointer), and so on.

• Some pointers to kernel functions that the process can invoke. The set of permit-
ted functions depends on the value of the flag parameter.

We discuss open file objects in detail in Chapter 12. Let’s limit ourselves here to
describing some general properties specified by the POSIX semantics.

• A file descriptor represents an interaction between a process and an opened file,
while an open file object contains data related to that interaction. The same
open file object may be identified by several file descriptors in the same process.

• Several processes may concurrently open the same file. In this case, the filesys-
tem assigns a separate file descriptor to each file, along with a separate open file
object. When this occurs, the Unix filesystem does not provide any kind of syn-
chronization among the I/O operations issued by the processes on the same file.
However, several system calls such as flock() are available to allow processes to
synchronize themselves on the entire file or on portions of it (see Chapter 12).

To create a new file, the process also may invoke the creat() system call, which is
handled by the kernel exactly like open().

Accessing an opened file

Regular Unix files can be addressed either sequentially or randomly, while device
files and named pipes are usually accessed sequentially. In both kinds of access, the
kernel stores the file pointer in the open file object—that is, the current position at
which the next read or write operation will take place.

Sequential access is implicitly assumed: the read() and write() system calls always
refer to the position of the current file pointer. To modify the value, a program must
explicitly invoke the lseek() system call. When a file is opened, the kernel sets the
file pointer to the position of the first byte in the file (offset 0).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Introduction

The lseek() system call requires the following parameters:

newoffset = lseek(fd, offset, whence);

which have the following meanings:

fd
Indicates the file descriptor of the opened file

offset
Specifies a signed integer value that will be used for computing the new position
of the file pointer

whence
Specifies whether the new position should be computed by adding the offset
value to the number 0 (offset from the beginning of the file), the current file
pointer, or the position of the last byte (offset from the end of the file)

The read() system call requires the following parameters:

nread = read(fd, buf, count);

which have the following meanings:

fd
Indicates the file descriptor of the opened file

buf
Specifies the address of the buffer in the process’s address space to which the
data will be transferred

count
Denotes the number of bytes to read

When handling such a system call, the kernel attempts to read count bytes from the
file having the file descriptor fd, starting from the current value of the opened file’s
offset field. In some cases—end-of-file, empty pipe, and so on—the kernel does not
succeed in reading all count bytes. The returned nread value specifies the number of
bytes effectively read. The file pointer also is updated by adding nread to its previous
value. The write() parameters are similar.

Closing a file

When a process does not need to access the contents of a file anymore, it can invoke
the system call:

res = close(fd);

which releases the open file object corresponding to the file descriptor fd. When a
process terminates, the kernel closes all its remaining opened files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Unix Kernels | 19

Renaming and deleting a file

To rename or delete a file, a process does not need to open it. Indeed, such opera-
tions do not act on the contents of the affected file, but rather on the contents of one
or more directories. For example, the system call:

res = rename(oldpath, newpath);

changes the name of a file link, while the system call:

res = unlink(pathname);

decreases the file link count and removes the corresponding directory entry. The file
is deleted only when the link count assumes the value 0.

An Overview of Unix Kernels
Unix kernels provide an execution environment in which applications may run.
Therefore, the kernel must implement a set of services and corresponding interfaces.
Applications use those interfaces and do not usually interact directly with hardware
resources.

The Process/Kernel Model
As already mentioned, a CPU can run in either User Mode or Kernel Mode. Actu-
ally, some CPUs can have more than two execution states. For instance, the 80 × 86
microprocessors have four different execution states. But all standard Unix kernels
use only Kernel Mode and User Mode.

When a program is executed in User Mode, it cannot directly access the kernel data
structures or the kernel programs. When an application executes in Kernel Mode,
however, these restrictions no longer apply. Each CPU model provides special
instructions to switch from User Mode to Kernel Mode and vice versa. A program
usually executes in User Mode and switches to Kernel Mode only when requesting a
service provided by the kernel. When the kernel has satisfied the program’s request,
it puts the program back in User Mode.

Processes are dynamic entities that usually have a limited life span within the sys-
tem. The task of creating, eliminating, and synchronizing the existing processes is
delegated to a group of routines in the kernel.

The kernel itself is not a process but a process manager. The process/kernel model
assumes that processes that require a kernel service use specific programming con-
structs called system calls. Each system call sets up the group of parameters that iden-
tifies the process request and then executes the hardware-dependent CPU instruction
to switch from User Mode to Kernel Mode.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Introduction

Besides user processes, Unix systems include a few privileged processes called kernel
threads with the following characteristics:

• They run in Kernel Mode in the kernel address space.

• They do not interact with users, and thus do not require terminal devices.

• They are usually created during system startup and remain alive until the system
is shut down.

On a uniprocessor system, only one process is running at a time, and it may run
either in User or in Kernel Mode. If it runs in Kernel Mode, the processor is execut-
ing some kernel routine. Figure 1-2 illustrates examples of transitions between User
and Kernel Mode. Process 1 in User Mode issues a system call, after which the pro-
cess switches to Kernel Mode, and the system call is serviced. Process 1 then resumes
execution in User Mode until a timer interrupt occurs, and the scheduler is activated
in Kernel Mode. A process switch takes place, and Process 2 starts its execution in
User Mode until a hardware device raises an interrupt. As a consequence of the inter-
rupt, Process 2 switches to Kernel Mode and services the interrupt.

Unix kernels do much more than handle system calls; in fact, kernel routines can be
activated in several ways:

• A process invokes a system call.

• The CPU executing the process signals an exception, which is an unusual condi-
tion such as an invalid instruction. The kernel handles the exception on behalf of
the process that caused it.

• A peripheral device issues an interrupt signal to the CPU to notify it of an event
such as a request for attention, a status change, or the completion of an I/O
operation. Each interrupt signal is dealt by a kernel program called an interrupt

Figure 1-2. Transitions between User and Kernel Mode

System call

KERNEL MODE

USER MODE

Process 1

System call
handler

Timer interrupt

Process 1

Scheduler

Device interrupt

Process 2

Interrupt
handler

Process 2

Time

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Unix Kernels | 21

handler. Because peripheral devices operate asynchronously with respect to the
CPU, interrupts occur at unpredictable times.

• A kernel thread is executed. Because it runs in Kernel Mode, the corresponding
program must be considered part of the kernel.

Process Implementation
To let the kernel manage processes, each process is represented by a process descrip-
tor that includes information about the current state of the process.

When the kernel stops the execution of a process, it saves the current contents of
several processor registers in the process descriptor. These include:

• The program counter (PC) and stack pointer (SP) registers

• The general purpose registers

• The floating point registers

• The processor control registers (Processor Status Word) containing information
about the CPU state

• The memory management registers used to keep track of the RAM accessed by
the process

When the kernel decides to resume executing a process, it uses the proper process
descriptor fields to load the CPU registers. Because the stored value of the program
counter points to the instruction following the last instruction executed, the process
resumes execution at the point where it was stopped.

When a process is not executing on the CPU, it is waiting for some event. Unix ker-
nels distinguish many wait states, which are usually implemented by queues of
process descriptors; each (possibly empty) queue corresponds to the set of processes
waiting for a specific event.

Reentrant Kernels
All Unix kernels are reentrant. This means that several processes may be executing in
Kernel Mode at the same time. Of course, on uniprocessor systems, only one pro-
cess can progress, but many can be blocked in Kernel Mode when waiting for the
CPU or the completion of some I/O operation. For instance, after issuing a read to a
disk on behalf of a process, the kernel lets the disk controller handle it and resumes
executing other processes. An interrupt notifies the kernel when the device has satis-
fied the read, so the former process can resume the execution.

One way to provide reentrancy is to write functions so that they modify only local
variables and do not alter global data structures. Such functions are called reentrant
functions. But a reentrant kernel is not limited only to such reentrant functions
(although that is how some real-time kernels are implemented). Instead, the kernel

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Introduction

can include nonreentrant functions and use locking mechanisms to ensure that only
one process can execute a nonreentrant function at a time.

If a hardware interrupt occurs, a reentrant kernel is able to suspend the current run-
ning process even if that process is in Kernel Mode. This capability is very impor-
tant, because it improves the throughput of the device controllers that issue
interrupts. Once a device has issued an interrupt, it waits until the CPU acknowl-
edges it. If the kernel is able to answer quickly, the device controller will be able to
perform other tasks while the CPU handles the interrupt.

Now let’s look at kernel reentrancy and its impact on the organization of the kernel.
A kernel control path denotes the sequence of instructions executed by the kernel to
handle a system call, an exception, or an interrupt.

In the simplest case, the CPU executes a kernel control path sequentially from the
first instruction to the last. When one of the following events occurs, however, the
CPU interleaves the kernel control paths:

• A process executing in User Mode invokes a system call, and the corresponding
kernel control path verifies that the request cannot be satisfied immediately; it
then invokes the scheduler to select a new process to run. As a result, a process
switch occurs. The first kernel control path is left unfinished, and the CPU
resumes the execution of some other kernel control path. In this case, the two
control paths are executed on behalf of two different processes.

• The CPU detects an exception—for example, access to a page not present in
RAM—while running a kernel control path. The first control path is suspended,
and the CPU starts the execution of a suitable procedure. In our example, this
type of procedure can allocate a new page for the process and read its contents
from disk. When the procedure terminates, the first control path can be
resumed. In this case, the two control paths are executed on behalf of the same
process.

• A hardware interrupt occurs while the CPU is running a kernel control path with
the interrupts enabled. The first kernel control path is left unfinished, and the
CPU starts processing another kernel control path to handle the interrupt. The
first kernel control path resumes when the interrupt handler terminates. In this
case, the two kernel control paths run in the execution context of the same pro-
cess, and the total system CPU time is accounted to it. However, the interrupt
handler doesn’t necessarily operate on behalf of the process.

• An interrupt occurs while the CPU is running with kernel preemption enabled,
and a higher priority process is runnable. In this case, the first kernel control
path is left unfinished, and the CPU resumes executing another kernel control
path on behalf of the higher priority process. This occurs only if the kernel has
been compiled with kernel preemption support.

Figure 1-3 illustrates a few examples of noninterleaved and interleaved kernel con-
trol paths. Three different CPU states are considered:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Unix Kernels | 23

• Running a process in User Mode (User)

• Running an exception or a system call handler (Excp)

• Running an interrupt handler (Intr)

Process Address Space
Each process runs in its private address space. A process running in User Mode refers
to private stack, data, and code areas. When running in Kernel Mode, the process
addresses the kernel data and code areas and uses another private stack.

Because the kernel is reentrant, several kernel control paths—each related to a differ-
ent process—may be executed in turn. In this case, each kernel control path refers to
its own private kernel stack.

While it appears to each process that it has access to a private address space, there
are times when part of the address space is shared among processes. In some cases,
this sharing is explicitly requested by processes; in others, it is done automatically by
the kernel to reduce memory usage.

If the same program, say an editor, is needed simultaneously by several users, the
program is loaded into memory only once, and its instructions can be shared by all of
the users who need it. Its data, of course, must not be shared, because each user will
have separate data. This kind of shared address space is done automatically by the
kernel to save memory.

Processes also can share parts of their address space as a kind of interprocess com-
munication, using the “shared memory” technique introduced in System V and sup-
ported by Linux.

Finally, Linux supports the mmap() system call, which allows part of a file or the
information stored on a block device to be mapped into a part of a process address
space. Memory mapping can provide an alternative to normal reads and writes for
transferring data. If the same file is shared by several processes, its memory mapping
is included in the address space of each of the processes that share it.

Figure 1-3. Interleaving of kernel control paths

KERNEL MODE

USER MODE

Intr

Excp

User

Intr Intr

User

TIME

User

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: Introduction

Synchronization and Critical Regions
Implementing a reentrant kernel requires the use of synchronization. If a kernel con-
trol path is suspended while acting on a kernel data structure, no other kernel con-
trol path should be allowed to act on the same data structure unless it has been reset
to a consistent state. Otherwise, the interaction of the two control paths could cor-
rupt the stored information.

For example, suppose a global variable V contains the number of available items of
some system resource. The first kernel control path, A, reads the variable and deter-
mines that there is just one available item. At this point, another kernel control path,
B, is activated and reads the same variable, which still contains the value 1. Thus, B
decreases V and starts using the resource item. Then A resumes the execution;
because it has already read the value of V, it assumes that it can decrease V and take
the resource item, which B already uses. As a final result, V contains –1, and two ker-
nel control paths use the same resource item with potentially disastrous effects.

When the outcome of a computation depends on how two or more processes are
scheduled, the code is incorrect. We say that there is a race condition.

In general, safe access to a global variable is ensured by using atomic operations. In
the previous example, data corruption is not possible if the two control paths read
and decrease V with a single, noninterruptible operation. However, kernels contain
many data structures that cannot be accessed with a single operation. For example, it
usually isn’t possible to remove an element from a linked list with a single operation,
because the kernel needs to access at least two pointers at once. Any section of code
that should be finished by each process that begins it before another process can
enter it is called a critical region.*

These problems occur not only among kernel control paths but also among pro-
cesses sharing common data. Several synchronization techniques have been adopted.
The following section concentrates on how to synchronize kernel control paths.

Kernel preemption disabling

To provide a drastically simple solution to synchronization problems, some tradi-
tional Unix kernels are nonpreemptive: when a process executes in Kernel Mode, it
cannot be arbitrarily suspended and substituted with another process. Therefore, on
a uniprocessor system, all kernel data structures that are not updated by interrupts or
exception handlers are safe for the kernel to access.

Of course, a process in Kernel Mode can voluntarily relinquish the CPU, but in this
case, it must ensure that all data structures are left in a consistent state. Moreover,
when it resumes its execution, it must recheck the value of any previously accessed
data structures that could be changed.

* Synchronization problems have been fully described in other works; we refer the interested reader to books
on the Unix operating systems (see the Bibliography).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Unix Kernels | 25

A synchronization mechanism applicable to preemptive kernels consists of disabling
kernel preemption before entering a critical region and reenabling it right after leav-
ing the region.

Nonpreemptability is not enough for multiprocessor systems, because two kernel
control paths running on different CPUs can concurrently access the same data
structure.

Interrupt disabling

Another synchronization mechanism for uniprocessor systems consists of disabling
all hardware interrupts before entering a critical region and reenabling them right
after leaving it. This mechanism, while simple, is far from optimal. If the critical
region is large, interrupts can remain disabled for a relatively long time, potentially
causing all hardware activities to freeze.

Moreover, on a multiprocessor system, disabling interrupts on the local CPU is not
sufficient, and other synchronization techniques must be used.

Semaphores

A widely used mechanism, effective in both uniprocessor and multiprocessor sys-
tems, relies on the use of semaphores. A semaphore is simply a counter associated
with a data structure; it is checked by all kernel threads before they try to access the
data structure. Each semaphore may be viewed as an object composed of:

• An integer variable

• A list of waiting processes

• Two atomic methods: down() and up()

The down() method decreases the value of the semaphore. If the new value is less
than 0, the method adds the running process to the semaphore list and then blocks
(i.e., invokes the scheduler). The up() method increases the value of the semaphore
and, if its new value is greater than or equal to 0, reactivates one or more processes in
the semaphore list.

Each data structure to be protected has its own semaphore, which is initialized to 1.
When a kernel control path wishes to access the data structure, it executes the down()
method on the proper semaphore. If the value of the new semaphore isn’t negative,
access to the data structure is granted. Otherwise, the process that is executing the
kernel control path is added to the semaphore list and blocked. When another pro-
cess executes the up() method on that semaphore, one of the processes in the sema-
phore list is allowed to proceed.

Spin locks

In multiprocessor systems, semaphores are not always the best solution to the syn-
chronization problems. Some kernel data structures should be protected from being

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: Introduction

concurrently accessed by kernel control paths that run on different CPUs. In this
case, if the time required to update the data structure is short, a semaphore could be
very inefficient. To check a semaphore, the kernel must insert a process in the sema-
phore list and then suspend it. Because both operations are relatively expensive, in
the time it takes to complete them, the other kernel control path could have already
released the semaphore.

In these cases, multiprocessor operating systems use spin locks. A spin lock is very
similar to a semaphore, but it has no process list; when a process finds the lock
closed by another process, it “spins” around repeatedly, executing a tight instruction
loop until the lock becomes open.

Of course, spin locks are useless in a uniprocessor environment. When a kernel con-
trol path tries to access a locked data structure, it starts an endless loop. Therefore,
the kernel control path that is updating the protected data structure would not have
a chance to continue the execution and release the spin lock. The final result would
be that the system hangs.

Avoiding deadlocks

Processes or kernel control paths that synchronize with other control paths may eas-
ily enter a deadlock state. The simplest case of deadlock occurs when process p1
gains access to data structure a and process p2 gains access to b, but p1 then waits
for b and p2 waits for a. Other more complex cyclic waits among groups of pro-
cesses also may occur. Of course, a deadlock condition causes a complete freeze of
the affected processes or kernel control paths.

As far as kernel design is concerned, deadlocks become an issue when the number of
kernel locks used is high. In this case, it may be quite difficult to ensure that no dead-
lock state will ever be reached for all possible ways to interleave kernel control paths.
Several operating systems, including Linux, avoid this problem by requesting locks in
a predefined order.

Signals and Interprocess Communication
Unix signals provide a mechanism for notifying processes of system events. Each
event has its own signal number, which is usually referred to by a symbolic constant
such as SIGTERM. There are two kinds of system events:

Asynchronous notifications
For instance, a user can send the interrupt signal SIGINT to a foreground process
by pressing the interrupt keycode (usually Ctrl-C) at the terminal.

Synchronous notifications
For instance, the kernel sends the signal SIGSEGV to a process when it accesses a
memory location at an invalid address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Unix Kernels | 27

The POSIX standard defines about 20 different signals, 2 of which are user-definable
and may be used as a primitive mechanism for communication and synchronization
among processes in User Mode. In general, a process may react to a signal delivery in
two possible ways:

• Ignore the signal.

• Asynchronously execute a specified procedure (the signal handler).

If the process does not specify one of these alternatives, the kernel performs a default
action that depends on the signal number. The five possible default actions are:

• Terminate the process.

• Write the execution context and the contents of the address space in a file (core
dump) and terminate the process.

• Ignore the signal.

• Suspend the process.

• Resume the process’s execution, if it was stopped.

Kernel signal handling is rather elaborate, because the POSIX semantics allows pro-
cesses to temporarily block signals. Moreover, the SIGKILL and SIGSTOP signals can-
not be directly handled by the process or ignored.

AT&T’s Unix System V introduced other kinds of interprocess communication
among processes in User Mode, which have been adopted by many Unix kernels:
semaphores, message queues, and shared memory. They are collectively known as Sys-
tem V IPC.

The kernel implements these constructs as IPC resources. A process acquires a
resource by invoking a shmget(), semget(), or msgget() system call. Just like files,
IPC resources are persistent: they must be explicitly deallocated by the creator pro-
cess, by the current owner, or by a superuser process.

Semaphores are similar to those described in the section “Synchronization and Criti-
cal Regions,” earlier in this chapter, except that they are reserved for processes in
User Mode. Message queues allow processes to exchange messages by using the
msgsnd() and msgrcv() system calls, which insert a message into a specific message
queue and extract a message from it, respectively.

The POSIX standard (IEEE Std 1003.1-2001) defines an IPC mechanism based on
message queues, which is usually known as POSIX message queues. They are similar
to the System V IPC’s message queues, but they have a much simpler file-based inter-
face to the applications.

Shared memory provides the fastest way for processes to exchange and share data. A
process starts by issuing a shmget() system call to create a new shared memory hav-
ing a required size. After obtaining the IPC resource identifier, the process invokes
the shmat() system call, which returns the starting address of the new region within

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 1: Introduction

the process address space. When the process wishes to detach the shared memory
from its address space, it invokes the shmdt() system call. The implementation of
shared memory depends on how the kernel implements process address spaces.

Process Management
Unix makes a neat distinction between the process and the program it is executing.
To that end, the fork() and _exit() system calls are used respectively to create a
new process and to terminate it, while an exec()-like system call is invoked to load a
new program. After such a system call is executed, the process resumes execution
with a brand new address space containing the loaded program.

The process that invokes a fork() is the parent, while the new process is its child.
Parents and children can find one another because the data structure describing each
process includes a pointer to its immediate parent and pointers to all its immediate
children.

A naive implementation of the fork() would require both the parent’s data and the
parent’s code to be duplicated and the copies assigned to the child. This would be
quite time consuming. Current kernels that can rely on hardware paging units fol-
low the Copy-On-Write approach, which defers page duplication until the last
moment (i.e., until the parent or the child is required to write into a page). We shall
describe how Linux implements this technique in the section “Copy On Write” in
Chapter 9.

The _exit() system call terminates a process. The kernel handles this system call by
releasing the resources owned by the process and sending the parent process a
SIGCHLD signal, which is ignored by default.

Zombie processes

How can a parent process inquire about termination of its children? The wait4() sys-
tem call allows a process to wait until one of its children terminates; it returns the
process ID (PID) of the terminated child.

When executing this system call, the kernel checks whether a child has already ter-
minated. A special zombie process state is introduced to represent terminated pro-
cesses: a process remains in that state until its parent process executes a wait4()
system call on it. The system call handler extracts data about resource usage from the
process descriptor fields; the process descriptor may be released once the data is col-
lected. If no child process has already terminated when the wait4() system call is
executed, the kernel usually puts the process in a wait state until a child terminates.

Many kernels also implement a waitpid() system call, which allows a process to wait
for a specific child process. Other variants of wait4() system calls are also quite
common.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Unix Kernels | 29

It’s good practice for the kernel to keep around information on a child process until
the parent issues its wait4() call, but suppose the parent process terminates without
issuing that call? The information takes up valuable memory slots that could be used
to serve living processes. For example, many shells allow the user to start a com-
mand in the background and then log out. The process that is running the com-
mand shell terminates, but its children continue their execution.

The solution lies in a special system process called init, which is created during sys-
tem initialization. When a process terminates, the kernel changes the appropriate
process descriptor pointers of all the existing children of the terminated process to
make them become children of init. This process monitors the execution of all its
children and routinely issues wait4() system calls, whose side effect is to get rid of all
orphaned zombies.

Process groups and login sessions

Modern Unix operating systems introduce the notion of process groups to represent a
“job” abstraction. For example, in order to execute the command line:

$ ls | sort | more

a shell that supports process groups, such as bash, creates a new group for the three
processes corresponding to ls, sort, and more. In this way, the shell acts on the three
processes as if they were a single entity (the job, to be precise). Each process descrip-
tor includes a field containing the process group ID. Each group of processes may
have a group leader, which is the process whose PID coincides with the process group
ID. A newly created process is initially inserted into the process group of its parent.

Modern Unix kernels also introduce login sessions. Informally, a login session con-
tains all processes that are descendants of the process that has started a working ses-
sion on a specific terminal—usually, the first command shell process created for the
user. All processes in a process group must be in the same login session. A login ses-
sion may have several process groups active simultaneously; one of these process
groups is always in the foreground, which means that it has access to the terminal.
The other active process groups are in the background. When a background process
tries to access the terminal, it receives a SIGTTIN or SIGTTOUT signal. In many com-
mand shells, the internal commands bg and fg can be used to put a process group in
either the background or the foreground.

Memory Management
Memory management is by far the most complex activity in a Unix kernel. More
than a third of this book is dedicated just to describing how Linux handles memory
management. This section illustrates some of the main issues related to memory
management.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 1: Introduction

Virtual memory

All recent Unix systems provide a useful abstraction called virtual memory. Virtual
memory acts as a logical layer between the application memory requests and the
hardware Memory Management Unit (MMU). Virtual memory has many purposes
and advantages:

• Several processes can be executed concurrently.

• It is possible to run applications whose memory needs are larger than the avail-
able physical memory.

• Processes can execute a program whose code is only partially loaded in memory.

• Each process is allowed to access a subset of the available physical memory.

• Processes can share a single memory image of a library or program.

• Programs can be relocatable—that is, they can be placed anywhere in physical
memory.

• Programmers can write machine-independent code, because they do not need to
be concerned about physical memory organization.

The main ingredient of a virtual memory subsystem is the notion of virtual address
space. The set of memory references that a process can use is different from physical
memory addresses. When a process uses a virtual address,* the kernel and the MMU
cooperate to find the actual physical location of the requested memory item.

Today’s CPUs include hardware circuits that automatically translate the virtual
addresses into physical ones. To that end, the available RAM is partitioned into page
frames—typically 4 or 8 KB in length—and a set of Page Tables is introduced to spec-
ify how virtual addresses correspond to physical addresses. These circuits make
memory allocation simpler, because a request for a block of contiguous virtual
addresses can be satisfied by allocating a group of page frames having noncontiguous
physical addresses.

Random access memory usage

All Unix operating systems clearly distinguish between two portions of the random
access memory (RAM). A few megabytes are dedicated to storing the kernel image (i.e.,
the kernel code and the kernel static data structures). The remaining portion of RAM is
usually handled by the virtual memory system and is used in three possible ways:

• To satisfy kernel requests for buffers, descriptors, and other dynamic kernel data
structures

• To satisfy process requests for generic memory areas and for memory mapping
of files

* These addresses have different nomenclatures, depending on the computer architecture. As we’ll see in
Chapter 2, Intel manuals refer to them as “logical addresses.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Unix Kernels | 31

• To get better performance from disks and other buffered devices by means of
caches

Each request type is valuable. On the other hand, because the available RAM is lim-
ited, some balancing among request types must be done, particularly when little avail-
able memory is left. Moreover, when some critical threshold of available memory is
reached and a page-frame-reclaiming algorithm is invoked to free additional memory,
which are the page frames most suitable for reclaiming? As we will see in Chapter 17,
there is no simple answer to this question and very little support from theory. The
only available solution lies in developing carefully tuned empirical algorithms.

One major problem that must be solved by the virtual memory system is memory
fragmentation. Ideally, a memory request should fail only when the number of free
page frames is too small. However, the kernel is often forced to use physically contig-
uous memory areas. Hence the memory request could fail even if there is enough
memory available, but it is not available as one contiguous chunk.

Kernel Memory Allocator

The Kernel Memory Allocator (KMA) is a subsystem that tries to satisfy the requests
for memory areas from all parts of the system. Some of these requests come from
other kernel subsystems needing memory for kernel use, and some requests come via
system calls from user programs to increase their processes’ address spaces. A good
KMA should have the following features:

• It must be fast. Actually, this is the most crucial attribute, because it is invoked
by all kernel subsystems (including the interrupt handlers).

• It should minimize the amount of wasted memory.

• It should try to reduce the memory fragmentation problem.

• It should be able to cooperate with the other memory management subsystems
to borrow and release page frames from them.

Several proposed KMAs, which are based on a variety of different algorithmic tech-
niques, include:

• Resource map allocator

• Power-of-two free lists

• McKusick-Karels allocator

• Buddy system

• Mach’s Zone allocator

• Dynix allocator

• Solaris’s Slab allocator

As we will see in Chapter 8, Linux’s KMA uses a Slab allocator on top of a buddy
system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 1: Introduction

Process virtual address space handling

The address space of a process contains all the virtual memory addresses that the
process is allowed to reference. The kernel usually stores a process virtual address
space as a list of memory area descriptors. For example, when a process starts the
execution of some program via an exec()-like system call, the kernel assigns to the
process a virtual address space that comprises memory areas for:

• The executable code of the program

• The initialized data of the program

• The uninitialized data of the program

• The initial program stack (i.e., the User Mode stack)

• The executable code and data of needed shared libraries

• The heap (the memory dynamically requested by the program)

All recent Unix operating systems adopt a memory allocation strategy called demand
paging. With demand paging, a process can start program execution with none of its
pages in physical memory. As it accesses a nonpresent page, the MMU generates an
exception; the exception handler finds the affected memory region, allocates a free
page, and initializes it with the appropriate data. In a similar fashion, when the pro-
cess dynamically requires memory by using malloc(), or the brk() system call
(which is invoked internally by malloc()), the kernel just updates the size of the heap
memory region of the process. A page frame is assigned to the process only when it
generates an exception by trying to refer its virtual memory addresses.

Virtual address spaces also allow other efficient strategies, such as the Copy On
Write strategy mentioned earlier. For example, when a new process is created, the
kernel just assigns the parent’s page frames to the child address space, but marks
them read-only. An exception is raised as soon as the parent or the child tries to
modify the contents of a page. The exception handler assigns a new page frame to
the affected process and initializes it with the contents of the original page.

Caching

A good part of the available physical memory is used as cache for hard disks and
other block devices. This is because hard drives are very slow: a disk access requires
several milliseconds, which is a very long time compared with the RAM access time.
Therefore, disks are often the bottleneck in system performance. As a general rule,
one of the policies already implemented in the earliest Unix system is to defer writing
to disk as long as possible. As a result, data read previously from disk and no longer
used by any process continue to stay in RAM.

This strategy is based on the fact that there is a good chance that new processes will
require data read from or written to disk by processes that no longer exist. When a
process asks to access a disk, the kernel checks first whether the required data are in
the cache. Each time this happens (a cache hit), the kernel is able to service the pro-
cess request without accessing the disk.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Unix Kernels | 33

The sync() system call forces disk synchronization by writing all of the “dirty” buff-
ers (i.e., all the buffers whose contents differ from that of the corresponding disk
blocks) into disk. To avoid data loss, all operating systems take care to periodically
write dirty buffers back to disk.

Device Drivers
The kernel interacts with I/O devices by means of device drivers. Device drivers are
included in the kernel and consist of data structures and functions that control one
or more devices, such as hard disks, keyboards, mouses, monitors, network inter-
faces, and devices connected to an SCSI bus. Each driver interacts with the remain-
ing part of the kernel (even with other drivers) through a specific interface. This
approach has the following advantages:

• Device-specific code can be encapsulated in a specific module.

• Vendors can add new devices without knowing the kernel source code; only the
interface specifications must be known.

• The kernel deals with all devices in a uniform way and accesses them through
the same interface.

• It is possible to write a device driver as a module that can be dynamically loaded
in the kernel without requiring the system to be rebooted. It is also possible to
dynamically unload a module that is no longer needed, therefore minimizing the
size of the kernel image stored in RAM.

Figure 1-4 illustrates how device drivers interface with the rest of the kernel and with
the processes.

Figure 1-4. Device driver interface

System call interface

Device driver interface

Virtual File System

tty
driver

Disk
driver

Sound
driver

tty tty Disk DiskMic.

P P P P

Kernel character device files block device files

Speaker

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 1: Introduction

Some user programs (P) wish to operate on hardware devices. They make requests to
the kernel using the usual file-related system calls and the device files normally found
in the /dev directory. Actually, the device files are the user-visible portion of the device
driver interface. Each device file refers to a specific device driver, which is invoked by
the kernel to perform the requested operation on the hardware component.

At the time Unix was introduced, graphical terminals were uncommon and expen-
sive, so only alphanumeric terminals were handled directly by Unix kernels. When
graphical terminals became widespread, ad hoc applications such as the X Window
System were introduced that ran as standard processes and accessed the I/O ports of
the graphics interface and the RAM video area directly. Some recent Unix kernels,
such as Linux 2.6, provide an abstraction for the frame buffer of the graphic card and
allow application software to access them without needing to know anything about
the I/O ports of the graphics interface (see the section “Levels of Kernel Support” in
Chapter 13.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

35

Chapter 2 CHAPTER 2

Memory Addressing

This chapter deals with addressing techniques. Luckily, an operating system is not
forced to keep track of physical memory all by itself; today’s microprocessors include
several hardware circuits to make memory management both more efficient and
more robust so that programming errors cannot cause improper accesses to memory
outside the program.

As in the rest of this book, we offer details in this chapter on how 80 × 86 micropro-
cessors address memory chips and how Linux uses the available addressing circuits.
You will find, we hope, that when you learn the implementation details on Linux’s
most popular platform you will better understand both the general theory of paging
and how to research the implementation on other platforms.

This is the first of three chapters related to memory management; Chapter 8 dis-
cusses how the kernel allocates main memory to itself, while Chapter 9 considers
how linear addresses are assigned to processes.

Memory Addresses
Programmers casually refer to a memory address as the way to access the contents of
a memory cell. But when dealing with 80 × 86 microprocessors, we have to distin-
guish three kinds of addresses:

Logical address
Included in the machine language instructions to specify the address of an oper-
and or of an instruction. This type of address embodies the well-known 80 × 86
segmented architecture that forces MS-DOS and Windows programmers to
divide their programs into segments. Each logical address consists of a segment
and an offset (or displacement) that denotes the distance from the start of the seg-
ment to the actual address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Memory Addressing

Linear address (also known as virtual address)
A single 32-bit unsigned integer that can be used to address up to 4 GB—that is,
up to 4,294,967,296 memory cells. Linear addresses are usually represented in
hexadecimal notation; their values range from 0x00000000 to 0xffffffff.

Physical address
Used to address memory cells in memory chips. They correspond to the electri-
cal signals sent along the address pins of the microprocessor to the memory bus.
Physical addresses are represented as 32-bit or 36-bit unsigned integers.

The Memory Management Unit (MMU) transforms a logical address into a linear
address by means of a hardware circuit called a segmentation unit; subsequently, a
second hardware circuit called a paging unit transforms the linear address into a
physical address (see Figure 2-1).

In multiprocessor systems, all CPUs usually share the same memory; this means that
RAM chips may be accessed concurrently by independent CPUs. Because read or
write operations on a RAM chip must be performed serially, a hardware circuit called
a memory arbiter is inserted between the bus and every RAM chip. Its role is to grant
access to a CPU if the chip is free and to delay it if the chip is busy servicing a request
by another processor. Even uniprocessor systems use memory arbiters, because they
include specialized processors called DMA controllers that operate concurrently with
the CPU (see the section “Direct Memory Access (DMA)” in Chapter 13). In the case
of multiprocessor systems, the structure of the arbiter is more complex because it has
more input ports. The dual Pentium, for instance, maintains a two-port arbiter at
each chip entrance and requires that the two CPUs exchange synchronization mes-
sages before attempting to use the common bus. From the programming point of
view, the arbiter is hidden because it is managed by hardware circuits.

Segmentation in Hardware
Starting with the 80286 model, Intel microprocessors perform address translation in
two different ways called real mode and protected mode. We’ll focus in the next sec-
tions on address translation when protected mode is enabled. Real mode exists
mostly to maintain processor compatibility with older models and to allow the oper-
ating system to bootstrap (see Appendix A for a short description of real mode).

Figure 2-1. Logical address translation

SEGMENTATION
UNIT

PAGING
UNITLogical address Linear address Physical address

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Segmentation in Hardware | 37

Segment Selectors and Segmentation Registers
A logical address consists of two parts: a segment identifier and an offset that speci-
fies the relative address within the segment. The segment identifier is a 16-bit field
called the Segment Selector (see Figure 2-2), while the offset is a 32-bit field. We’ll
describe the fields of Segment Selectors in the section “Fast Access to Segment
Descriptors” later in this chapter.

To make it easy to retrieve segment selectors quickly, the processor provides segmen-
tation registers whose only purpose is to hold Segment Selectors; these registers are
called cs, ss, ds, es, fs, and gs. Although there are only six of them, a program can
reuse the same segmentation register for different purposes by saving its content in
memory and then restoring it later.

Three of the six segmentation registers have specific purposes:

cs The code segment register, which points to a segment containing program
instructions

ss The stack segment register, which points to a segment containing the current
program stack

ds The data segment register, which points to a segment containing global and
static data

The remaining three segmentation registers are general purpose and may refer to
arbitrary data segments.

The cs register has another important function: it includes a 2-bit field that specifies
the Current Privilege Level (CPL) of the CPU. The value 0 denotes the highest privi-
lege level, while the value 3 denotes the lowest one. Linux uses only levels 0 and 3,
which are respectively called Kernel Mode and User Mode.

Segment Descriptors
Each segment is represented by an 8-byte Segment Descriptor that describes the seg-
ment characteristics. Segment Descriptors are stored either in the Global Descriptor
Table (GDT) or in the Local Descriptor Table (LDT).

Usually only one GDT is defined, while each process is permitted to have its own LDT if
it needs to create additional segments besides those stored in the GDT. The address and
size of the GDT in main memory are contained in the gdtr control register, while the
address and size of the currently used LDT are contained in the ldtr control register.

Figure 2-2. Segment Selector format

Segment Selector TI = Table Indicator

RPL = Requestor Privilege Level

3 2 1 015

index TI RPL

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Memory Addressing

Figure 2-3 illustrates the format of a Segment Descriptor; the meaning of the various
fields is explained in Table 2-1.

There are several types of segments, and thus several types of Segment Descriptors.
The following list shows the types that are widely used in Linux.

Code Segment Descriptor
Indicates that the Segment Descriptor refers to a code segment; it may be
included either in the GDT or in the LDT. The descriptor has the S flag set (non-
system segment).

Data Segment Descriptor
Indicates that the Segment Descriptor refers to a data segment; it may be
included either in the GDT or in the LDT. The descriptor has the S flag set.
Stack segments are implemented by means of generic data segments.

Task State Segment Descriptor (TSSD)
Indicates that the Segment Descriptor refers to a Task State Segment (TSS)—
that is, a segment used to save the contents of the processor registers (see the
section “Task State Segment” in Chapter 3); it can appear only in the GDT. The
corresponding Type field has the value 11 or 9, depending on whether the corre-
sponding process is currently executing on a CPU. The S flag of such descriptors
is set to 0.

Table 2-1. Segment Descriptor fields

Field name Description

Base Contains the linear address of the first byte of the segment.

G Granularity flag: if it is cleared (equal to 0), the segment size is expressed in bytes; otherwise, it is expressed
in multiples of 4096 bytes.

Limit Holds the offset of the last memory cell in the segment, thus binding the segment length. When G is set to 0,
the size of a segment may vary between 1 byte and 1 MB; otherwise, it may vary between 4 KB and 4 GB.

S System flag: if it is cleared, the segment is a system segment that stores critical data structures such as the
Local Descriptor Table; otherwise, it is a normal code or data segment.

Type Characterizes the segment type and its access rights (see the text that follows this table).

DPL Descriptor Privilege Level: used to restrict accesses to the segment. It represents the minimal CPU privilege level
requested for accessing the segment. Therefore, a segment with its DPL set to 0 is accessible only when the CPL
is 0—that is, in Kernel Mode—while a segment with its DPL set to 3 is accessible with every CPL value.

P Segment-Present flag: is equal to 0 if the segment is not stored currently in main memory. Linux always sets
this flag (bit 47) to 1, because it never swaps out whole segments to disk.

D or B Called D or B depending on whether the segment contains code or data. Its meaning is slightly different in
the two cases, but it is basically set (equal to 1) if the addresses used as segment offsets are 32 bits long, and
it is cleared if they are 16 bits long (see the Intel manual for further details).

AVL May be used by the operating system, but it is ignored by Linux.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Segmentation in Hardware | 39

Local Descriptor Table Descriptor (LDTD)
Indicates that the Segment Descriptor refers to a segment containing an LDT; it
can appear only in the GDT. The corresponding Type field has the value 2. The S
flag of such descriptors is set to 0. The next section shows how 80 × 86 proces-
sors are able to decide whether a segment descriptor is stored in the GDT or in
the LDT of the process.

Fast Access to Segment Descriptors
We recall that logical addresses consist of a 16-bit Segment Selector and a 32-bit Off-
set, and that segmentation registers store only the Segment Selector.

To speed up the translation of logical addresses into linear addresses, the 80 × 86 pro-
cessor provides an additional nonprogrammable register—that is, a register that can-
not be set by a programmer—for each of the six programmable segmentation
registers. Each nonprogrammable register contains the 8-byte Segment Descriptor
(described in the previous section) specified by the Segment Selector contained in the
corresponding segmentation register. Every time a Segment Selector is loaded in a seg-
mentation register, the corresponding Segment Descriptor is loaded from memory
into the matching nonprogrammable CPU register. From then on, translations of logi-
cal addresses referring to that segment can be performed without accessing the GDT

Figure 2-3. Segment Descriptor format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 326263

BASE(24-31) G B O
A
V
L

LIMIT
(16-19) 1

D
P
L

S
=
1

TYPE BASE (16-23)

BASE(0-15) LIMIT (0-15)

Data Segment Descriptor

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 326263

BASE(24-31) G D O
A
V
L

LIMIT
(16-19) 1

D
P
L

S
=
1

TYPE BASE (16-23)

BASE(0-15) LIMIT (0-15)

Code Segment Descriptor

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 326263

BASE(24-31) G O
LIMIT

(16-19) 1
D
P
L

S
=
0

TYPE BASE (16-23)

BASE(0-15) LIMIT (0-15)

System Segment Descriptor

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Memory Addressing

or LDT stored in main memory; the processor can refer only directly to the CPU reg-
ister containing the Segment Descriptor. Accesses to the GDT or LDT are necessary
only when the contents of the segmentation registers change (see Figure 2-4).

Any Segment Selector includes three fields that are described in Table 2-2.

Because a Segment Descriptor is 8 bytes long, its relative address inside the GDT or
the LDT is obtained by multiplying the 13-bit index field of the Segment Selector by
8. For instance, if the GDT is at 0x00020000 (the value stored in the gdtr register) and
the index specified by the Segment Selector is 2, the address of the corresponding
Segment Descriptor is 0x00020000 + (2 × 8), or 0x00020010.

The first entry of the GDT is always set to 0. This ensures that logical addresses with
a null Segment Selector will be considered invalid, thus causing a processor excep-
tion. The maximum number of Segment Descriptors that can be stored in the GDT is
8,191 (i.e., 213–1).

Segmentation Unit
Figure 2-5 shows in detail how a logical address is translated into a corresponding
linear address. The segmentation unit performs the following operations:

Figure 2-4. Segment Selector and Segment Descriptor

Table 2-2. Segment Selector fields

Field name Description

index Identifies the Segment Descriptor entry contained in the GDT or in the LDT (described further in the text
following this table).

TI Table Indicator: specifies whether the Segment Descriptor is included in the GDT (TI = 0) or in the LDT
(TI = 1).

RPL Requestor Privilege Level : specifies the Current Privilege Level of the CPU when the corresponding Seg-
ment Selector is loaded into the cs register; it also may be used to selectively weaken the processor priv-
ilege level when accessing data segments (see Intel documentation for details).

Segment
Descriptor

Descriptor Table

Segment Selector

Segmentation Register

Segment Descriptor

Nonprogrammable Register

Segment

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Segmentation in Linux | 41

• Examines the TI field of the Segment Selector to determine which Descriptor
Table stores the Segment Descriptor. This field indicates that the Descriptor is
either in the GDT (in which case the segmentation unit gets the base linear
address of the GDT from the gdtr register) or in the active LDT (in which case the
segmentation unit gets the base linear address of that LDT from the ldtr register).

• Computes the address of the Segment Descriptor from the index field of the Seg-
ment Selector. The index field is multiplied by 8 (the size of a Segment Descrip-
tor), and the result is added to the content of the gdtr or ldtr register.

• Adds the offset of the logical address to the Base field of the Segment Descriptor,
thus obtaining the linear address.

Notice that, thanks to the nonprogrammable registers associated with the segmenta-
tion registers, the first two operations need to be performed only when a segmenta-
tion register has been changed.

Segmentation in Linux
Segmentation has been included in 80 × 86 microprocessors to encourage program-
mers to split their applications into logically related entities, such as subroutines or
global and local data areas. However, Linux uses segmentation in a very limited way.
In fact, segmentation and paging are somewhat redundant, because both can be used

Figure 2-5. Translating a logical address

Descriptor

gdt or ldt

gdtr or ldtr

8

Index

Selector

TI

offset

Linear Address

Logical Address

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Memory Addressing

to separate the physical address spaces of processes: segmentation can assign a differ-
ent linear address space to each process, while paging can map the same linear
address space into different physical address spaces. Linux prefers paging to segmen-
tation for the following reasons:

• Memory management is simpler when all processes use the same segment regis-
ter values—that is, when they share the same set of linear addresses.

• One of the design objectives of Linux is portability to a wide range of architec-
tures; RISC architectures in particular have limited support for segmentation.

The 2.6 version of Linux uses segmentation only when required by the 80 × 86 archi-
tecture.

All Linux processes running in User Mode use the same pair of segments to address
instructions and data. These segments are called user code segment and user data seg-
ment, respectively. Similarly, all Linux processes running in Kernel Mode use the
same pair of segments to address instructions and data: they are called kernel code
segment and kernel data segment, respectively. Table 2-3 shows the values of the Seg-
ment Descriptor fields for these four crucial segments.

The corresponding Segment Selectors are defined by the macros _ _USER_CS, _ _USER_DS,
_ _KERNEL_CS, and _ _KERNEL_DS, respectively. To address the kernel code segment, for
instance, the kernel just loads the value yielded by the _ _KERNEL_CS macro into the cs
segmentation register.

Notice that the linear addresses associated with such segments all start at 0 and reach
the addressing limit of 232 –1. This means that all processes, either in User Mode or
in Kernel Mode, may use the same logical addresses.

Another important consequence of having all segments start at 0x00000000 is that in
Linux, logical addresses coincide with linear addresses; that is, the value of the Off-
set field of a logical address always coincides with the value of the corresponding lin-
ear address.

As stated earlier, the Current Privilege Level of the CPU indicates whether the proces-
sor is in User or Kernel Mode and is specified by the RPL field of the Segment Selector
stored in the cs register. Whenever the CPL is changed, some segmentation registers
must be correspondingly updated. For instance, when the CPL is equal to 3 (User
Mode), the ds register must contain the Segment Selector of the user data segment,

Table 2-3. Values of the Segment Descriptor fields for the four main Linux segments

Segment Base G Limit S Type DPL D/B P

user code 0x00000000 1 0xfffff 1 10 3 1 1

user data 0x00000000 1 0xfffff 1 2 3 1 1

kernel code 0x00000000 1 0xfffff 1 10 0 1 1

kernel data 0x00000000 1 0xfffff 1 2 0 1 1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Segmentation in Linux | 43

but when the CPL is equal to 0, the ds register must contain the Segment Selector of
the kernel data segment.

A similar situation occurs for the ss register. It must refer to a User Mode stack
inside the user data segment when the CPL is 3, and it must refer to a Kernel Mode
stack inside the kernel data segment when the CPL is 0. When switching from User
Mode to Kernel Mode, Linux always makes sure that the ss register contains the Seg-
ment Selector of the kernel data segment.

When saving a pointer to an instruction or to a data structure, the kernel does not
need to store the Segment Selector component of the logical address, because the ss
register contains the current Segment Selector. As an example, when the kernel
invokes a function, it executes a call assembly language instruction specifying just
the Offset component of its logical address; the Segment Selector is implicitly selected
as the one referred to by the cs register. Because there is just one segment of type
“executable in Kernel Mode,” namely the code segment identified by __KERNEL_CS, it
is sufficient to load __KERNEL_CS into cs whenever the CPU switches to Kernel Mode.
The same argument goes for pointers to kernel data structures (implicitly using the ds
register), as well as for pointers to user data structures (the kernel explicitly uses the
es register).

Besides the four segments just described, Linux makes use of a few other specialized
segments. We’ll introduce them in the next section while describing the Linux GDT.

The Linux GDT
In uniprocessor systems there is only one GDT, while in multiprocessor systems
there is one GDT for every CPU in the system. All GDTs are stored in the cpu_gdt_
table array, while the addresses and sizes of the GDTs (used when initializing the
gdtr registers) are stored in the cpu_gdt_descr array. If you look in the Source Code
Index, you can see that these symbols are defined in the file arch/i386/kernel/head.S.
Every macro, function, and other symbol in this book is listed in the Source Code
Index, so you can quickly find it in the source code.

The layout of the GDTs is shown schematically in Figure 2-6. Each GDT includes 18
segment descriptors and 14 null, unused, or reserved entries. Unused entries are
inserted on purpose so that Segment Descriptors usually accessed together are kept
in the same 32-byte line of the hardware cache (see the section “Hardware Cache”
later in this chapter).

The 18 segment descriptors included in each GDT point to the following segments:

• Four user and kernel code and data segments (see previous section).

• A Task State Segment (TSS), different for each processor in the system. The lin-
ear address space corresponding to a TSS is a small subset of the linear address
space corresponding to the kernel data segment. The Task State Segments are

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Memory Addressing

sequentially stored in the init_tss array; in particular, the Base field of the TSS
descriptor for the nth CPU points to the nth component of the init_tss array.
The G (granularity) flag is cleared, while the Limit field is set to 0xeb, because the
TSS segment is 236 bytes long. The Type field is set to 9 or 11 (available 32-bit
TSS), and the DPL is set to 0, because processes in User Mode are not allowed to
access TSS segments. You will find details on how Linux uses TSSs in the sec-
tion “Task State Segment” in Chapter 3.

• A segment including the default Local Descriptor Table (LDT), usually shared by
all processes (see the next section).

• Three Thread-Local Storage (TLS) segments: this is a mechanism that allows
multithreaded applications to make use of up to three segments containing data
local to each thread. The set_thread_area() and get_thread_area() system calls,
respectively, create and release a TLS segment for the executing process.

• Three segments related to Advanced Power Management (APM): the BIOS code
makes use of segments, so when the Linux APM driver invokes BIOS functions to
get or set the status of APM devices, it may use custom code and data segments.

• Five segments related to Plug and Play (PnP) BIOS services. As in the previous
case, the BIOS code makes use of segments, so when the Linux PnP driver
invokes BIOS functions to detect the resources used by PnP devices, it may use
custom code and data segments.

Figure 2-6. The Global Descriptor Table

not used

not used

not used

not used

TSS

not used

double fault TSS

LDT

PNPBIOS 32-bit code

PNPBIOS 16-bit code

PNPBIOS 16-bit data

PNPBIOS 16-bit data

PNPBIOS 16-bit data

APMBIOS 32-bit code

APMBIOS 16-bit code

APMBIOS data

Linux’s GDT Segment Selectors

0x80

0x88

0x90

0x98

0xa0

0xa8

0xb0

0xb8

0xc0

0xc8

0xf8

null

reserved

reserved

reserved

reserved

reserved

reserved

TLS #1

kernel code

not used

not used

TLS #2

TLS #3

kernel data

user data

user code

Linux’s GDT Segment Selectors

0x0

0x33

0x3b

0x43

0x60 (__KERNEL_CS)

0x68 (__KERNEL_DS)

0x73 (__USER_CS)

0x7b (__USER_DS)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Hardware | 45

• A special TSS segment used by the kernel to handle “Double fault” exceptions
(see “Exceptions” in Chapter 4).

As stated earlier, there is a copy of the GDT for each processor in the system. All
copies of the GDT store identical entries, except for a few cases. First, each proces-
sor has its own TSS segment, thus the corresponding GDT’s entries differ. More-
over, a few entries in the GDT may depend on the process that the CPU is executing
(LDT and TLS Segment Descriptors). Finally, in some cases a processor may tempo-
rarily modify an entry in its copy of the GDT; this happens, for instance, when
invoking an APM’s BIOS procedure.

The Linux LDTs
Most Linux User Mode applications do not make use of a Local Descriptor Table,
thus the kernel defines a default LDT to be shared by most processes. The default
Local Descriptor Table is stored in the default_ldt array. It includes five entries, but
only two of them are effectively used by the kernel: a call gate for iBCS executables,
and a call gate for Solaris/x86 executables (see the section “Execution Domains” in
Chapter 20). Call gates are a mechanism provided by 80 × 86 microprocessors to
change the privilege level of the CPU while invoking a predefined function; as we
won’t discuss them further, you should consult the Intel documentation for more
details.

In some cases, however, processes may require to set up their own LDT. This turns
out to be useful to applications (such as Wine) that execute segment-oriented
Microsoft Windows applications. The modify_ldt() system call allows a process to
do this.

Any custom LDT created by modify_ldt() also requires its own segment. When a
processor starts executing a process having a custom LDT, the LDT entry in the
CPU-specific copy of the GDT is changed accordingly.

User Mode applications also may allocate new segments by means of modify_ldt();
the kernel, however, never makes use of these segments, and it does not have to keep
track of the corresponding Segment Descriptors, because they are included in the
custom LDT of the process.

Paging in Hardware
The paging unit translates linear addresses into physical ones. One key task in the
unit is to check the requested access type against the access rights of the linear
address. If the memory access is not valid, it generates a Page Fault exception (see
Chapter 4 and Chapter 8).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Memory Addressing

For the sake of efficiency, linear addresses are grouped in fixed-length intervals called
pages; contiguous linear addresses within a page are mapped into contiguous physi-
cal addresses. In this way, the kernel can specify the physical address and the access
rights of a page instead of those of all the linear addresses included in it. Following
the usual convention, we shall use the term “page” to refer both to a set of linear
addresses and to the data contained in this group of addresses.

The paging unit thinks of all RAM as partitioned into fixed-length page frames
(sometimes referred to as physical pages). Each page frame contains a page—that is,
the length of a page frame coincides with that of a page. A page frame is a constitu-
ent of main memory, and hence it is a storage area. It is important to distinguish a
page from a page frame; the former is just a block of data, which may be stored in
any page frame or on disk.

The data structures that map linear to physical addresses are called page tables; they
are stored in main memory and must be properly initialized by the kernel before
enabling the paging unit.

Starting with the 80386, all 80 × 86 processors support paging; it is enabled by set-
ting the PG flag of a control register named cr0. When PG = 0, linear addresses are
interpreted as physical addresses.

Regular Paging
Starting with the 80386, the paging unit of Intel processors handles 4 KB pages.

The 32 bits of a linear address are divided into three fields:

Directory
The most significant 10 bits

Table
The intermediate 10 bits

Offset
The least significant 12 bits

The translation of linear addresses is accomplished in two steps, each based on a
type of translation table. The first translation table is called the Page Directory, and
the second is called the Page Table.*

The aim of this two-level scheme is to reduce the amount of RAM required for per-
process Page Tables. If a simple one-level Page Table was used, then it would require

* In the discussion that follows, the lowercase “page table” term denotes any page storing the mapping
between linear and physical addresses, while the capitalized “Page Table” term denotes a page in the last
level of page tables.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Hardware | 47

up to 220 entries (i.e., at 4 bytes per entry, 4 MB of RAM) to represent the Page Table
for each process (if the process used a full 4 GB linear address space), even though a
process does not use all addresses in that range. The two-level scheme reduces the
memory by requiring Page Tables only for those virtual memory regions actually
used by a process.

Each active process must have a Page Directory assigned to it. However, there is no
need to allocate RAM for all Page Tables of a process at once; it is more efficient to
allocate RAM for a Page Table only when the process effectively needs it.

The physical address of the Page Directory in use is stored in a control register
named cr3. The Directory field within the linear address determines the entry in the
Page Directory that points to the proper Page Table. The address’s Table field, in
turn, determines the entry in the Page Table that contains the physical address of the
page frame containing the page. The Offset field determines the relative position
within the page frame (see Figure 2-7). Because it is 12 bits long, each page consists
of 4096 bytes of data.

Both the Directory and the Table fields are 10 bits long, so Page Directories and Page
Tables can include up to 1,024 entries. It follows that a Page Directory can address
up to 1024 × 1024 × 4096=232 memory cells, as you’d expect in 32-bit addresses.

Figure 2-7. Paging by 80 × 86 processors

DIRECTORY

Linear Address

TABLE OFFSET

31 22 21 12 11 0

cr3

Page Directory

Page Table

Page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Memory Addressing

The entries of Page Directories and Page Tables have the same structure. Each entry
includes the following fields:

Present flag
If it is set, the referred-to page (or Page Table) is contained in main memory; if
the flag is 0, the page is not contained in main memory and the remaining entry
bits may be used by the operating system for its own purposes. If the entry of a
Page Table or Page Directory needed to perform an address translation has the
Present flag cleared, the paging unit stores the linear address in a control register
named cr2 and generates exception 14: the Page Fault exception. (We will see in
Chapter 17 how Linux uses this field.)

Field containing the 20 most significant bits of a page frame physical address
Because each page frame has a 4-KB capacity, its physical address must be a mul-
tiple of 4096, so the 12 least significant bits of the physical address are always
equal to 0. If the field refers to a Page Directory, the page frame contains a Page
Table; if it refers to a Page Table, the page frame contains a page of data.

Accessed flag
Set each time the paging unit addresses the corresponding page frame. This flag
may be used by the operating system when selecting pages to be swapped out.
The paging unit never resets this flag; this must be done by the operating system.

Dirty flag
Applies only to the Page Table entries. It is set each time a write operation is per-
formed on the page frame. As with the Accessed flag, Dirty may be used by the
operating system when selecting pages to be swapped out. The paging unit never
resets this flag; this must be done by the operating system.

Read/Write flag
Contains the access right (Read/Write or Read) of the page or of the Page Table
(see the section “Hardware Protection Scheme” later in this chapter).

User/Supervisor flag
Contains the privilege level required to access the page or Page Table (see the
later section “Hardware Protection Scheme”).

PCD and PWT flags
Controls the way the page or Page Table is handled by the hardware cache (see
the section “Hardware Cache” later in this chapter).

Page Size flag
Applies only to Page Directory entries. If it is set, the entry refers to a 2 MB– or 4
MB–long page frame (see the following sections).

Global flag
Applies only to Page Table entries. This flag was introduced in the Pentium Pro
to prevent frequently used pages from being flushed from the TLB cache (see the
section “Translation Lookaside Buffers (TLB)” later in this chapter). It works
only if the Page Global Enable (PGE) flag of register cr4 is set.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Hardware | 49

Extended Paging
Starting with the Pentium model, 80 × 86 microprocessors introduce extended pag-
ing, which allows page frames to be 4 MB instead of 4 KB in size (see Figure 2-8).
Extended paging is used to translate large contiguous linear address ranges into cor-
responding physical ones; in these cases, the kernel can do without intermediate
Page Tables and thus save memory and preserve TLB entries (see the section “Trans-
lation Lookaside Buffers (TLB)”).

As mentioned in the previous section, extended paging is enabled by setting the Page
Size flag of a Page Directory entry. In this case, the paging unit divides the 32 bits of
a linear address into two fields:

Directory
The most significant 10 bits

Offset
The remaining 22 bits

Page Directory entries for extended paging are the same as for normal paging, except
that:

• The Page Size flag must be set.

• Only the 10 most significant bits of the 20-bit physical address field are signifi-
cant. This is because each physical address is aligned on a 4-MB boundary, so
the 22 least significant bits of the address are 0.

Figure 2-8. Extended paging

DIRECTORY

Linear Address

OFFSET

31 22 21 0

cr3

Page Directory

4 MB Page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: Memory Addressing

Extended paging coexists with regular paging; it is enabled by setting the PSE flag of
the cr4 processor register.

Hardware Protection Scheme
The paging unit uses a different protection scheme from the segmentation unit.
While 80 × 86 processors allow four possible privilege levels to a segment, only two
privilege levels are associated with pages and Page Tables, because privileges are con-
trolled by the User/Supervisor flag mentioned in the earlier section “Regular Paging.”
When this flag is 0, the page can be addressed only when the CPL is less than 3 (this
means, for Linux, when the processor is in Kernel Mode). When the flag is 1, the
page can always be addressed.

Furthermore, instead of the three types of access rights (Read, Write, and Execute)
associated with segments, only two types of access rights (Read and Write) are asso-
ciated with pages. If the Read/Write flag of a Page Directory or Page Table entry is
equal to 0, the corresponding Page Table or page can only be read; otherwise it can
be read and written.*

An Example of Regular Paging
A simple example will help in clarifying how regular paging works. Let’s assume that
the kernel assigns the linear address space between 0x20000000 and 0x2003ffff to a
running process.† This space consists of exactly 64 pages. We don’t care about the
physical addresses of the page frames containing the pages; in fact, some of them
might not even be in main memory. We are interested only in the remaining fields of
the Page Table entries.

Let’s start with the 10 most significant bits of the linear addresses assigned to the
process, which are interpreted as the Directory field by the paging unit. The
addresses start with a 2 followed by zeros, so the 10 bits all have the same value,
namely 0x080 or 128 decimal. Thus the Directory field in all the addresses refers to
the 129th entry of the process Page Directory. The corresponding entry must contain
the physical address of the Page Table assigned to the process (see Figure 2-9). If no
other linear addresses are assigned to the process, all the remaining 1,023 entries of
the Page Directory are filled with zeros.

* Recent Intel Pentium 4 processors sport an NX (No eXecute) flag in each 64-bit Page Table entry (PAE must
be enabled, see the section “The Physical Address Extension (PAE) Paging Mechanism” later in this chapter).
Linux 2.6.11 supports this hardware feature.

† As we shall see in the following chapters, the 3 GB linear address space is an upper limit, but a User Mode
process is allowed to reference only a subset of it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Hardware | 51

The values assumed by the intermediate 10 bits, (that is, the values of the Table field)
range from 0 to 0x03f, or from 0 to 63 decimal. Thus, only the first 64 entries of the
Page Table are valid. The remaining 960 entries are filled with zeros.

Suppose that the process needs to read the byte at linear address 0x20021406. This
address is handled by the paging unit as follows:

1. The Directory field 0x80 is used to select entry 0x80 of the Page Directory, which
points to the Page Table associated with the process’s pages.

2. The Table field 0x21 is used to select entry 0x21 of the Page Table, which points
to the page frame containing the desired page.

3. Finally, the Offset field 0x406 is used to select the byte at offset 0x406 in the
desired page frame.

If the Present flag of the 0x21 entry of the Page Table is cleared, the page is not
present in main memory; in this case, the paging unit issues a Page Fault exception
while translating the linear address. The same exception is issued whenever the pro-
cess attempts to access linear addresses outside of the interval delimited by
0x20000000 and 0x2003ffff, because the Page Table entries not assigned to the pro-
cess are filled with zeros; in particular, their Present flags are all cleared.

The Physical Address Extension (PAE) Paging Mechanism
The amount of RAM supported by a processor is limited by the number of address
pins connected to the address bus. Older Intel processors from the 80386 to the Pen-
tium used 32-bit physical addresses. In theory, up to 4 GB of RAM could be installed
on such systems; in practice, due to the linear address space requirements of User
Mode processes, the kernel cannot directly address more than 1 GB of RAM, as we
will see in the later section “Paging in Linux.”

However, big servers that need to run hundreds or thousands of processes at the same
time require more than 4 GB of RAM, and in recent years this created a pressure on
Intel to expand the amount of RAM supported on the 32-bit 80 × 86 architecture.

Figure 2-9. An example of paging

Page Directory

1023 (0x3ff)

128 (0x080)

0

Page Table

1023 (0x3ff)

64 (0x040)
63 (0x03F)

0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 2: Memory Addressing

Intel has satisfied these requests by increasing the number of address pins on its pro-
cessors from 32 to 36. Starting with the Pentium Pro, all Intel processors are now
able to address up to 236 = 64 GB of RAM. However, the increased range of physical
addresses can be exploited only by introducing a new paging mechanism that trans-
lates 32-bit linear addresses into 36-bit physical ones.

With the Pentium Pro processor, Intel introduced a mechanism called Physical
Address Extension (PAE). Another mechanism, Page Size Extension (PSE-36), was
introduced in the Pentium III processor, but Linux does not use it, and we won’t dis-
cuss it further in this book.

PAE is activated by setting the Physical Address Extension (PAE) flag in the cr4 con-
trol register. The Page Size (PS) flag in the page directory entry enables large page
sizes (2 MB when PAE is enabled).

Intel has changed the paging mechanism in order to support PAE.

• The 64 GB of RAM are split into 224 distinct page frames, and the physical
address field of Page Table entries has been expanded from 20 to 24 bits.
Because a PAE Page Table entry must include the 12 flag bits (described in the
earlier section “Regular Paging”) and the 24 physical address bits, for a grand
total of 36, the Page Table entry size has been doubled from 32 bits to 64 bits. As
a result, a 4-KB PAE Page Table includes 512 entries instead of 1,024.

• A new level of Page Table called the Page Directory Pointer Table (PDPT) con-
sisting of four 64-bit entries has been introduced.

• The cr3 control register contains a 27-bit Page Directory Pointer Table base
address field. Because PDPTs are stored in the first 4 GB of RAM and aligned to
a multiple of 32 bytes (25), 27 bits are sufficient to represent the base address of
such tables.

• When mapping linear addresses to 4 KB pages (PS flag cleared in Page Directory
entry), the 32 bits of a linear address are interpreted in the following way:

cr3
Points to a PDPT

bits 31–30
Point to 1 of 4 possible entries in PDPT

bits 29–21
Point to 1 of 512 possible entries in Page Directory

bits 20–12
Point to 1 of 512 possible entries in Page Table

bits 11–0
Offset of 4-KB page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Hardware | 53

• When mapping linear addresses to 2-MB pages (PS flag set in Page Directory
entry), the 32 bits of a linear address are interpreted in the following way:

cr3
Points to a PDPT

bits 31–30
Point to 1 of 4 possible entries in PDPT

bits 29–21
Point to 1 of 512 possible entries in Page Directory

bits 20–0
Offset of 2-MB page

To summarize, once cr3 is set, it is possible to address up to 4 GB of RAM. If we
want to address more RAM, we’ll have to put a new value in cr3 or change the con-
tent of the PDPT. However, the main problem with PAE is that linear addresses are
still 32 bits long. This forces kernel programmers to reuse the same linear addresses
to map different areas of RAM. We’ll sketch how Linux initializes Page Tables when
PAE is enabled in the later section, “Final kernel Page Table when RAM size is more
than 4096 MB.” Clearly, PAE does not enlarge the linear address space of a process,
because it deals only with physical addresses. Furthermore, only the kernel can mod-
ify the page tables of the processes, thus a process running in User Mode cannot use
a physical address space larger than 4 GB. On the other hand, PAE allows the kernel
to exploit up to 64 GB of RAM, and thus to increase significantly the number of pro-
cesses in the system.

Paging for 64-bit Architectures
As we have seen in the previous sections, two-level paging is commonly used by 32-
bit microprocessors*. Two-level paging, however, is not suitable for computers that
adopt a 64-bit architecture. Let’s use a thought experiment to explain why:

Start by assuming a standard page size of 4 KB. Because 1 KB covers a range of 210

addresses, 4 KB covers 212 addresses, so the Offset field is 12 bits. This leaves up to
52 bits of the linear address to be distributed between the Table and the Directory
fields. If we now decide to use only 48 of the 64 bits for addressing (this restriction
leaves us with a comfortable 256 TB address space!), the remaining 48-12 = 36 bits
will have to be split among Table and the Directory fields. If we now decide to reserve
18 bits for each of these two fields, both the Page Directory and the Page Tables of
each process should include 218 entries—that is, more than 256,000 entries.

* The third level of paging present in 80x86 processors with PAE enabled has been introduced only to lower
from 1024 to 512 the number of entries in the Page Directory and Page Tables. This enlarges the Page Table
entries from 32 bits to 64 bits so that they can store the 24 most significant bits of the physical address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 2: Memory Addressing

For that reason, all hardware paging systems for 64-bit processors make use of addi-
tional paging levels. The number of levels used depends on the type of processor.
Table 2-4 summarizes the main characteristics of the hardware paging systems used
by some 64-bit platforms supported by Linux. Please refer to the section “Hardware
Dependency” in Chapter 1 for a short description of the hardware associated with
the platform name.

As we will see in the section “Paging in Linux” later in this chapter, Linux succeeds
in providing a common paging model that fits most of the supported hardware pag-
ing systems.

Hardware Cache
Today’s microprocessors have clock rates of several gigahertz, while dynamic RAM
(DRAM) chips have access times in the range of hundreds of clock cycles. This
means that the CPU may be held back considerably while executing instructions that
require fetching operands from RAM and/or storing results into RAM.

Hardware cache memories were introduced to reduce the speed mismatch between
CPU and RAM. They are based on the well-known locality principle, which holds
both for programs and data structures. This states that because of the cyclic struc-
ture of programs and the packing of related data into linear arrays, addresses close to
the ones most recently used have a high probability of being used in the near future.
It therefore makes sense to introduce a smaller and faster memory that contains the
most recently used code and data. For this purpose, a new unit called the line was
introduced into the 80 × 86 architecture. It consists of a few dozen contiguous bytes
that are transferred in burst mode between the slow DRAM and the fast on-chip
static RAM (SRAM) used to implement caches.

The cache is subdivided into subsets of lines. At one extreme, the cache can be direct
mapped, in which case a line in main memory is always stored at the exact same loca-
tion in the cache. At the other extreme, the cache is fully associative, meaning that
any line in memory can be stored at any location in the cache. But most caches are to
some degree N-way set associative, where any line of main memory can be stored in

Table 2-4. Paging levels in some 64-bit architectures

Platform name Page size Number of address bits used Number of paging levels Linear address splitting

alpha 8 KB a

a This architecture supports different page sizes; we select a typical page size adopted by Linux.

43 3 10 + 10 + 10 + 13

ia64 4 KB a 39 3 9 + 9 + 9 + 12

ppc64 4 KB 41 3 10 + 10 + 9 + 12

sh64 4 KB 41 3 10 + 10 + 9 + 12

x86_64 4 KB 48 4 9 + 9 + 9 + 9 + 12

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Hardware | 55

any one of N lines of the cache. For instance, a line of memory can be stored in two
different lines of a two-way set associative cache.

As shown in Figure 2-10, the cache unit is inserted between the paging unit and the
main memory. It includes both a hardware cache memory and a cache controller. The
cache memory stores the actual lines of memory. The cache controller stores an array
of entries, one entry for each line of the cache memory. Each entry includes a tag and
a few flags that describe the status of the cache line. The tag consists of some bits
that allow the cache controller to recognize the memory location currently mapped
by the line. The bits of the memory’s physical address are usually split into three
groups: the most significant ones correspond to the tag, the middle ones to the cache
controller subset index, and the least significant ones to the offset within the line.

When accessing a RAM memory cell, the CPU extracts the subset index from the
physical address and compares the tags of all lines in the subset with the high-order
bits of the physical address. If a line with the same tag as the high-order bits of the
address is found, the CPU has a cache hit; otherwise, it has a cache miss.

When a cache hit occurs, the cache controller behaves differently, depending on the
access type. For a read operation, the controller selects the data from the cache line
and transfers it into a CPU register; the RAM is not accessed and the CPU saves time,
which is why the cache system was invented. For a write operation, the controller
may implement one of two basic strategies called write-through and write-back. In a
write-through, the controller always writes into both RAM and the cache line, effec-
tively switching off the cache for write operations. In a write-back, which offers more
immediate efficiency, only the cache line is updated and the contents of the RAM are
left unchanged. After a write-back, of course, the RAM must eventually be updated.
The cache controller writes the cache line back into RAM only when the CPU exe-
cutes an instruction requiring a flush of cache entries or when a FLUSH hardware
signal occurs (usually after a cache miss).

When a cache miss occurs, the cache line is written to memory, if necessary, and the
correct line is fetched from RAM into the cache entry.

Figure 2-10. Processor hardware cache

CPU

SRAM
cache

Cache controller

Paging
unit

DRAM
Main memory

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 2: Memory Addressing

Multiprocessor systems have a separate hardware cache for every processor, and
therefore they need additional hardware circuitry to synchronize the cache contents.
As shown in Figure 2-11, each CPU has its own local hardware cache. But now
updating becomes more time consuming: whenever a CPU modifies its hardware
cache, it must check whether the same data is contained in the other hardware
cache; if so, it must notify the other CPU to update it with the proper value. This
activity is often called cache snooping. Luckily, all this is done at the hardware level
and is of no concern to the kernel.

Cache technology is rapidly evolving. For example, the first Pentium models included
a single on-chip cache called the L1-cache. More recent models also include other
larger, slower on-chip caches called the L2-cache, L3-cache, etc. The consistency
between the cache levels is implemented at the hardware level. Linux ignores these
hardware details and assumes there is a single cache.

The CD flag of the cr0 processor register is used to enable or disable the cache cir-
cuitry. The NW flag, in the same register, specifies whether the write-through or the
write-back strategy is used for the caches.

Another interesting feature of the Pentium cache is that it lets an operating system
associate a different cache management policy with each page frame. For this pur-
pose, each Page Directory and each Page Table entry includes two flags: PCD (Page
Cache Disable), which specifies whether the cache must be enabled or disabled while
accessing data included in the page frame; and PWT (Page Write-Through), which
specifies whether the write-back or the write-through strategy must be applied while
writing data into the page frame. Linux clears the PCD and PWT flags of all Page Direc-
tory and Page Table entries; as a result, caching is enabled for all page frames, and
the write-back strategy is always adopted for writing.

Figure 2-11. The caches in a dual processor

RAM

CPU 1

Hardware
Cache

CPU 0

Hardware
Cache

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 57

Translation Lookaside Buffers (TLB)
Besides general-purpose hardware caches, 80 × 86 processors include another cache
called Translation Lookaside Buffers (TLB) to speed up linear address translation.
When a linear address is used for the first time, the corresponding physical address is
computed through slow accesses to the Page Tables in RAM. The physical address is
then stored in a TLB entry so that further references to the same linear address can
be quickly translated.

In a multiprocessor system, each CPU has its own TLB, called the local TLB of the
CPU. Contrary to the hardware cache, the corresponding entries of the TLB need not
be synchronized, because processes running on the existing CPUs may associate the
same linear address with different physical ones.

When the cr3 control register of a CPU is modified, the hardware automatically
invalidates all entries of the local TLB, because a new set of page tables is in use and
the TLBs are pointing to old data.

Paging in Linux
Linux adopts a common paging model that fits both 32-bit and 64-bit architectures.
As explained in the earlier section “Paging for 64-bit Architectures,” two paging lev-
els are sufficient for 32-bit architectures, while 64-bit architectures require a higher
number of paging levels. Up to version 2.6.10, the Linux paging model consisted of
three paging levels. Starting with version 2.6.11, a four-level paging model has been
adopted.* The four types of page tables illustrated in Figure 2-12 are called:

• Page Global Directory

• Page Upper Directory

• Page Middle Directory

• Page Table

The Page Global Directory includes the addresses of several Page Upper Directories,
which in turn include the addresses of several Page Middle Directories, which in
turn include the addresses of several Page Tables. Each Page Table entry points to a
page frame. Thus the linear address can be split into up to five parts. Figure 2-12
does not show the bit numbers, because the size of each part depends on the com-
puter architecture.

For 32-bit architectures with no Physical Address Extension, two paging levels are
sufficient. Linux essentially eliminates the Page Upper Directory and the Page Mid-
dle Directory fields by saying that they contain zero bits. However, the positions of

* This change has been made to fully support the linear address bit splitting used by the x86_64 platform (see
Table 2-4).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 2: Memory Addressing

the Page Upper Directory and the Page Middle Directory in the sequence of pointers
are kept so that the same code can work on 32-bit and 64-bit architectures. The ker-
nel keeps a position for the Page Upper Directory and the Page Middle Directory by
setting the number of entries in them to 1 and mapping these two entries into the
proper entry of the Page Global Directory.

For 32-bit architectures with the Physical Address Extension enabled, three paging
levels are used. The Linux’s Page Global Directory corresponds to the 80 × 86’s Page
Directory Pointer Table, the Page Upper Directory is eliminated, the Page Middle
Directory corresponds to the 80 × 86’s Page Directory, and the Linux’s Page Table
corresponds to the 80 × 86’s Page Table.

Finally, for 64-bit architectures three or four levels of paging are used depending on
the linear address bit splitting performed by the hardware (see Table 2-4).

Linux’s handling of processes relies heavily on paging. In fact, the automatic transla-
tion of linear addresses into physical ones makes the following design objectives
feasible:

• Assign a different physical address space to each process, ensuring an efficient
protection against addressing errors.

• Distinguish pages (groups of data) from page frames (physical addresses in main
memory). This allows the same page to be stored in a page frame, then saved to
disk and later reloaded in a different page frame. This is the basic ingredient of
the virtual memory mechanism (see Chapter 17).

Figure 2-12. The Linux paging model

GLOBAL DIR

Linear Address

MIDDLE DIR OFFSET

cr3

Page Global
Directory

Page Middle
Directory

Page

Page Table

TABLEUPPER DIR

Page Upper
Directory

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 59

In the remaining part of this chapter, we will refer for the sake of concreteness to the
paging circuitry used by the 80 × 86 processors.

As we will see in Chapter 9, each process has its own Page Global Directory and its
own set of Page Tables. When a process switch occurs (see the section “Process
Switch” in Chapter 3), Linux saves the cr3 control register in the descriptor of the
process previously in execution and then loads cr3 with the value stored in the
descriptor of the process to be executed next. Thus, when the new process resumes
its execution on the CPU, the paging unit refers to the correct set of Page Tables.

Mapping linear to physical addresses now becomes a mechanical task, although it is
still somewhat complex. The next few sections of this chapter are a rather tedious list
of functions and macros that retrieve information the kernel needs to find addresses
and manage the tables; most of the functions are one or two lines long. You may
want to only skim these sections now, but it is useful to know the role of these func-
tions and macros, because you’ll see them often in discussions throughout this book.

The Linear Address Fields
The following macros simplify Page Table handling:

PAGE_SHIFT
Specifies the length in bits of the Offset field; when applied to 80 × 86 proces-
sors, it yields the value 12. Because all the addresses in a page must fit in the Off-
set field, the size of a page on 80 × 86 systems is 212 or the familiar 4,096 bytes;
the PAGE_SHIFT of 12 can thus be considered the logarithm base 2 of the total
page size. This macro is used by PAGE_SIZE to return the size of the page. Finally,
the PAGE_MASK macro yields the value 0xfffff000 and is used to mask all the bits
of the Offset field.

PMD_SHIFT
The total length in bits of the Offset and Table fields of a linear address; in other
words, the logarithm of the size of the area a Page Middle Directory entry can
map. The PMD_SIZE macro computes the size of the area mapped by a single entry
of the Page Middle Directory—that is, of a Page Table. The PMD_MASK macro is
used to mask all the bits of the Offset and Table fields.

When PAE is disabled, PMD_SHIFT yields the value 22 (12 from Offset plus 10
from Table), PMD_SIZE yields 222 or 4 MB, and PMD_MASK yields 0xffc00000. Con-
versely, when PAE is enabled, PMD_SHIFT yields the value 21 (12 from Offset plus
9 from Table), PMD_SIZE yields 221 or 2 MB, and PMD_MASK yields 0xffe00000.

Large pages do not make use of the last level of page tables, thus LARGE_PAGE_
SIZE, which yields the size of a large page, is equal to PMD_SIZE (2PMD_SHIFT)
while LARGE_PAGE_MASK, which is used to mask all the bits of the Offset and Table
fields in a large page address, is equal to PMD_MASK.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 2: Memory Addressing

PUD_SHIFT
Determines the logarithm of the size of the area a Page Upper Directory entry
can map. The PUD_SIZE macro computes the size of the area mapped by a single
entry of the Page Global Directory. The PUD_MASK macro is used to mask all the
bits of the Offset, Table, Middle Air, and Upper Air fields.

On the 80 × 86 processors, PUD_SHIFT is always equal to PMD_SHIFT and PUD_SIZE
is equal to 4 MB or 2 MB.

PGDIR_SHIFT
Determines the logarithm of the size of the area that a Page Global Directory
entry can map. The PGDIR_SIZE macro computes the size of the area mapped by a
single entry of the Page Global Directory. The PGDIR_MASK macro is used to mask
all the bits of the Offset, Table, Middle Air, and Upper Air fields.

When PAE is disabled, PGDIR_SHIFT yields the value 22 (the same value yielded
by PMD_SHIFT and by PUD_SHIFT), PGDIR_SIZE yields 222 or 4 MB, and PGDIR_MASK
yields 0xffc00000. Conversely, when PAE is enabled, PGDIR_SHIFT yields the value
30 (12 from Offset plus 9 from Table plus 9 from Middle Air), PGDIR_SIZE yields
230 or 1 GB, and PGDIR_MASK yields 0xc0000000.

PTRS_PER_PTE, PTRS_PER_PMD, PTRS_PER_PUD, and PTRS_PER_PGD
Compute the number of entries in the Page Table, Page Middle Directory, Page
Upper Directory, and Page Global Directory. They yield the values 1,024, 1, 1,
and 1,024, respectively, when PAE is disabled; and the values 512, 512, 1, and 4,
respectively, when PAE is enabled.

Page Table Handling
pte_t, pmd_t, pud_t, and pgd_t describe the format of, respectively, a Page Table, a
Page Middle Directory, a Page Upper Directory, and a Page Global Directory entry.
They are 64-bit data types when PAE is enabled and 32-bit data types otherwise.
pgprot_t is another 64-bit (PAE enabled) or 32-bit (PAE disabled) data type that rep-
resents the protection flags associated with a single entry.

Five type-conversion macros—_ _pte, _ _pmd, _ _pud, _ _pgd, and _ _pgprot—cast an
unsigned integer into the required type. Five other type-conversion macros—pte_
val, pmd_val, pud_val, pgd_val, and pgprot_val—perform the reverse casting from
one of the four previously mentioned specialized types into an unsigned integer.

The kernel also provides several macros and functions to read or modify page table
entries:

• pte_none, pmd_none, pud_none, and pgd_none yield the value 1 if the correspond-
ing entry has the value 0; otherwise, they yield the value 0.

• pte_clear, pmd_clear, pud_clear, and pgd_clear clear an entry of the correspond-
ing page table, thus forbidding a process to use the linear addresses mapped by
the page table entry. The ptep_get_and_clear() function clears a Page Table
entry and returns the previous value.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 61

• set_pte, set_pmd, set_pud, and set_pgd write a given value into a page table
entry; set_pte_atomic is identical to set_pte, but when PAE is enabled it also
ensures that the 64-bit value is written atomically.

• pte_same(a,b) returns 1 if two Page Table entries a and b refer to the same page
and specify the same access privileges, 0 otherwise.

• pmd_large(e) returns 1 if the Page Middle Directory entry e refers to a large page
(2 MB or 4 MB), 0 otherwise.

The pmd_bad macro is used by functions to check Page Middle Directory entries
passed as input parameters. It yields the value 1 if the entry points to a bad Page
Table—that is, if at least one of the following conditions applies:

• The page is not in main memory (Present flag cleared).

• The page allows only Read access (Read/Write flag cleared).

• Either Accessed or Dirty is cleared (Linux always forces these flags to be set for
every existing Page Table).

The pud_bad and pgd_bad macros always yield 0. No pte_bad macro is defined,
because it is legal for a Page Table entry to refer to a page that is not present in main
memory, not writable, or not accessible at all.

The pte_present macro yields the value 1 if either the Present flag or the Page Size
flag of a Page Table entry is equal to 1, the value 0 otherwise. Recall that the Page
Size flag in Page Table entries has no meaning for the paging unit of the micropro-
cessor; the kernel, however, marks Present equal to 0 and Page Size equal to 1 for
the pages present in main memory but without read, write, or execute privileges. In
this way, any access to such pages triggers a Page Fault exception because Present is
cleared, and the kernel can detect that the fault is not due to a missing page by
checking the value of Page Size.

The pmd_present macro yields the value 1 if the Present flag of the corresponding
entry is equal to 1—that is, if the corresponding page or Page Table is loaded in
main memory. The pud_present and pgd_present macros always yield the value 1.

The functions listed in Table 2-5 query the current value of any of the flags included
in a Page Table entry; with the exception of pte_file(), these functions work prop-
erly only on Page Table entries for which pte_present returns 1.

Table 2-5. Page flag reading functions

Function name Description

pte_user() Reads the User/Supervisor flag

pte_read() Reads the User/Supervisor flag (pages on the 80 × 86 processor can-
not be protected against reading)

pte_write() Reads the Read/Write flag

pte_exec() Reads theUser/Supervisor flag (pages on the 80x86 processor cannot be
protected against code execution)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 2: Memory Addressing

Another group of functions listed in Table 2-6 sets the value of the flags in a Page
Table entry.

Now, let’s discuss the macros listed in Table 2-7 that combine a page address and a
group of protection flags into a page table entry or perform the reverse operation of
extracting the page address from a page table entry. Notice that some of these mac-

pte_dirty() Reads the Dirty flag

pte_young() Reads the Accessed flag

pte_file() Reads the Dirty flag (when the Present flag is cleared and the Dirty flag
is set, the page belongs to a non-linear disk file mapping; see Chapter 16)

Table 2-6. Page flag setting functions

Function name Description

mk_pte_huge() Sets the Page Size and Present flags of a Page Table entry

pte_wrprotect() Clears the Read/Write flag

pte_rdprotect() Clears the User/Supervisor flag

pte_exprotect() Clears the User/Supervisor flag

pte_mkwrite() Sets the Read/Write flag

pte_mkread() Sets the User/Supervisor flag

pte_mkexec() Sets the User/Supervisor flag

pte_mkclean() Clears the Dirty flag

pte_mkdirty() Sets the Dirty flag

pte_mkold() Clears the Accessed flag (makes the page old)

pte_mkyoung() Sets the Accessed flag (makes the page young)

pte_modify(p,v) Sets all access rights in a Page Table entry p to a specified value v

ptep_set_wrprotect() Like pte_wrprotect(), but acts on a pointer to a Page Table entry

ptep_set_access_flags() If the Dirty flag is set, sets the page’s access rights to a specified value and
invokesflush_tlb_page() (see the section “Translation Lookaside Buffers
(TLB)” later in this chapter)

ptep_mkdirty() Like pte_mkdirty() but acts on a pointer to a Page Table entry

ptep_test_and_clear_dirty() Like pte_mkclean() but acts on a pointer to a Page Table entry and returns
the old value of the flag

ptep_test_and_clear_young() Like pte_mkold() but acts on a pointer to a Page Table entry and returns
the old value of the flag

Table 2-5. Page flag reading functions (continued)

Function name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 63

ros refer to a page through the linear address of its “page descriptor” (see the section
“Page Descriptors” in Chapter 8) rather than the linear address of the page itself.

Table 2-7. Macros acting on Page Table entries

Macro name Description

pgd_index(addr) Yields the index (relative position) of the entry in the Page Global Directory
that maps the linear address addr.

pgd_offset(mm, addr) Receives as parameters the address of a memory descriptor cw (see
Chapter 9) and a linear address addr. The macro yields the linear address of
the entry in a Page Global Directory that corresponds to the address addr;
the Page Global Directory is found through a pointer within the memory
descriptor.

pgd_offset_k(addr) Yields the linear address of the entry in the master kernel Page Global Direc-
tory that corresponds to the address addr (see the later section “Kernel Page
Tables”).

pgd_page(pgd) Yields the page descriptor address of the page frame containing the Page
Upper Directory referred to by the Page Global Directory entry pgd. In a two-
or three-level paging system, this macro is equivalent to pud_page()
applied to the folded Page Upper Directory entry.

pud_offset(pgd, addr) Receives as parameters a pointer pgd to a Page Global Directory entry and a
linear address addr. The macro yields the linear address of the entry in a
Page Upper Directory that corresponds to addr. In a two- or three-level pag-
ing system, this macro yields pgd, the address of a Page Global Directory
entry.

pud_page(pud) Yields the linear address of the Page Middle Directory referred to by the Page
Upper Directory entry pud. In a two-level paging system, this macro is equiv-
alent to pmd_page() applied to the folded Page Middle Directory entry.

pmd_index(addr) Yields the index (relative position) of the entry in the Page Middle Directory
that maps the linear address addr.

pmd_offset(pud, addr) Receives as parameters a pointer pud to a Page Upper Directory entry and a
linear address addr. The macro yields the address of the entry in a Page Mid-
dle Directory that corresponds toaddr. In a two-level paging system, it yields
pud, the address of a Page Global Directory entry.

pmd_page(pmd) Yields the page descriptor address of the Page Table referred to by the Page
Middle Directory entry pmd. In a two-level paging system, pmd is actually an
entry of a Page Global Directory.

mk_pte(p,prot) Receives as parameters the address of a page descriptor p and a group of
access rights prot, and builds the corresponding Page Table entry.

pte_index(addr) Yields the index (relative position) of the entry in the Page Table that maps
the linear address addr.

pte_offset_kernel(dir, addr) Yields the linear address of the Page Table that corresponds to the linear
address addr mapped by the Page Middle Directory dir. Used only on the
master kernel page tables (see the later section “Kernel Page Tables”).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 2: Memory Addressing

The last group of functions of this long list was introduced to simplify the creation
and deletion of page table entries.

When two-level paging is used, creating or deleting a Page Middle Directory entry is
trivial. As we explained earlier in this section, the Page Middle Directory contains a
single entry that points to the subordinate Page Table. Thus, the Page Middle Direc-
tory entry is the entry within the Page Global Directory, too. When dealing with Page
Tables, however, creating an entry may be more complex, because the Page Table
that is supposed to contain it might not exist. In such cases, it is necessary to allo-
cate a new page frame, fill it with zeros, and add the entry.

If PAE is enabled, the kernel uses three-level paging. When the kernel creates a new
Page Global Directory, it also allocates the four corresponding Page Middle Directo-
ries; these are freed only when the parent Page Global Directory is released.

When two or three-level paging is used, the Page Upper Directory entry is always
mapped as a single entry within the Page Global Directory.

As usual, the description of the functions listed in Table 2-8 refers to the 80 × 86
architecture.

pte_offset_map(dir, addr) Receives as parameters a pointer dir to a Page Middle Directory entry and a
linear address addr; it yields the linear address of the entry in the Page Table
that corresponds to the linear address addr. If the Page Table is kept in high
memory, the kernel establishes a temporary kernel mapping (see the section
“Kernel Mappings of High-Memory Page Frames” in Chapter 8), to be released
by means of pte_unmap. The macros pte_offset_map_nested and
pte_unmap_nested are identical, but they use a different temporary ker-
nel mapping.

pte_page(x) Returns the page descriptor address of the page referenced by the Page Table
entry x.

pte_to_pgoff(pte) Extracts from the content pte of a Page Table entry the file offset corre-
sponding to a page belonging to a non-linear file memory mapping (see the
section “Non-Linear Memory Mappings” in Chapter 16).

pgoff_to_pte(offset) Sets up the content of a Page Table entry for a page belonging to a non-linear
file memory mapping.

Table 2-8. Page allocation functions

Function name Description

pgd_alloc(mm) Allocates a new Page Global Directory; if PAE is enabled, it also allocates the
three children Page Middle Directories that map the User Mode linear
addresses. The argument mm (the address of a memory descriptor) is ignored
on the 80x86 architecture.

pgd_free(pgd) Releases the Page Global Directory at address pgd; if PAE is enabled, it also
releases the three Page Middle Directories that map the User Mode linear
addresses.

Table 2-7. Macros acting on Page Table entries (continued)

Macro name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 65

Physical Memory Layout
During the initialization phase the kernel must build a physical addresses map that
specifies which physical address ranges are usable by the kernel and which are
unavailable (either because they map hardware devices’ I/O shared memory or
because the corresponding page frames contain BIOS data).

The kernel considers the following page frames as reserved:

• Those falling in the unavailable physical address ranges

• Those containing the kernel’s code and initialized data structures

A page contained in a reserved page frame can never be dynamically assigned or
swapped to disk.

As a general rule, the Linux kernel is installed in RAM starting from the physical
address 0x00100000—i.e., from the second megabyte. The total number of page

pud_alloc(mm, pgd, addr) In a two- or three-level paging system, this function does nothing: it simply
returns the linear address of the Page Global Directory entry pgd.

pud_free(x) In a two- or three-level paging system, this macro does nothing.

pmd_alloc(mm, pud, addr) Defined so generic three-level paging systems can allocate a new Page Middle
Directory for the linear addressaddr. If PAE is not enabled, the function simply
returns the input parameter pud— that is, the address of the entry in the
Page Global Directory. If PAE is enabled, the function returns the linear address
of the Page Middle Directory entry that maps the linear address addr. The
argument cw is ignored.

pmd_free(x) Does nothing, because Page Middle Directories are allocated and deallocated
together with their parent Page Global Directory.

pte_alloc_map(mm, pmd, addr) Receives as parameters the address of a Page Middle Directory entry pmd and a
linear address addr, and returns the address of the Page Table entry corre-
sponding to addr. If the Page Middle Directory entry is null, the function allo-
cates a new Page Table by invokingpte_alloc_one(). If a new Page Table
is allocated, the entry corresponding to addr is initialized and the User/
Supervisor flag is set. If the Page Table is kept in high memory, the kernel
establishes a temporary kernel mapping (see the section “Kernel Mappings of
High-Memory Page Frames” in Chapter 8), to be released by pte_unmap.

pte_alloc_kernel(mm, pmd,
addr)

If the Page Middle Directory entry pmd associated with the address addr is
null, the function allocates a new Page Table. It then returns the linear address
of the Page Table entry associated with addr. Used only for master kernel
page tables (see the later section “Kernel Page Tables”).

pte_free(pte) Releases the Page Table associated with the pte page descriptor pointer.

pte_free_kernel(pte) Equivalent to pte_free(), but used for master kernel page tables.

clear_page_range(mmu,
start,end)

Clears the contents of the page tables of a process from linear address
start to end by iteratively releasing its Page Tables and clearing the Page
Middle Directory entries.

Table 2-8. Page allocation functions (continued)

Function name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 2: Memory Addressing

frames required depends on how the kernel is configured. A typical configuration
yields a kernel that can be loaded in less than 3 MB of RAM.

Why isn’t the kernel loaded starting with the first available megabyte of RAM? Well,
the PC architecture has several peculiarities that must be taken into account. For
example:

• Page frame 0 is used by BIOS to store the system hardware configuration
detected during the Power-On Self-Test (POST); the BIOS of many laptops,
moreover, writes data on this page frame even after the system is initialized.

• Physical addresses ranging from 0x000a0000 to 0x000fffff are usually reserved to
BIOS routines and to map the internal memory of ISA graphics cards. This area
is the well-known hole from 640 KB to 1 MB in all IBM-compatible PCs: the
physical addresses exist but they are reserved, and the corresponding page
frames cannot be used by the operating system.

• Additional page frames within the first megabyte may be reserved by specific
computer models. For example, the IBM ThinkPad maps the 0xa0 page frame
into the 0x9f one.

In the early stage of the boot sequence (see Appendix A), the kernel queries the BIOS
and learns the size of the physical memory. In recent computers, the kernel also
invokes a BIOS procedure to build a list of physical address ranges and their corre-
sponding memory types.

Later, the kernel executes the machine_specific_memory_setup() function, which
builds the physical addresses map (see Table 2-9 for an example). Of course, the ker-
nel builds this table on the basis of the BIOS list, if this is available; otherwise the
kernel builds the table following the conservative default setup: all page frames with
numbers from 0x9f (LOWMEMSIZE()) to 0x100 (HIGH_MEMORY) are marked as reserved.

A typical configuration for a computer having 128 MB of RAM is shown in
Table 2-9. The physical address range from 0x07ff0000 to 0x07ff2fff stores informa-
tion about the hardware devices of the system written by the BIOS in the POST
phase; during the initialization phase, the kernel copies such information in a suit-
able kernel data structure, and then considers these page frames usable. Conversely,
the physical address range of 0x07ff3000 to 0x07ffffff is mapped to ROM chips of

Table 2-9. Example of BIOS-provided physical addresses map

Start End Type

0x00000000 0x0009ffff Usable

0x000f0000 0x000fffff Reserved

0x00100000 0x07feffff Usable

0x07ff0000 0x07ff2fff ACPI data

0x07ff3000 0x07ffffff ACPI NVS

0xffff0000 0xffffffff Reserved

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 67

the hardware devices. The physical address range starting from 0xffff0000 is marked
as reserved, because it is mapped by the hardware to the BIOS’s ROM chip (see
Appendix A). Notice that the BIOS may not provide information for some physical
address ranges (in the table, the range is 0x000a0000 to 0x000effff). To be on the safe
side, Linux assumes that such ranges are not usable.

The kernel might not see all physical memory reported by the BIOS: for instance, the
kernel can address only 4 GB of RAM if it has not been compiled with PAE support,
even if a larger amount of physical memory is actually available. The setup_memory()
function is invoked right after machine_specific_memory_setup(): it analyzes the table
of physical memory regions and initializes a few variables that describe the kernel’s
physical memory layout. These variables are shown in Table 2-10.

To avoid loading the kernel into groups of noncontiguous page frames, Linux pre-
fers to skip the first megabyte of RAM. Clearly, page frames not reserved by the PC
architecture will be used by Linux to store dynamically assigned pages.

Figure 2-13 shows how the first 3 MB of RAM are filled by Linux. We have assumed
that the kernel requires less than 3 MB of RAM.

The symbol _text, which corresponds to physical address 0x00100000, denotes the
address of the first byte of kernel code. The end of the kernel code is similarly identi-
fied by the symbol _etext. Kernel data is divided into two groups: initialized and
uninitialized. The initialized data starts right after _etext and ends at _edata. The
uninitialized data follows and ends up at _end.

The symbols appearing in the figure are not defined in Linux source code; they are
produced while compiling the kernel.*

Table 2-10. Variables describing the kernel’s physical memory layout

Variable name Description

num_physpages Page frame number of the highest usable page frame

totalram_pages Total number of usable page frames

min_low_pfn Page frame number of the first usable page frame after the kernel image in RAM

max_pfn Page frame number of the last usable page frame

max_low_pfn Page frame number of the last page frame directly mapped by the kernel (low memory)

totalhigh_pages Total number of page frames not directly mapped by the kernel (high memory)

highstart_pfn Page frame number of the first page frame not directly mapped by the kernel

highend_pfn Page frame number of the last page frame not directly mapped by the kernel

* You can find the linear address of these symbols in the file System.map, which is created right after the kernel
is compiled.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 2: Memory Addressing

Process Page Tables
The linear address space of a process is divided into two parts:

• Linear addresses from 0x00000000 to 0xbfffffff can be addressed when the pro-
cess runs in either User or Kernel Mode.

• Linear addresses from 0xc0000000 to 0xffffffff can be addressed only when the
process runs in Kernel Mode.

When a process runs in User Mode, it issues linear addresses smaller than
0xc0000000; when it runs in Kernel Mode, it is executing kernel code and the linear
addresses issued are greater than or equal to 0xc0000000. In some cases, however, the
kernel must access the User Mode linear address space to retrieve or store data.

The PAGE_OFFSET macro yields the value 0xc0000000; this is the offset in the linear
address space of a process where the kernel lives. In this book, we often refer directly
to the number 0xc0000000 instead.

The content of the first entries of the Page Global Directory that map linear
addresses lower than 0xc0000000 (the first 768 entries with PAE disabled, or the first
3 entries with PAE enabled) depends on the specific process. Conversely, the remain-
ing entries should be the same for all processes and equal to the corresponding
entries of the master kernel Page Global Directory (see the following section).

Kernel Page Tables
The kernel maintains a set of page tables for its own use, rooted at a so-called master
kernel Page Global Directory. After system initialization, this set of page tables is
never directly used by any process or kernel thread; rather, the highest entries of the
master kernel Page Global Directory are the reference model for the corresponding
entries of the Page Global Directories of every regular process in the system.

Figure 2-13. The first 768 page frames (3 MB) in Linux 2.6

0 0x2ff0x1000x9f

_text _etext _edata _end

Unavailable page frames

Available page frames

Kernel code

Initialized kernel data

Uninitialized kernel data

1

Page frame #

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 69

We explain how the kernel ensures that changes to the master kernel Page Global
Directory are propagated to the Page Global Directories that are actually used by
processes in the section “Linear Addresses of Noncontiguous Memory Areas” in
Chapter 8.

We now describe how the kernel initializes its own page tables. This is a two-phase
activity. In fact, right after the kernel image is loaded into memory, the CPU is still
running in real mode; thus, paging is not enabled.

In the first phase, the kernel creates a limited address space including the kernel’s
code and data segments, the initial Page Tables, and 128 KB for some dynamic data
structures. This minimal address space is just large enough to install the kernel in
RAM and to initialize its core data structures.

In the second phase, the kernel takes advantage of all of the existing RAM and sets
up the page tables properly. Let us examine how this plan is executed.

Provisional kernel Page Tables

A provisional Page Global Directory is initialized statically during kernel compila-
tion, while the provisional Page Tables are initialized by the startup_32() assembly
language function defined in arch/i386/kernel/head.S. We won’t bother mentioning
the Page Upper Directories and Page Middle Directories anymore, because they are
equated to Page Global Directory entries. PAE support is not enabled at this stage.

The provisional Page Global Directory is contained in the swapper_pg_dir variable.
The provisional Page Tables are stored starting from pg0, right after the end of the
kernel’s uninitialized data segments (symbol _end in Figure 2-13). For the sake of
simplicity, let’s assume that the kernel’s segments, the provisional Page Tables, and
the 128 KB memory area fit in the first 8 MB of RAM. In order to map 8 MB of RAM,
two Page Tables are required.

The objective of this first phase of paging is to allow these 8 MB of RAM to be easily
addressed both in real mode and protected mode. Therefore, the kernel must create a
mapping from both the linear addresses 0x00000000 through 0x007fffff and the lin-
ear addresses 0xc0000000 through 0xc07fffff into the physical addresses 0x00000000
through 0x007fffff. In other words, the kernel during its first phase of initialization
can address the first 8 MB of RAM by either linear addresses identical to the physical
ones or 8 MB worth of linear addresses, starting from 0xc0000000.

The Kernel creates the desired mapping by filling all the swapper_pg_dir entries with
zeroes, except for entries 0, 1, 0x300 (decimal 768), and 0x301 (decimal 769); the lat-
ter two entries span all linear addresses between 0xc0000000 and 0xc07fffff. The 0,
1, 0x300, and 0x301 entries are initialized as follows:

• The address field of entries 0 and 0x300 is set to the physical address of pg0,
while the address field of entries 1 and 0x301 is set to the physical address of the
page frame following pg0.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 2: Memory Addressing

• The Present, Read/Write, and User/Supervisor flags are set in all four entries.

• The Accessed, Dirty, PCD, PWD, and Page Size flags are cleared in all four entries.

The startup_32() assembly language function also enables the paging unit. This is
achieved by loading the physical address of swapper_pg_dir into the cr3 control regis-
ter and by setting the PG flag of the cr0 control register, as shown in the following
equivalent code fragment:

movl $swapper_pg_dir-0xc0000000,%eax
movl %eax,%cr3 /* set the page table pointer.. */
movl %cr0,%eax
orl $0x80000000,%eax
movl %eax,%cr0 /* ..and set paging (PG) bit */

Final kernel Page Table when RAM size is less than 896 MB

The final mapping provided by the kernel page tables must transform linear
addresses starting from 0xc0000000 into physical addresses starting from 0.

The _ _pa macro is used to convert a linear address starting from PAGE_OFFSET to the
corresponding physical address, while the _ _va macro does the reverse.

The master kernel Page Global Directory is still stored in swapper_pg_dir. It is initial-
ized by the paging_init() function, which does the following:

1. Invokes pagetable_init() to set up the Page Table entries properly.

2. Writes the physical address of swapper_pg_dir in the cr3 control register.

3. If the CPU supports PAE and if the kernel is compiled with PAE support, sets
the PAE flag in the cr4 control register.

4. Invokes _ _flush_tlb_all() to invalidate all TLB entries.

The actions performed by pagetable_init() depend on both the amount of RAM
present and on the CPU model. Let’s start with the simplest case. Our computer has
less than 896 MB* of RAM, 32-bit physical addresses are sufficient to address all the
available RAM, and there is no need to activate the PAE mechanism. (See the earlier
section “The Physical Address Extension (PAE) Paging Mechanism.”)

The swapper_pg_dir Page Global Directory is reinitialized by a cycle equivalent to the
following:

pgd = swapper_pg_dir + pgd_index(PAGE_OFFSET); /* 768 */
phys_addr = 0x00000000;
while (phys_addr < (max_low_pfn * PAGE_SIZE)) {
 pmd = one_md_table_init(pgd); /* returns pgd itself */
 set_pmd(pmd, _ _pmd(phys_addr | pgprot_val(_ _pgprot(0x1e3))));

* The highest 128 MB of linear addresses are left available for several kinds of mappings (see sections “Fix-
Mapped Linear Addresses” later in this chapter and “Linear Addresses of Noncontiguous Memory Areas” in
Chapter 8). The kernel address space left for mapping the RAM is thus 1 GB – 128 MB = 896 MB.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 71

 /* 0x1e3 == Present, Accessed, Dirty, Read/Write,
 Page Size, Global */
 phys_addr += PTRS_PER_PTE * PAGE_SIZE; /* 0x400000 */
 ++pgd;
}

We assume that the CPU is a recent 80 × 86 microprocessor supporting 4 MB pages
and “global” TLB entries. Notice that the User/Supervisor flags in all Page Global
Directory entries referencing linear addresses above 0xc0000000 are cleared, thus
denying processes in User Mode access to the kernel address space. Notice also that
the Page Size flag is set so that the kernel can address the RAM by making use of
large pages (see the section “Extended Paging” earlier in this chapter).

The identity mapping of the first megabytes of physical memory (8 MB in our exam-
ple) built by the startup_32() function is required to complete the initialization phase
of the kernel. When this mapping is no longer necessary, the kernel clears the corre-
sponding page table entries by invoking the zap_low_mappings() function.

Actually, this description does not state the whole truth. As we’ll see in the later sec-
tion “Fix-Mapped Linear Addresses,” the kernel also adjusts the entries of Page
Tables corresponding to the “fix-mapped linear addresses.”

Final kernel Page Table when RAM size is between 896 MB and 4096 MB

In this case, the RAM cannot be mapped entirely into the kernel linear address space.
The best Linux can do during the initialization phase is to map a RAM window of
size 896 MB into the kernel linear address space. If a program needs to address other
parts of the existing RAM, some other linear address interval must be mapped to the
required RAM. This implies changing the value of some page table entries. We’ll
discuss how this kind of dynamic remapping is done in Chapter 8.

To initialize the Page Global Directory, the kernel uses the same code as in the previ-
ous case.

Final kernel Page Table when RAM size is more than 4096 MB

Let’s now consider kernel Page Table initialization for computers with more than
4 GB; more precisely, we deal with cases in which the following happens:

• The CPU model supports Physical Address Extension (PAE).

• The amount of RAM is larger than 4 GB.

• The kernel is compiled with PAE support.

Although PAE handles 36-bit physical addresses, linear addresses are still 32-bit
addresses. As in the previous case, Linux maps a 896-MB RAM window into the ker-
nel linear address space; the remaining RAM is left unmapped and handled by
dynamic remapping, as described in Chapter 8. The main difference with the previ-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 2: Memory Addressing

ous case is that a three-level paging model is used, so the Page Global Directory is
initialized by a cycle equivalent to the following:

pgd_idx = pgd_index(PAGE_OFFSET); /* 3 */
for (i=0; i<pgd_idx; i++)
 set_pgd(swapper_pg_dir + i, _ _pgd(_ _pa(empty_zero_page) + 0x001));
 /* 0x001 == Present */
pgd = swapper_pg_dir + pgd_idx;
phys_addr = 0x00000000;
for (; i<PTRS_PER_PGD; ++i, ++pgd) {
 pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
 set_pgd(pgd, _ _pgd(_ _pa(pmd) | 0x001)); /* 0x001 == Present */
 if (phys_addr < max_low_pfn * PAGE_SIZE)
 for (j=0; j < PTRS_PER_PMD /* 512 */
 && phys_addr < max_low_pfn*PAGE_SIZE; ++j) {
 set_pmd(pmd, _ _pmd(phys_addr |
 pgprot_val(_ _pgprot(0x1e3))));
 /* 0x1e3 == Present, Accessed, Dirty, Read/Write,
 Page Size, Global */
 phys_addr += PTRS_PER_PTE * PAGE_SIZE; /* 0x200000 */
 }
}
swapper_pg_dir[0] = swapper_pg_dir[pgd_idx];

The kernel initializes the first three entries in the Page Global Directory correspond-
ing to the user linear address space with the address of an empty page (empty_zero_
page). The fourth entry is initialized with the address of a Page Middle Directory
(pmd) allocated by invoking alloc_bootmem_low_pages(). The first 448 entries in the
Page Middle Directory (there are 512 entries, but the last 64 are reserved for noncon-
tiguous memory allocation; see the section “Noncontiguous Memory Area Manage-
ment” in Chapter 8) are filled with the physical address of the first 896 MB of RAM.

Notice that all CPU models that support PAE also support large 2-MB pages and glo-
bal pages. As in the previous cases, whenever possible, Linux uses large pages to
reduce the number of Page Tables.

The fourth Page Global Directory entry is then copied into the first entry, so as to
mirror the mapping of the low physical memory in the first 896 MB of the linear
address space. This mapping is required in order to complete the initialization of
SMP systems: when it is no longer necessary, the kernel clears the corresponding
page table entries by invoking the zap_low_mappings() function, as in the previous
cases.

Fix-Mapped Linear Addresses
We saw that the initial part of the fourth gigabyte of kernel linear addresses maps the
physical memory of the system. However, at least 128 MB of linear addresses are
always left available because the kernel uses them to implement noncontiguous
memory allocation and fix-mapped linear addresses.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 73

Noncontiguous memory allocation is just a special way to dynamically allocate and
release pages of memory, and is described in the section “Linear Addresses of Non-
contiguous Memory Areas” in Chapter 8. In this section, we focus on fix-mapped lin-
ear addresses.

Basically, a fix-mapped linear address is a constant linear address like 0xffffc000
whose corresponding physical address does not have to be the linear address minus
0xc000000, but rather a physical address set in an arbitrary way. Thus, each fix-
mapped linear address maps one page frame of the physical memory. As we’ll see in
later chapters, the kernel uses fix-mapped linear addresses instead of pointer vari-
ables that never change their value.

Fix-mapped linear addresses are conceptually similar to the linear addresses that
map the first 896 MB of RAM. However, a fix-mapped linear address can map any
physical address, while the mapping established by the linear addresses in the ini-
tial portion of the fourth gigabyte is linear (linear address X maps physical address
X –PAGE_OFFSET).

With respect to variable pointers, fix-mapped linear addresses are more efficient. In
fact, dereferencing a variable pointer requires one memory access more than derefer-
encing an immediate constant address. Moreover, checking the value of a variable
pointer before dereferencing it is a good programming practice; conversely, the check
is never required for a constant linear address.

Each fix-mapped linear address is represented by a small integer index defined in the
enum fixed_addresses data structure:

enum fixed_addresses {
 FIX_HOLE,
 FIX_VSYSCALL,
 FIX_APIC_BASE,
 FIX_IO_APIC_BASE_0,
 [...]
 _ _end_of_fixed_addresses
};

Fix-mapped linear addresses are placed at the end of the fourth gigabyte of linear
addresses. The fix_to_virt() function computes the constant linear address starting
from the index:

inline unsigned long fix_to_virt(const unsigned int idx)
{
 if (idx >= _ _end_of_fixed_addresses)
 _ _this_fixmap_does_not_exist();
 return (0xfffff000UL - (idx << PAGE_SHIFT));
}

Let’s assume that some kernel function invokes fix_to_virt(FIX_IO_APIC_BASE_0).
Because the function is declared as “inline,” the C compiler does not generate a call
to fix_to_virt(), but inserts its code in the calling function. Moreover, the check on

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 2: Memory Addressing

the index value is never performed at runtime. In fact, FIX_IO_APIC_BASE_0 is a con-
stant equal to 3, so the compiler can cut away the if statement because its condition
is false at compile time. Conversely, if the condition is true or the argument of fix_
to_virt() is not a constant, the compiler issues an error during the linking phase
because the symbol _ _this_fixmap_does_not_exist is not defined anywhere. Eventu-
ally, the compiler computes 0xfffff000-(3<<PAGE_SHIFT) and replaces the fix_to_
virt() function call with the constant linear address 0xffffc000.

To associate a physical address with a fix-mapped linear address, the kernel uses the
set_fixmap(idx,phys) and set_fixmap_nocache(idx,phys) macros. Both of them ini-
tialize the Page Table entry corresponding to the fix_to_virt(idx) linear address
with the physical address phys; however, the second function also sets the PCD flag of
the Page Table entry, thus disabling the hardware cache when accessing the data in
the page frame (see the section “Hardware Cache” earlier in this chapter). Con-
versely, clear_fixmap(idx) removes the linking between a fix-mapped linear address
idx and the physical address.

Handling the Hardware Cache and the TLB
The last topic of memory addressing deals with how the kernel makes an optimal use
of the hardware caches. Hardware caches and Translation Lookaside Buffers play a
crucial role in boosting the performance of modern computer architectures. Several
techniques are used by kernel developers to reduce the number of cache and TLB
misses.

Handling the hardware cache

As mentioned earlier in this chapter, hardware caches are addressed by cache lines.
The L1_CACHE_BYTES macro yields the size of a cache line in bytes. On Intel models
earlier than the Pentium 4, the macro yields the value 32; on a Pentium 4, it yields
the value 128.

To optimize the cache hit rate, the kernel considers the architecture in making the
following decisions.

• The most frequently used fields of a data structure are placed at the low offset
within the data structure, so they can be cached in the same line.

• When allocating a large set of data structures, the kernel tries to store each of
them in memory in such a way that all cache lines are used uniformly.

Cache synchronization is performed automatically by the 80 × 86 microprocessors,
thus the Linux kernel for this kind of processor does not perform any hardware

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 75

cache flushing. The kernel does provide, however, cache flushing interfaces for pro-
cessors that do not synchronize caches.

Handling the TLB

Processors cannot synchronize their own TLB cache automatically because it is the
kernel, and not the hardware, that decides when a mapping between a linear and a
physical address is no longer valid.

Linux 2.6 offers several TLB flush methods that should be applied appropriately,
depending on the type of page table change (see Table 2-11).

Despite the rich set of TLB methods offered by the generic Linux kernel, every micro-
processor usually offers a far more restricted set of TLB-invalidating assembly lan-
guage instructions. In this respect, one of the more flexible hardware platforms is
Sun’s UltraSPARC. In contrast, Intel microprocessors offers only two TLB-invalidat-
ing techniques:

• All Pentium models automatically flush the TLB entries relative to non-global
pages when a value is loaded into the cr3 register.

• In Pentium Pro and later models, the invlpg assembly language instruction inval-
idates a single TLB entry mapping a given linear address.

Table 2-11. Architecture-independent TLB-invalidating methods

Method name Description Typically used when

flush_tlb_all Flushes all TLB entries (including those that
refer to global pages, that is, pages whose
Global flag is set)

Changing the kernel page table
entries

flush_tlb_kernel_range Flushes all TLB entries in a given range of
linear addresses (including those that refer to
global pages)

Changing a range of kernel page
table entries

flush_tlb Flushes all TLB entries of the non-global
pages owned by the current process

Performing a process switch

flush_tlb_mm Flushes all TLB entries of the non-global
pages owned by a given process

Forking a new process

flush_tlb_range Flushes the TLB entries corresponding to a
linear address interval of a given process

Releasing a linear address inter-
val of a process

flush_tlb_pgtables Flushes the TLB entries of a given contiguous
subset of page tables of a given process

Releasing some page tables of a
process

flush_tlb_page Flushes the TLB of a single Page Table entry of
a given process

Processing a Page Fault

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 2: Memory Addressing

Table 2-12 lists the Linux macros that exploit such hardware techniques; these mac-
ros are the basic ingredients to implement the architecture-independent methods
listed in Table 2-11.

Notice that the flush_tlb_pgtables method is missing from Table 2-12: in the 80 × 86
architecture nothing has to be done when a page table is unlinked from its parent
table, thus the function implementing this method is empty.

The architecture-independent TLB-invalidating methods are extended quite simply
to multiprocessor systems. The function running on a CPU sends an Interprocessor
Interrupt (see “Interprocessor Interrupt Handling” in Chapter 4) to the other CPUs
that forces them to execute the proper TLB-invalidating function.

As a general rule, any process switch implies changing the set of active page tables.
Local TLB entries relative to the old page tables must be flushed; this is done auto-
matically when the kernel writes the address of the new Page Global Directory into
the cr3 control register. The kernel succeeds, however, in avoiding TLB flushes in the
following cases:

• When performing a process switch between two regular processes that use the
same set of page tables (see the section “The schedule() Function” in
Chapter 7).

• When performing a process switch between a regular process and a kernel
thread. In fact, we’ll see in the section “Memory Descriptor of Kernel Threads”
in Chapter 9, that kernel threads do not have their own set of page tables; rather,
they use the set of page tables owned by the regular process that was scheduled
last for execution on the CPU.

Besides process switches, there are other cases in which the kernel needs to flush
some entries in a TLB. For instance, when the kernel assigns a page frame to a User
Mode process and stores its physical address into a Page Table entry, it must flush
any local TLB entry that refers to the corresponding linear address. On multiproces-
sor systems, the kernel also must flush the same TLB entry on the CPUs that are
using the same set of page tables, if any.

Table 2-12. TLB-invalidating macros for the Intel Pentium Pro and later processors

Macro name Description Used by

_ _flush_tlb() Rewrites cr3 register back into itself flush_tlb,
flush_tlb_mm,
flush_tlb_range

_ _flush_tlb_global() Disables global pages by clearing thePGE flag
of cr4, rewrites cr3 register back into itself,
and sets again the PGE flag

flush_tlb_all,
flush_tlb_kernel_range

_ _flush_tlb_single(addr) Executes invlpg assembly language
instruction with parameter addr

flush_tlb_page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Linux | 77

To avoid useless TLB flushing in multiprocessor systems, the kernel uses a tech-
nique called lazy TLB mode. The basic idea is the following: if several CPUs are using
the same page tables and a TLB entry must be flushed on all of them, then TLB
flushing may, in some cases, be delayed on CPUs running kernel threads.

In fact, each kernel thread does not have its own set of page tables; rather, it makes
use of the set of page tables belonging to a regular process. However, there is no need
to invalidate a TLB entry that refers to a User Mode linear address, because no ker-
nel thread accesses the User Mode address space.*

When some CPUs start running a kernel thread, the kernel sets it into lazy TLB
mode. When requests are issued to clear some TLB entries, each CPU in lazy TLB
mode does not flush the corresponding entries; however, the CPU remembers that its
current process is running on a set of page tables whose TLB entries for the User
Mode addresses are invalid. As soon as the CPU in lazy TLB mode switches to a reg-
ular process with a different set of page tables, the hardware automatically flushes
the TLB entries, and the kernel sets the CPU back in non-lazy TLB mode. However,
if a CPU in lazy TLB mode switches to a regular process that owns the same set of
page tables used by the previously running kernel thread, then any deferred TLB
invalidation must be effectively applied by the kernel. This “lazy” invalidation is
effectively achieved by flushing all non-global TLB entries of the CPU.

Some extra data structures are needed to implement the lazy TLB mode. The cpu_
tlbstate variable is a static array of NR_CPUS structures (the default value for this
macro is 32; it denotes the maximum number of CPUs in the system) consisting of
an active_mm field pointing to the memory descriptor of the current process (see
Chapter 9) and a state flag that can assume only two values: TLBSTATE_OK (non-lazy
TLB mode) or TLBSTATE_LAZY (lazy TLB mode). Furthermore, each memory descrip-
tor includes a cpu_vm_mask field that stores the indices of the CPUs that should
receive Interprocessor Interrupts related to TLB flushing. This field is meaningful
only when the memory descriptor belongs to a process currently in execution.

When a CPU starts executing a kernel thread, the kernel sets the state field of its
cpu_tlbstate element to TLBSTATE_LAZY; moreover, the cpu_vm_mask field of the active
memory descriptor stores the indices of all CPUs in the system, including the one
that is entering in lazy TLB mode. When another CPU wants to invalidate the TLB
entries of all CPUs relative to a given set of page tables, it delivers an Interprocessor
Interrupt to all CPUs whose indices are included in the cpu_vm_mask field of the corre-
sponding memory descriptor.

When a CPU receives an Interprocessor Interrupt related to TLB flushing and veri-
fies that it affects the set of page tables of its current process, it checks whether the

* By the way, the flush_tlb_all method does not use the lazy TLB mode mechanism; it is usually invoked
whenever the kernel modifies a Page Table entry relative to the Kernel Mode address space.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 2: Memory Addressing

state field of its cpu_tlbstate element is equal to TLBSTATE_LAZY. In this case, the ker-
nel refuses to invalidate the TLB entries and removes the CPU index from the cpu_
vm_mask field of the memory descriptor. This has two consequences:

• As long as the CPU remains in lazy TLB mode, it will not receive other Interpro-
cessor Interrupts related to TLB flushing.

• If the CPU switches to another process that is using the same set of page tables
as the kernel thread that is being replaced, the kernel invokes _ _flush_tlb() to
invalidate all non-global TLB entries of the CPU.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

79

Chapter 3 CHAPTER 3

Processes

The concept of a process is fundamental to any multiprogramming operating sys-
tem. A process is usually defined as an instance of a program in execution; thus, if 16
users are running vi at once, there are 16 separate processes (although they can share
the same executable code). Processes are often called tasks or threads in the Linux
source code.

In this chapter, we discuss static properties of processes and then describe how pro-
cess switching is performed by the kernel. The last two sections describe how pro-
cesses can be created and destroyed. We also describe how Linux supports
multithreaded applications—as mentioned in Chapter 1, it relies on so-called light-
weight processes (LWP).

Processes, Lightweight Processes, and Threads
The term “process” is often used with several different meanings. In this book, we
stick to the usual OS textbook definition: a process is an instance of a program in
execution. You might think of it as the collection of data structures that fully
describes how far the execution of the program has progressed.

Processes are like human beings: they are generated, they have a more or less signifi-
cant life, they optionally generate one or more child processes, and eventually they
die. A small difference is that sex is not really common among processes—each pro-
cess has just one parent.

From the kernel’s point of view, the purpose of a process is to act as an entity to
which system resources (CPU time, memory, etc.) are allocated.

When a process is created, it is almost identical to its parent. It receives a (logical)
copy of the parent’s address space and executes the same code as the parent, begin-
ning at the next instruction following the process creation system call. Although the
parent and child may share the pages containing the program code (text), they have

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 3: Processes

separate copies of the data (stack and heap), so that changes by the child to a mem-
ory location are invisible to the parent (and vice versa).

While earlier Unix kernels employed this simple model, modern Unix systems do
not. They support multithreaded applications—user programs having many rela-
tively independent execution flows sharing a large portion of the application data
structures. In such systems, a process is composed of several user threads (or simply
threads), each of which represents an execution flow of the process. Nowadays, most
multithreaded applications are written using standard sets of library functions called
pthread (POSIX thread) libraries.

Older versions of the Linux kernel offered no support for multithreaded applications.
From the kernel point of view, a multithreaded application was just a normal pro-
cess. The multiple execution flows of a multithreaded application were created, han-
dled, and scheduled entirely in User Mode, usually by means of a POSIX-compliant
pthread library.

However, such an implementation of multithreaded applications is not very satisfac-
tory. For instance, suppose a chess program uses two threads: one of them controls
the graphical chessboard, waiting for the moves of the human player and showing
the moves of the computer, while the other thread ponders the next move of the
game. While the first thread waits for the human move, the second thread should
run continuously, thus exploiting the thinking time of the human player. However, if
the chess program is just a single process, the first thread cannot simply issue a
blocking system call waiting for a user action; otherwise, the second thread is
blocked as well. Instead, the first thread must employ sophisticated nonblocking
techniques to ensure that the process remains runnable.

Linux uses lightweight processes to offer better support for multithreaded applica-
tions. Basically, two lightweight processes may share some resources, like the address
space, the open files, and so on. Whenever one of them modifies a shared resource,
the other immediately sees the change. Of course, the two processes must synchro-
nize themselves when accessing the shared resource.

A straightforward way to implement multithreaded applications is to associate a
lightweight process with each thread. In this way, the threads can access the same set
of application data structures by simply sharing the same memory address space, the
same set of open files, and so on; at the same time, each thread can be scheduled
independently by the kernel so that one may sleep while another remains runnable.
Examples of POSIX-compliant pthread libraries that use Linux’s lightweight pro-
cesses are LinuxThreads, Native POSIX Thread Library (NPTL), and IBM’s Next
Generation Posix Threading Package (NGPT).

POSIX-compliant multithreaded applications are best handled by kernels that sup-
port “thread groups.” In Linux a thread group is basically a set of lightweight pro-
cesses that implement a multithreaded application and act as a whole with regards to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 81

some system calls such as getpid(), kill(), and _exit(). We are going to describe
them at length later in this chapter.

Process Descriptor
To manage processes, the kernel must have a clear picture of what each process is
doing. It must know, for instance, the process’s priority, whether it is running on a
CPU or blocked on an event, what address space has been assigned to it, which files
it is allowed to address, and so on. This is the role of the process descriptor—a task_
struct type structure whose fields contain all the information related to a single pro-
cess.* As the repository of so much information, the process descriptor is rather com-
plex. In addition to a large number of fields containing process attributes, the
process descriptor contains several pointers to other data structures that, in turn,
contain pointers to other structures. Figure 3-1 describes the Linux process descrip-
tor schematically.

The six data structures on the right side of the figure refer to specific resources
owned by the process. Most of these resources will be covered in future chapters.
This chapter focuses on two types of fields that refer to the process state and to pro-
cess parent/child relationships.

Process State
As its name implies, the state field of the process descriptor describes what is cur-
rently happening to the process. It consists of an array of flags, each of which
describes a possible process state. In the current Linux version, these states are mutu-
ally exclusive, and hence exactly one flag of state always is set; the remaining flags
are cleared. The following are the possible process states:

TASK_RUNNING
The process is either executing on a CPU or waiting to be executed.

TASK_INTERRUPTIBLE
The process is suspended (sleeping) until some condition becomes true. Raising
a hardware interrupt, releasing a system resource the process is waiting for, or
delivering a signal are examples of conditions that might wake up the process
(put its state back to TASK_RUNNING).

TASK_UNINTERRUPTIBLE
Like TASK_INTERRUPTIBLE, except that delivering a signal to the sleeping process
leaves its state unchanged. This process state is seldom used. It is valuable, how-
ever, under certain specific conditions in which a process must wait until a given
event occurs without being interrupted. For instance, this state may be used

* The kernel also defines the task_t data type to be equivalent to struct task_struct.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 3: Processes

when a process opens a device file and the corresponding device driver starts
probing for a corresponding hardware device. The device driver must not be
interrupted until the probing is complete, or the hardware device could be left in
an unpredictable state.

TASK_STOPPED
Process execution has been stopped; the process enters this state after receiving a
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal.

TASK_TRACED
Process execution has been stopped by a debugger. When a process is being mon-
itored by another (such as when a debugger executes a ptrace() system call to
monitor a test program), each signal may put the process in the TASK_TRACED state.

Figure 3-1. The Linux process descriptor

tty_struct

tty associated with the process

fs_struct

Current directory

files_struct

Pointers to file
descriptors

mm_struct

Pointers to memory
area descriptors

signal_struct

Signals received

tasks

run_list

usage
thread_info
state

flags

real_parent

parent

...

tty

thread

fs

files

mm

pending
signal

...

...

...

...

...

task_struct

thread_info

Low-level information
for the process

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 83

Two additional states of the process can be stored both in the state field and in the
exit_state field of the process descriptor; as the field name suggests, a process
reaches one of these two states only when its execution is terminated:

EXIT_ZOMBIE
Process execution is terminated, but the parent process has not yet issued a
wait4() or waitpid() system call to return information about the dead process.*

Before the wait()-like call is issued, the kernel cannot discard the data con-
tained in the dead process descriptor because the parent might need it. (See the
section “Process Removal” near the end of this chapter.)

EXIT_DEAD
The final state: the process is being removed by the system because the parent
process has just issued a wait4() or waitpid() system call for it. Changing its
state from EXIT_ZOMBIE to EXIT_DEAD avoids race conditions due to other threads
of execution that execute wait()-like calls on the same process (see Chapter 5).

The value of the state field is usually set with a simple assignment. For instance:

p->state = TASK_RUNNING;

The kernel also uses the set_task_state and set_current_state macros: they set the
state of a specified process and of the process currently executed, respectively. More-
over, these macros ensure that the assignment operation is not mixed with other
instructions by the compiler or the CPU control unit. Mixing the instruction order
may sometimes lead to catastrophic results (see Chapter 5).

Identifying a Process
As a general rule, each execution context that can be independently scheduled must
have its own process descriptor; therefore, even lightweight processes, which share a
large portion of their kernel data structures, have their own task_struct structures.

The strict one-to-one correspondence between the process and process descriptor
makes the 32-bit address† of the task_struct structure a useful means for the kernel
to identify processes. These addresses are referred to as process descriptor pointers.
Most of the references to processes that the kernel makes are through process
descriptor pointers.

On the other hand, Unix-like operating systems allow users to identify processes by
means of a number called the Process ID (or PID), which is stored in the pid field of
the process descriptor. PIDs are numbered sequentially: the PID of a newly created

* There are other wait()-like library functions, such as wait3() and wait(), but in Linux they are implemented
by means of the wait4() and waitpid() system calls.

† As already noted in the section “Segmentation in Linux” in Chapter 2, although technically these 32 bits are
only the offset component of a logical address, they coincide with the linear address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 3: Processes

process is normally the PID of the previously created process increased by one. Of
course, there is an upper limit on the PID values; when the kernel reaches such limit,
it must start recycling the lower, unused PIDs. By default, the maximum PID number
is 32,767 (PID_MAX_DEFAULT - 1); the system administrator may reduce this limit by
writing a smaller value into the /proc/sys/kernel/pid_max file (/proc is the mount point
of a special filesystem, see the section “Special Filesystems” in Chapter 12). In 64-bit
architectures, the system administrator can enlarge the maximum PID number up to
4,194,303.

When recycling PID numbers, the kernel must manage a pidmap_array bitmap that
denotes which are the PIDs currently assigned and which are the free ones. Because a
page frame contains 32,768 bits, in 32-bit architectures the pidmap_array bitmap is
stored in a single page. In 64-bit architectures, however, additional pages can be
added to the bitmap when the kernel assigns a PID number too large for the current
bitmap size. These pages are never released.

Linux associates a different PID with each process or lightweight process in the sys-
tem. (As we shall see later in this chapter, there is a tiny exception on multiprocessor
systems.) This approach allows the maximum flexibility, because every execution
context in the system can be uniquely identified.

On the other hand, Unix programmers expect threads in the same group to have a
common PID. For instance, it should be possible to a send a signal specifying a PID
that affects all threads in the group. In fact, the POSIX 1003.1c standard states that
all threads of a multithreaded application must have the same PID.

To comply with this standard, Linux makes use of thread groups. The identifier
shared by the threads is the PID of the thread group leader, that is, the PID of the first
lightweight process in the group; it is stored in the tgid field of the process descrip-
tors. The getpid() system call returns the value of tgid relative to the current pro-
cess instead of the value of pid, so all the threads of a multithreaded application
share the same identifier. Most processes belong to a thread group consisting of a
single member; as thread group leaders, they have the tgid field equal to the pid
field, thus the getpid() system call works as usual for this kind of process.

Later, we’ll show you how it is possible to derive a true process descriptor pointer
efficiently from its respective PID. Efficiency is important because many system calls
such as kill() use the PID to denote the affected process.

Process descriptors handling

Processes are dynamic entities whose lifetimes range from a few milliseconds to
months. Thus, the kernel must be able to handle many processes at the same time,
and process descriptors are stored in dynamic memory rather than in the memory
area permanently assigned to the kernel. For each process, Linux packs two different

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 85

data structures in a single per-process memory area: a small data structure linked to
the process descriptor, namely the thread_info structure, and the Kernel Mode pro-
cess stack. The length of this memory area is usually 8,192 bytes (two page frames).
For reasons of efficiency the kernel stores the 8-KB memory area in two consecutive
page frames with the first page frame aligned to a multiple of 213; this may turn out
to be a problem when little dynamic memory is available, because the free memory
may become highly fragmented (see the section “The Buddy System Algorithm” in
Chapter 8). Therefore, in the 80×86 architecture the kernel can be configured at
compilation time so that the memory area including stack and thread_info structure
spans a single page frame (4,096 bytes).

In the section “Segmentation in Linux” in Chapter 2, we learned that a process in
Kernel Mode accesses a stack contained in the kernel data segment, which is differ-
ent from the stack used by the process in User Mode. Because kernel control paths
make little use of the stack, only a few thousand bytes of kernel stack are required.
Therefore, 8 KB is ample space for the stack and the thread_info structure. How-
ever, when stack and thread_info structure are contained in a single page frame, the
kernel uses a few additional stacks to avoid the overflows caused by deeply nested
interrupts and exceptions (see Chapter 4).

Figure 3-2 shows how the two data structures are stored in the 2-page (8 KB) mem-
ory area. The thread_info structure resides at the beginning of the memory area, and
the stack grows downward from the end. The figure also shows that the thread_info
structure and the task_struct structure are mutually linked by means of the fields
task and thread_info, respectively.

Figure 3-2. Storing the thread_info structure and the process kernel stack in two page frames

Stack

thread_info
structure

esp

current

0x015fbfff

0x015fb000

0x015fa878

0x015fa034

0x015fa000

Process
Descriptor

thread_info

task

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 3: Processes

The esp register is the CPU stack pointer, which is used to address the stack’s top loca-
tion. On 80×86 systems, the stack starts at the end and grows toward the beginning of
the memory area. Right after switching from User Mode to Kernel Mode, the kernel
stack of a process is always empty, and therefore the esp register points to the byte
immediately following the stack.

The value of the esp is decreased as soon as data is written into the stack. Because
the thread_info structure is 52 bytes long, the kernel stack can expand up to 8,140
bytes.

The C language allows the thread_info structure and the kernel stack of a process to
be conveniently represented by means of the following union construct:

union thread_union {
 struct thread_info thread_info;
 unsigned long stack[2048]; /* 1024 for 4KB stacks */
};

The thread_info structure shown in Figure 3-2 is stored starting at address
0x015fa000, and the stack is stored starting at address 0x015fc000. The value of the
esp register points to the current top of the stack at 0x015fa878.

The kernel uses the alloc_thread_info and free_thread_info macros to allocate and
release the memory area storing a thread_info structure and a kernel stack.

Identifying the current process

The close association between the thread_info structure and the Kernel Mode stack
just described offers a key benefit in terms of efficiency: the kernel can easily obtain
the address of the thread_info structure of the process currently running on a CPU
from the value of the esp register. In fact, if the thread_union structure is 8 KB (213

bytes) long, the kernel masks out the 13 least significant bits of esp to obtain the base
address of the thread_info structure; on the other hand, if the thread_union struc-
ture is 4 KB long, the kernel masks out the 12 least significant bits of esp. This is
done by the current_thread_info() function, which produces assembly language
instructions like the following:

movl $0xffffe000,%ecx /* or 0xfffff000 for 4KB stacks */
andl %esp,%ecx
movl %ecx,p

After executing these three instructions, p contains the thread_info structure pointer
of the process running on the CPU that executes the instruction.

Most often the kernel needs the address of the process descriptor rather than the
address of the thread_info structure. To get the process descriptor pointer of the
process currently running on a CPU, the kernel makes use of the current macro,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 87

which is essentially equivalent to current_thread_info()->task and produces assem-
bly language instructions like the following:

movl $0xffffe000,%ecx /* or 0xfffff000 for 4KB stacks */
andl %esp,%ecx
movl (%ecx),p

Because the task field is at offset 0 in the thread_info structure, after executing these
three instructions p contains the process descriptor pointer of the process running on
the CPU.

The current macro often appears in kernel code as a prefix to fields of the process
descriptor. For example, current->pid returns the process ID of the process cur-
rently running on the CPU.

Another advantage of storing the process descriptor with the stack emerges on multi-
processor systems: the correct current process for each hardware processor can be
derived just by checking the stack, as shown previously. Earlier versions of Linux did
not store the kernel stack and the process descriptor together. Instead, they were
forced to introduce a global static variable called current to identify the process
descriptor of the running process. On multiprocessor systems, it was necessary to
define current as an array—one element for each available CPU.

Doubly linked lists

Before moving on and describing how the kernel keeps track of the various pro-
cesses in the system, we would like to emphasize the role of special data structures
that implement doubly linked lists.

For each list, a set of primitive operations must be implemented: initializing the list,
inserting and deleting an element, scanning the list, and so on. It would be both a
waste of programmers’ efforts and a waste of memory to replicate the primitive oper-
ations for each different list.

Therefore, the Linux kernel defines the list_head data structure, whose only fields
next and prev represent the forward and back pointers of a generic doubly linked list
element, respectively. It is important to note, however, that the pointers in a list_
head field store the addresses of other list_head fields rather than the addresses of
the whole data structures in which the list_head structure is included; see
Figure 3-3 (a).

A new list is created by using the LIST_HEAD(list_name) macro. It declares a new vari-
able named list_name of type list_head, which is a dummy first element that acts as
a placeholder for the head of the new list, and initializes the prev and next fields of
the list_head data structure so as to point to the list_name variable itself; see
Figure 3-3 (b).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 3: Processes

Several functions and macros implement the primitives, including those shown in
Table 3-1.

Figure 3-3. Doubly linked lists built with list_head data structures

Table 3-1. List handling functions and macros

Name Description

list_add(n,p)
Inserts an element pointed to by n right after the specified element pointed
to by p. (To insert n at the beginning of the list, set p to the address of the
list head.)

list_add_tail(n,p)
Inserts an element pointed to by n right before the specified element
pointed to by p. (To insert n at the end of the list, set p to the address of the
list head.)

list_del(p)
Deletes an element pointed to by p. (There is no need to specify the head of
the list.)

list_empty(p) Checks if the list specified by the address p of its head is empty.

list_entry(p,t,m)
Returns the address of the data structure of type t in which the list_
head field that has the name m and the address p is included.

list_for_each(p,h) Scans the elements of the list specified by the address h of the head; in each
iteration, a pointer to the list_head structure of the list element is
returned in p.

list_for_each_entry(p,h,m)
Similar to list_for_each, but returns the address of the data structure
embedding the list_head structure rather than the address of the
list_head structure itself.

list_head

next

prev

data structure 1

list_head

next

prev

data structure 2

list_head

next

prev

data structure 3

list_head

next

prev

list_head

next

prev

(a) a doubly linked listed with three elements

(b) an empty doubly linked list

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 89

The Linux kernel 2.6 sports another kind of doubly linked list, which mainly differs
from a list_head list because it is not circular; it is mainly used for hash tables,
where space is important, and finding the the last element in constant time is not.
The list head is stored in an hlist_head data structure, which is simply a pointer to
the first element in the list (NULL if the list is empty). Each element is represented by
an hlist_node data structure, which includes a pointer next to the next element, and
a pointer pprev to the next field of the previous element. Because the list is not circu-
lar, the pprev field of the first element and the next field of the last element are set to
NULL. The list can be handled by means of several helper functions and macros simi-
lar to those listed in Table 3-1: hlist_add_head(), hlist_del(), hlist_empty(),
hlist_entry, hlist_for_each_entry, and so on.

The process list

The first example of a doubly linked list we will examine is the process list, a list that
links together all existing process descriptors. Each task_struct structure includes a
tasks field of type list_head whose prev and next fields point, respectively, to the
previous and to the next task_struct element.

The head of the process list is the init_task task_struct descriptor; it is the process
descriptor of the so-called process 0 or swapper (see the section “Kernel Threads”
later in this chapter). The tasks->prev field of init_task points to the tasks field of
the process descriptor inserted last in the list.

The SET_LINKS and REMOVE_LINKS macros are used to insert and to remove a process
descriptor in the process list, respectively. These macros also take care of the parent-
hood relationship of the process (see the section “How Processes Are Organized”
later in this chapter).

Another useful macro, called for_each_process, scans the whole process list. It is
defined as:

#define for_each_process(p) \
 for (p=&init_task; (p=list_entry((p)->tasks.next, \
 struct task_struct, tasks) \
) != &init_task;)

The macro is the loop control statement after which the kernel programmer supplies
the loop. Notice how the init_task process descriptor just plays the role of list
header. The macro starts by moving past init_task to the next task and continues
until it reaches init_task again (thanks to the circularity of the list). At each itera-
tion, the variable passed as the argument of the macro contains the address of the
currently scanned process descriptor, as returned by the list_entry macro.

The lists of TASK_RUNNING processes

When looking for a new process to run on a CPU, the kernel has to consider only the
runnable processes (that is, the processes in the TASK_RUNNING state).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 3: Processes

Earlier Linux versions put all runnable processes in the same list called runqueue.
Because it would be too costly to maintain the list ordered according to process pri-
orities, the earlier schedulers were compelled to scan the whole list in order to select
the “best” runnable process.

Linux 2.6 implements the runqueue differently. The aim is to allow the scheduler to
select the best runnable process in constant time, independently of the number of
runnable processes. We’ll defer to Chapter 7 a detailed description of this new kind
of runqueue, and we’ll provide here only some basic information.

The trick used to achieve the scheduler speedup consists of splitting the runqueue in
many lists of runnable processes, one list per process priority. Each task_struct
descriptor includes a run_list field of type list_head. If the process priority is equal
to k (a value ranging between 0 and 139), the run_list field links the process descrip-
tor into the list of runnable processes having priority k. Furthermore, on a multipro-
cessor system, each CPU has its own runqueue, that is, its own set of lists of
processes. This is a classic example of making a data structures more complex to
improve performance: to make scheduler operations more efficient, the runqueue list
has been split into 140 different lists!

As we’ll see, the kernel must preserve a lot of data for every runqueue in the system;
however, the main data structures of a runqueue are the lists of process descriptors
belonging to the runqueue; all these lists are implemented by a single prio_array_t
data structure, whose fields are shown in Table 3-2.

The enqueue_task(p,array) function inserts a process descriptor into a runqueue list;
its code is essentially equivalent to:

list_add_tail(&p->run_list, &array->queue[p->prio]);
__set_bit(p->prio, array->bitmap);
array->nr_active++;
p->array = array;

The prio field of the process descriptor stores the dynamic priority of the process,
while the array field is a pointer to the prio_array_t data structure of its current run-
queue. Similarly, the dequeue_task(p,array) function removes a process descriptor
from a runqueue list.

Table 3-2. The fields of the prio_array_t data structure

Type Field Description

int nr_active The number of process descriptors linked into the lists

unsigned long [5] bitmap A priority bitmap: each flag is set if and only if the corre-
sponding priority list is not empty

struct list_head [140] queue The 140 heads of the priority lists

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 91

Relationships Among Processes
Processes created by a program have a parent/child relationship. When a process cre-
ates multiple children, these children have sibling relationships. Several fields must
be introduced in a process descriptor to represent these relationships; they are listed
in Table 3-3 with respect to a given process P. Processes 0 and 1 are created by the
kernel; as we’ll see later in the chapter, process 1 (init) is the ancestor of all other
processes.

Figure 3-4 illustrates the parent and sibling relationships of a group of processes. Pro-
cess P0 successively created P1, P2, and P3. Process P3, in turn, created process P4.

Furthermore, there exist other relationships among processes: a process can be a
leader of a process group or of a login session (see “Process Management” in
Chapter 1), it can be a leader of a thread group (see “Identifying a Process” earlier in
this chapter), and it can also trace the execution of other processes (see the section
“Execution Tracing” in Chapter 20). Table 3-4 lists the fields of the process descrip-
tor that establish these relationships between a process P and the other processes.

Table 3-3. Fields of a process descriptor used to express parenthood relationships

Field name Description

real_parent
Points to the process descriptor of the process that created P or to the descriptor of process 1
(init) if the parent process no longer exists. (Therefore, when a user starts a background process
and exits the shell, the background process becomes the child of init.)

parent

Points to the current parent of P (this is the process that must be signaled when the child process
terminates); its value usually coincides with that of real_parent. It may occasionally differ,
such as when another process issues a ptrace() system call requesting that it be allowed to
monitor P (see the section “Execution Tracing” in Chapter 20).

children The head of the list containing all children created by P.

sibling
The pointers to the next and previous elements in the list of the sibling processes, those that
have the same parent as P.

Table 3-4. The fields of the process descriptor that establish non-parenthood relationships

Field name Description

group_leader Process descriptor pointer of the group leader of P

signal->pgrp PID of the group leader of P

tgid PID of the thread group leader of P

signal->session PID of the login session leader of P

ptrace_children The head of a list containing all children of P being traced by a debugger

ptrace_list The pointers to the next and previous elements in the real parent’s list of traced processes
(used when P is being traced)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 3: Processes

The pidhash table and chained lists

In several circumstances, the kernel must be able to derive the process descriptor
pointer corresponding to a PID. This occurs, for instance, in servicing the kill() sys-
tem call. When process P1 wishes to send a signal to another process, P2, it invokes
the kill() system call specifying the PID of P2 as the parameter. The kernel derives
the process descriptor pointer from the PID and then extracts the pointer to the data
structure that records the pending signals from P2’s process descriptor.

Scanning the process list sequentially and checking the pid fields of the process
descriptors is feasible but rather inefficient. To speed up the search, four hash tables
have been introduced. Why multiple hash tables? Simply because the process
descriptor includes fields that represent different types of PID (see Table 3-5), and
each type of PID requires its own hash table.

The four hash tables are dynamically allocated during the kernel initialization phase,
and their addresses are stored in the pid_hash array. The size of a single hash table
depends on the amount of available RAM; for example, for systems having 512 MB
of RAM, each hash table is stored in four page frames and includes 2,048 entries.

Figure 3-4. Parenthood relationships among five processes

Table 3-5. The four hash tables and corresponding fields in the process descriptor

Hash table type Field name Description

PIDTYPE_PID pid PID of the process

PIDTYPE_TGID tgid PID of thread group leader process

PIDTYPE_PGID pgrp PID of the group leader process

PIDTYPE_SID session PID of the session leader process

P0

P3P2P1

P4

parent
sibling.next
sibling.prev
children.next

children.prev

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 93

The PID is transformed into a table index using the pid_hashfn macro, which
expands to:

#define pid_hashfn(x) hash_long((unsigned long) x, pidhash_shift)

The pidhash_shift variable stores the length in bits of a table index (11, in our exam-
ple). The hash_long() function is used by many hash functions; on a 32-bit architec-
ture it is essentially equivalent to:

unsigned long hash_long(unsigned long val, unsigned int bits)
{
 unsigned long hash = val * 0x9e370001UL;
 return hash >> (32 - bits);
}

Because in our example pidhash_shift is equal to 11, pid_hashfn yields values rang-
ing between 0 and 211 − 1 = 2047.

As every basic computer science course explains, a hash function does not always
ensure a one-to-one correspondence between PIDs and table indexes. Two different
PIDs that hash into the same table index are said to be colliding.

Linux uses chaining to handle colliding PIDs; each table entry is the head of a dou-
bly linked list of colliding process descriptors. Figure 3-5 illustrates a PID hash table
with two lists. The processes having PIDs 2,890 and 29,384 hash into the 200th ele-
ment of the table, while the process having PID 29,385 hashes into the 1,466th ele-
ment of the table.

Hashing with chaining is preferable to a linear transformation from PIDs to table
indexes because at any given instance, the number of processes in the system is usu-
ally far below 32,768 (the maximum number of allowed PIDs). It would be a waste
of storage to define a table consisting of 32,768 entries, if, at any given instance,
most such entries are unused.

The data structures used in the PID hash tables are quite sophisticated, because they
must keep track of the relationships between the processes. As an example, suppose

The Magic Constant
You might wonder where the 0x9e370001 constant (= 2,654,404,609) comes from.
This hash function is based on a multiplication of the index by a suitable large number,
so that the result overflows and the value remaining in the 32-bit variable can be con-
sidered as the result of a modulus operation. Knuth suggested that good results are
obtained when the large multiplier is a prime approximately in golden ratio to 232 (32
bit being the size of the 80×86’s registers). Now, 2,654,404,609 is a prime near to

that can also be easily multiplied by additions and bit shifts, because
it is equal to .
2

32
5 1–()× 2⁄

2
31

2
29

2
25

– 2
22

2
19

– 2
16

– 1+ + +

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 3: Processes

that the kernel must retrieve all processes belonging to a given thread group, that is,
all processes whose tgid field is equal to a given number. Looking in the hash table
for the given thread group number returns just one process descriptor, that is, the
descriptor of the thread group leader. To quickly retrieve the other processes in the
group, the kernel must maintain a list of processes for each thread group. The same
situation arises when looking for the processes belonging to a given login session or
belonging to a given process group.

The PID hash tables’ data structures solve all these problems, because they allow the
definition of a list of processes for any PID number included in a hash table. The core
data structure is an array of four pid structures embedded in the pids field of the pro-
cess descriptor; the fields of the pid structure are shown in Table 3-6.

Figure 3-6 shows an example based on the PIDTYPE_TGID hash table. The second entry
of the pid_hash array stores the address of the hash table, that is, the array of hlist_
head structures representing the heads of the chain lists. In the chain list rooted at the
71st entry of the hash table, there are two process descriptors corresponding to the
PID numbers 246 and 4,351 (double-arrow lines represent a couple of forward and
backward pointers). The PID numbers are stored in the nr field of the pid structure
embedded in the process descriptor (by the way, because the thread group number
coincides with the PID of its leader, these numbers also are stored in the pid field of
the process descriptors). Let us consider the per-PID list of the thread group 4,351:
the head of the list is stored in the pid_list field of the process descriptor included in

Figure 3-5. A simple PID hash table and chained lists

Table 3-6. The fields of the pid data structures

Type Name Description

int nr The PID number

struct hlist_node pid_chain The links to the next and previous elements in the hash chain list

struct list_head pid_list The head of the per-PID list

0

199

1466

2047

PID hash table

PID
199

PID
29385

PID
29384

next element

previous element

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 95

the hash table, while the links to the next and previous elements of the per-PID list
also are stored in the pid_list field of each list element.

The following functions and macros are used to handle the PID hash tables:

do_each_task_pid(nr, type, task)
while_each_task_pid(nr, type, task)

Mark begin and end of a do-while loop that iterates over the per-PID list associ-
ated with the PID number nr of type type; in any iteration, task points to the
process descriptor of the currently scanned element.

find_task_by_pid_type(type, nr)
Looks for the process having PID nr in the hash table of type type. The function
returns a process descriptor pointer if a match is found, otherwise it returns NULL.

find_task_by_pid(nr)
Same as find_task_by_pid_type(PIDTYPE_PID, nr).

Figure 3-6. The PID hash tables

Hash chain list

pids[1]

process descriptor

TGID hash table
pid_hash

PID PGIDTGID SID
0 1 2 3

700 2047

pid_chain

pid_list

nr = 4351

pids[1]

process descriptor

pid_chain

pid_list

nr = 246

pids[1]

process descriptor

pid_chain

pid_list

nr = 4351

pids[1]

process descriptor

pid_chain

pid_list

nr = 4351

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 3: Processes

attach_pid(task, type, nr)
Inserts the process descriptor pointed to by task in the PID hash table of type
type according to the PID number nr; if a process descriptor having PID nr is
already in the hash table, the function simply inserts task in the per-PID list of
the already present process.

detach_pid(task, type)
Removes the process descriptor pointed to by task from the per-PID list of type
type to which the descriptor belongs. If the per-PID list does not become empty,
the function terminates. Otherwise, the function removes the process descriptor
from the hash table of type type; finally, if the PID number does not occur in any
other hash table, the function clears the corresponding bit in the PID bitmap, so
that the number can be recycled.

next_thread(task)
Returns the process descriptor address of the lightweight process that follows
task in the hash table list of type PIDTYPE_TGID. Because the hash table list is cir-
cular, when applied to a conventional process the macro returns the descriptor
address of the process itself.

How Processes Are Organized
The runqueue lists group all processes in a TASK_RUNNING state. When it comes to
grouping processes in other states, the various states call for different types of treat-
ment, with Linux opting for one of the choices shown in the following list.

• Processes in a TASK_STOPPED, EXIT_ZOMBIE, or EXIT_DEAD state are not linked in
specific lists. There is no need to group processes in any of these three states,
because stopped, zombie, and dead processes are accessed only via PID or via
linked lists of the child processes for a particular parent.

• Processes in a TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state are subdivided
into many classes, each of which corresponds to a specific event. In this case, the
process state does not provide enough information to retrieve the process
quickly, so it is necessary to introduce additional lists of processes. These are
called wait queues and are discussed next.

Wait queues

Wait queues have several uses in the kernel, particularly for interrupt handling, pro-
cess synchronization, and timing. Because these topics are discussed in later chap-
ters, we’ll just say here that a process must often wait for some event to occur, such
as for a disk operation to terminate, a system resource to be released, or a fixed inter-
val of time to elapse. Wait queues implement conditional waits on events: a process
wishing to wait for a specific event places itself in the proper wait queue and relin-
quishes control. Therefore, a wait queue represents a set of sleeping processes, which
are woken up by the kernel when some condition becomes true.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 97

Wait queues are implemented as doubly linked lists whose elements include point-
ers to process descriptors. Each wait queue is identified by a wait queue head, a data
structure of type wait_queue_head_t:

struct __wait_queue_head {
 spinlock_t lock;
 struct list_head task_list;
};
typedef struct __wait_queue_head wait_queue_head_t;

Because wait queues are modified by interrupt handlers as well as by major kernel
functions, the doubly linked lists must be protected from concurrent accesses, which
could induce unpredictable results (see Chapter 5). Synchronization is achieved by
the lock spin lock in the wait queue head. The task_list field is the head of the list
of waiting processes.

Elements of a wait queue list are of type wait_queue_t:

struct __wait_queue {
 unsigned int flags;
 struct task_struct * task;
 wait_queue_func_t func;
 struct list_head task_list;
};
typedef struct __wait_queue wait_queue_t;

Each element in the wait queue list represents a sleeping process, which is waiting for
some event to occur; its descriptor address is stored in the task field. The task_list
field contains the pointers that link this element to the list of processes waiting for
the same event.

However, it is not always convenient to wake up all sleeping processes in a wait
queue. For instance, if two or more processes are waiting for exclusive access to
some resource to be released, it makes sense to wake up just one process in the wait
queue. This process takes the resource, while the other processes continue to sleep.
(This avoids a problem known as the “thundering herd,” with which multiple pro-
cesses are wakened only to race for a resource that can be accessed by one of them,
with the result that remaining processes must once more be put back to sleep.)

Thus, there are two kinds of sleeping processes: exclusive processes (denoted by the
value 1 in the flags field of the corresponding wait queue element) are selectively
woken up by the kernel, while nonexclusive processes (denoted by the value 0 in the
flags field) are always woken up by the kernel when the event occurs. A process
waiting for a resource that can be granted to just one process at a time is a typical
exclusive process. Processes waiting for an event that may concern any of them are
nonexclusive. Consider, for instance, a group of processes that are waiting for the
termination of a group of disk block transfers: as soon as the transfers complete, all
waiting processes must be woken up. As we’ll see next, the func field of a wait queue
element is used to specify how the processes sleeping in the wait queue should be
woken up.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 3: Processes

Handling wait queues

A new wait queue head may be defined by using the DECLARE_WAIT_QUEUE_HEAD(name)
macro, which statically declares a new wait queue head variable called name and ini-
tializes its lock and task_list fields. The init_waitqueue_head() function may be
used to initialize a wait queue head variable that was allocated dynamically.

The init_waitqueue_entry(q,p) function initializes a wait_queue_t structure q as fol-
lows:

q->flags = 0;
q->task = p;
q->func = default_wake_function;

The nonexclusive process p will be awakened by default_wake_function(), which is a
simple wrapper for the try_to_wake_up() function discussed in Chapter 7.

Alternatively, the DEFINE_WAIT macro declares a new wait_queue_t variable and ini-
tializes it with the descriptor of the process currently executing on the CPU and the
address of the autoremove_wake_function() wake-up function. This function invokes
default_wake_function() to awaken the sleeping process, and then removes the wait
queue element from the wait queue list. Finally, a kernel developer can define a cus-
tom awakening function by initializing the wait queue element with the init_
waitqueue_func_entry() function.

Once an element is defined, it must be inserted into a wait queue. The add_wait_
queue() function inserts a nonexclusive process in the first position of a wait queue
list. The add_wait_queue_exclusive() function inserts an exclusive process in the last
position of a wait queue list. The remove_wait_queue() function removes a process
from a wait queue list. The waitqueue_active() function checks whether a given wait
queue list is empty.

A process wishing to wait for a specific condition can invoke any of the functions
shown in the following list.

• The sleep_on() function operates on the current process:
void sleep_on(wait_queue_head_t *wq)
{
 wait_queue_t wait;
 init_waitqueue_entry(&wait, current);
 current->state = TASK_UNINTERRUPTIBLE;
 add_wait_queue(wq,&wait); /* wq points to the wait queue head */
 schedule();
 remove_wait_queue(wq, &wait);
}

The function sets the state of the current process to TASK_UNINTERRUPTIBLE and
inserts it into the specified wait queue. Then it invokes the scheduler, which
resumes the execution of another process. When the sleeping process is awak-
ened, the scheduler resumes execution of the sleep_on() function, which
removes the process from the wait queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 99

• The interruptible_sleep_on() function is identical to sleep_on(), except that it
sets the state of the current process to TASK_INTERRUPTIBLE instead of setting it to
TASK_UNINTERRUPTIBLE, so that the process also can be woken up by receiving a
signal.

• The sleep_on_timeout() and interruptible_sleep_on_timeout() functions are
similar to the previous ones, but they also allow the caller to define a time inter-
val after which the process will be woken up by the kernel. To do this, they
invoke the schedule_timeout() function instead of schedule() (see the section
“An Application of Dynamic Timers: the nanosleep() System Call” in
Chapter 6).

• The prepare_to_wait(), prepare_to_wait_exclusive(), and finish_wait() func-
tions, introduced in Linux 2.6, offer yet another way to put the current process
to sleep in a wait queue. Typically, they are used as follows:

DEFINE_WAIT(wait);
prepare_to_wait_exclusive(&wq, &wait, TASK_INTERRUPTIBLE);
 /* wq is the head of the wait queue */
...
if (!condition)
 schedule();
finish_wait(&wq, &wait);

The prepare_to_wait() and prepare_to_wait_exclusive() functions set the pro-
cess state to the value passed as the third parameter, then set the exclusive flag in
the wait queue element respectively to 0 (nonexclusive) or 1 (exclusive), and
finally insert the wait queue element wait into the list of the wait queue head wq.

As soon as the process is awakened, it executes the finish_wait() function,
which sets again the process state to TASK_RUNNING (just in case the awaking con-
dition becomes true before invoking schedule()), and removes the wait queue
element from the wait queue list (unless this has already been done by the wake-
up function).

• The wait_event and wait_event_interruptible macros put the calling process to
sleep on a wait queue until a given condition is verified. For instance, the wait_
event(wq,condition) macro essentially yields the following fragment:

DEFINE_WAIT(_ _wait);
for (;;) {
 prepare_to_wait(&wq, &_ _wait, TASK_UNINTERRUPTIBLE);
 if (condition)
 break;
 schedule();
}
finish_wait(&wq, &_ _wait);

A few comments on the functions mentioned in the above list: the sleep_on()-like
functions cannot be used in the common situation where one has to test a condition
and atomically put the process to sleep when the condition is not verified; therefore,
because they are a well-known source of race conditions, their use is discouraged.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 3: Processes

Moreover, in order to insert an exclusive process into a wait queue, the kernel must
make use of the prepare_to_wait_exclusive() function (or just invoke add_wait_
queue_exclusive() directly); any other helper function inserts the process as nonex-
clusive. Finally, unless DEFINE_WAIT or finish_wait() are used, the kernel must remove
the wait queue element from the list after the waiting process has been awakened.

The kernel awakens processes in the wait queues, putting them in the TASK_RUNNING
state, by means of one of the following macros: wake_up, wake_up_nr, wake_up_all,
wake_up_interruptible, wake_up_interruptible_nr, wake_up_interruptible_all,
wake_up_interruptible_sync, and wake_up_locked. One can understand what each of
these nine macros does from its name:

• All macros take into consideration sleeping processes in the TASK_INTERRUPTIBLE
state; if the macro name does not include the string “interruptible,” sleeping pro-
cesses in the TASK_UNINTERRUPTIBLE state also are considered.

• All macros wake all nonexclusive processes having the required state (see the
previous bullet item).

• The macros whose name include the string “nr” wake a given number of exclu-
sive processes having the required state; this number is a parameter of the
macro. The macros whose names include the string “all” wake all exclusive pro-
cesses having the required state. Finally, the macros whose names don’t include
“nr” or “all” wake exactly one exclusive process that has the required state.

• The macros whose names don’t include the string “sync” check whether the pri-
ority of any of the woken processes is higher than that of the processes currently
running in the systems and invoke schedule() if necessary. These checks are not
made by the macro whose name includes the string “sync”; as a result, execu-
tion of a high priority process might be slightly delayed.

• The wake_up_locked macro is similar to wake_up, except that it is called when the
spin lock in wait_queue_head_t is already held.

For instance, the wake_up macro is essentially equivalent to the following code frag-
ment:

void wake_up(wait_queue_head_t *q)
{
 struct list_head *tmp;
 wait_queue_t *curr;

 list_for_each(tmp, &q->task_list) {
 curr = list_entry(tmp, wait_queue_t, task_list);
 if (curr->func(curr, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE,
 0, NULL) && curr->flags)
 break;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Descriptor | 101

The list_for_each macro scans all items in the q->task_list doubly linked list, that
is, all processes in the wait queue. For each item, the list_entry macro computes the
address of the corresponding wait_queue_t variable. The func field of this variable
stores the address of the wake-up function, which tries to wake up the process iden-
tified by the task field of the wait queue element. If a process has been effectively
awakened (the function returned 1) and if the process is exclusive (curr->flags equal
to 1), the loop terminates. Because all nonexclusive processes are always at the
beginning of the doubly linked list and all exclusive processes are at the end, the
function always wakes the nonexclusive processes and then wakes one exclusive pro-
cess, if any exists.*

Process Resource Limits
Each process has an associated set of resource limits, which specify the amount of
system resources it can use. These limits keep a user from overwhelming the system
(its CPU, disk space, and so on). Linux recognizes the following resource limits illus-
trated in Table 3-7.

The resource limits for the current process are stored in the current->signal->rlim
field, that is, in a field of the process’s signal descriptor (see the section “Data Struc-
tures Associated with Signals” in Chapter 11). The field is an array of elements of
type struct rlimit, one for each resource limit:

struct rlimit {
 unsigned long rlim_cur;
 unsigned long rlim_max;
};

* By the way, it is rather uncommon that a wait queue includes both exclusive and nonexclusive processes.

Table 3-7. Resource limits

Field name Description

RLIMIT_AS The maximum size of process address space, in bytes. The kernel checks this value when the
process uses malloc() or a related function to enlarge its address space (see the section
“The Process’s Address Space” in Chapter 9).

RLIMIT_CORE The maximum core dump file size, in bytes. The kernel checks this value when a process is
aborted, before creating a core file in the current directory of the process (see the section
“Actions Performed upon Delivering a Signal” in Chapter 11). If the limit is 0, the kernel
won’t create the file.

RLIMIT_CPU The maximum CPU time for the process, in seconds. If the process exceeds the limit, the ker-
nel sends it a SIGXCPU signal, and then, if the process doesn’t terminate, a SIGKILL sig-
nal (see Chapter 11).

RLIMIT_DATA The maximum heap size, in bytes. The kernel checks this value before expanding the heap of
the process (see the section “Managing the Heap” in Chapter 9).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 3: Processes

The rlim_cur field is the current resource limit for the resource. For example,
current->signal->rlim[RLIMIT_CPU].rlim_cur represents the current limit on the
CPU time of the running process.

The rlim_max field is the maximum allowed value for the resource limit. By using the
getrlimit() and setrlimit() system calls, a user can always increase the rlim_cur
limit of some resource up to rlim_max. However, only the superuser (or, more pre-
cisely, a user who has the CAP_SYS_RESOURCE capability) can increase the rlim_max field
or set the rlim_cur field to a value greater than the corresponding rlim_max field.

Most resource limits contain the value RLIM_INFINITY (0xffffffff), which means that
no user limit is imposed on the corresponding resource (of course, real limits exist
due to kernel design restrictions, available RAM, available space on disk, etc.). How-
ever, the system administrator may choose to impose stronger limits on some
resources. Whenever a user logs into the system, the kernel creates a process owned
by the superuser, which can invoke setrlimit() to decrease the rlim_max and rlim_
cur fields for a resource. The same process later executes a login shell and becomes
owned by the user. Each new process created by the user inherits the content of the
rlim array from its parent, and therefore the user cannot override the limits enforced
by the administrator.

Process Switch
To control the execution of processes, the kernel must be able to suspend the execu-
tion of the process running on the CPU and resume the execution of some other pro-
cess previously suspended. This activity goes variously by the names process switch,

RLIMIT_FSIZE The maximum file size allowed, in bytes. If the process tries to enlarge a file to a size greater
than this value, the kernel sends it a SIGXFSZ signal.

RLIMIT_LOCKS Maximum number of file locks (currently, not enforced).

RLIMIT_MEMLOCK The maximum size of nonswappable memory, in bytes. The kernel checks this value when
the process tries to lock a page frame in memory using the mlock() or mlockall() sys-
tem calls (see the section “Allocating a Linear Address Interval” in Chapter 9).

RLIMIT_MSGQUEUE Maximum number of bytes in POSIX message queues (see the section “POSIX Message
Queues” in Chapter 19).

RLIMIT_NOFILE The maximum number of open file descriptors. The kernel checks this value when opening a
new file or duplicating a file descriptor (see Chapter 12).

RLIMIT_NPROC The maximum number of processes that the user can own (see the section “The clone(),
fork(), and vfork() System Calls” later in this chapter).

RLIMIT_RSS The maximum number of page frames owned by the process (currently, not enforced).

RLIMIT_SIGPENDING The maximum number of pending signals for the process (see Chapter 11).

RLIMIT_STACK The maximum stack size, in bytes. The kernel checks this value before expanding the User
Mode stack of the process (see the section “Page Fault Exception Handler” in Chapter 9).

Table 3-7. Resource limits (continued)

Field name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Switch | 103

task switch, or context switch. The next sections describe the elements of process
switching in Linux.

Hardware Context
While each process can have its own address space, all processes have to share the
CPU registers. So before resuming the execution of a process, the kernel must ensure
that each such register is loaded with the value it had when the process was suspended.

The set of data that must be loaded into the registers before the process resumes its
execution on the CPU is called the hardware context. The hardware context is a sub-
set of the process execution context, which includes all information needed for the
process execution. In Linux, a part of the hardware context of a process is stored in
the process descriptor, while the remaining part is saved in the Kernel Mode stack.

In the description that follows, we will assume the prev local variable refers to the
process descriptor of the process being switched out and next refers to the one being
switched in to replace it. We can thus define a process switch as the activity consist-
ing of saving the hardware context of prev and replacing it with the hardware con-
text of next. Because process switches occur quite often, it is important to minimize
the time spent in saving and loading hardware contexts.

Old versions of Linux took advantage of the hardware support offered by the 80×86
architecture and performed a process switch through a far jmp instruction* to the
selector of the Task State Segment Descriptor of the next process. While executing
the instruction, the CPU performs a hardware context switch by automatically saving
the old hardware context and loading a new one. But Linux 2.6 uses software to per-
form a process switch for the following reasons:

• Step-by-step switching performed through a sequence of mov instructions allows
better control over the validity of the data being loaded. In particular, it is possi-
ble to check the values of the ds and es segmentation registers, which might have
been forged by a malicious user. This type of checking is not possible when
using a single far jmp instruction.

• The amount of time required by the old approach and the new approach is
about the same. However, it is not possible to optimize a hardware context
switch, while there might be room for improving the current switching code.

Process switching occurs only in Kernel Mode. The contents of all registers used by a
process in User Mode have already been saved on the Kernel Mode stack before per-
forming process switching (see Chapter 4). This includes the contents of the ss and
esp pair that specifies the User Mode stack pointer address.

* far jmp instructions modify both the cs and eip registers, while simple jmp instructions modify only eip.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 3: Processes

Task State Segment
The 80×86 architecture includes a specific segment type called the Task State Seg-
ment (TSS), to store hardware contexts. Although Linux doesn’t use hardware
context switches, it is nonetheless forced to set up a TSS for each distinct CPU in the
system. This is done for two main reasons:

• When an 80×86 CPU switches from User Mode to Kernel Mode, it fetches the
address of the Kernel Mode stack from the TSS (see the sections “Hardware
Handling of Interrupts and Exceptions” in Chapter 4 and “Issuing a System Call
via the sysenter Instruction” in Chapter 10).

• When a User Mode process attempts to access an I/O port by means of an in or
out instruction, the CPU may need to access an I/O Permission Bitmap stored in
the TSS to verify whether the process is allowed to address the port.

More precisely, when a process executes an in or out I/O instruction in User
Mode, the control unit performs the following operations:

1. It checks the 2-bit IOPL field in the eflags register. If it is set to 3, the con-
trol unit executes the I/O instructions. Otherwise, it performs the next
check.

2. It accesses the tr register to determine the current TSS, and thus the proper I/O
Permission Bitmap.

3. It checks the bit of the I/O Permission Bitmap corresponding to the I/O port
specified in the I/O instruction. If it is cleared, the instruction is executed;
otherwise, the control unit raises a “General protection” exception.

The tss_struct structure describes the format of the TSS. As already mentioned in
Chapter 2, the init_tss array stores one TSS for each CPU on the system. At each
process switch, the kernel updates some fields of the TSS so that the corresponding
CPU’s control unit may safely retrieve the information it needs. Thus, the TSS
reflects the privilege of the current process on the CPU, but there is no need to main-
tain TSSs for processes when they’re not running.

Each TSS has its own 8-byte Task State Segment Descriptor (TSSD). This descriptor
includes a 32-bit Base field that points to the TSS starting address and a 20-bit Limit
field. The S flag of a TSSD is cleared to denote the fact that the corresponding TSS is
a System Segment (see the section “Segment Descriptors” in Chapter 2).

The Type field is set to either 9 or 11 to denote that the segment is actually a TSS. In
the Intel’s original design, each process in the system should refer to its own TSS; the
second least significant bit of the Type field is called the Busy bit; it is set to 1 if the
process is being executed by a CPU, and to 0 otherwise. In Linux design, there is just
one TSS for each CPU, so the Busy bit is always set to 1.

The TSSDs created by Linux are stored in the Global Descriptor Table (GDT), whose
base address is stored in the gdtr register of each CPU. The tr register of each CPU

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Switch | 105

contains the TSSD Selector of the corresponding TSS. The register also includes two
hidden, nonprogrammable fields: the Base and Limit fields of the TSSD. In this way,
the processor can address the TSS directly without having to retrieve the TSS address
from the GDT.

The thread field

At every process switch, the hardware context of the process being replaced must be
saved somewhere. It cannot be saved on the TSS, as in the original Intel design,
because Linux uses a single TSS for each processor, instead of one for every process.

Thus, each process descriptor includes a field called thread of type thread_struct, in
which the kernel saves the hardware context whenever the process is being switched
out. As we’ll see later, this data structure includes fields for most of the CPU regis-
ters, except the general-purpose registers such as eax, ebx, etc., which are stored in
the Kernel Mode stack.

Performing the Process Switch
A process switch may occur at just one well-defined point: the schedule() function,
which is discussed at length in Chapter 7. Here, we are only concerned with how the
kernel performs a process switch.

Essentially, every process switch consists of two steps:

1. Switching the Page Global Directory to install a new address space; we’ll
describe this step in Chapter 9.

2. Switching the Kernel Mode stack and the hardware context, which provides all
the information needed by the kernel to execute the new process, including the
CPU registers.

Again, we assume that prev points to the descriptor of the process being replaced,
and next to the descriptor of the process being activated. As we’ll see in Chapter 7,
prev and next are local variables of the schedule() function.

The switch_to macro

The second step of the process switch is performed by the switch_to macro. It is one
of the most hardware-dependent routines of the kernel, and it takes some effort to
understand what it does.

First of all, the macro has three parameters, called prev, next, and last. You might
easily guess the role of prev and next: they are just placeholders for the local vari-
ables prev and next, that is, they are input parameters that specify the memory loca-
tions containing the descriptor address of the process being replaced and the
descriptor address of the new process, respectively.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 3: Processes

What about the third parameter, last? Well, in any process switch three processes
are involved, not just two. Suppose the kernel decides to switch off process A and to
activate process B. In the schedule() function, prev points to A’s descriptor and next
points to B’s descriptor. As soon as the switch_to macro deactivates A, the execu-
tion flow of A freezes.

Later, when the kernel wants to reactivate A, it must switch off another process C (in
general, this is different from B) by executing another switch_to macro with prev
pointing to C and next pointing to A. When A resumes its execution flow, it finds its
old Kernel Mode stack, so the prev local variable points to A’s descriptor and next
points to B’s descriptor. The scheduler, which is now executing on behalf of process
A, has lost any reference to C. This reference, however, turns out to be useful to
complete the process switching (see Chapter 7 for more details).

The last parameter of the switch_to macro is an output parameter that specifies a
memory location in which the macro writes the descriptor address of process C (of
course, this is done after A resumes its execution). Before the process switching, the
macro saves in the eax CPU register the content of the variable identified by the first
input parameter prev—that is, the prev local variable allocated on the Kernel Mode
stack of A. After the process switching, when A has resumed its execution, the macro
writes the content of the eax CPU register in the memory location of A identified by
the third output parameter last. Because the CPU register doesn’t change across the
process switch, this memory location receives the address of C’s descriptor. In the
current implementation of schedule(), the last parameter identifies the prev local
variable of A, so prev is overwritten with the address of C.

The contents of the Kernel Mode stacks of processes A, B, and C are shown in
Figure 3-7, together with the values of the eax register; be warned that the figure
shows the value of the prev local variable before its value is overwritten with the con-
tents of the eax register.

The switch_to macro is coded in extended inline assembly language that makes for
rather complex reading: in fact, the code refers to registers by means of a special

Figure 3-7. Preserving the reference to process C across a process switch

switch_to(A,B,A)

prev = C
next = A

prev = A
next = B

A

last

Process A

prev = A
next = B

Process stack

eax register A

Process B

prev = B
next = other

C

last

Process C

C

Process A

...

switch_to(C,A,C)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Switch | 107

positional notation that allows the compiler to freely choose the general-purpose reg-
isters to be used. Rather than follow the cumbersome extended inline assembly lan-
guage, we’ll describe what the switch_to macro typically does on an 80×86
microprocessor by using standard assembly language:

1. Saves the values of prev and next in the eax and edx registers, respectively:
 movl prev, %eax
 movl next, %edx

2. Saves the contents of the eflags and ebp registers in the prev Kernel Mode stack.
They must be saved because the compiler assumes that they will stay unchanged
until the end of switch_to:
 pushfl
 pushl %ebp

3. Saves the content of esp in prev->thread.esp so that the field points to the top of
the prev Kernel Mode stack:
 movl %esp,484(%eax)

The 484(%eax) operand identifies the memory cell whose address is the contents
of eax plus 484.

4. Loads next->thread.esp in esp. From now on, the kernel operates on the Kernel
Mode stack of next, so this instruction performs the actual process switch from
prev to next. Because the address of a process descriptor is closely related to that
of the Kernel Mode stack (as explained in the section “Identifying a Process” ear-
lier in this chapter), changing the kernel stack means changing the current
process:
 movl 484(%edx), %esp

5. Saves the address labeled 1 (shown later in this section) in prev->thread.eip.
When the process being replaced resumes its execution, the process executes the
instruction labeled as 1:
 movl $1f, 480(%eax)

6. On the Kernel Mode stack of next, the macro pushes the next->thread.eip
value, which, in most cases, is the address labeled as 1:
 pushl 480(%edx)

7. Jumps to the _ _switch_to() C function (see next):
 jmp __switch_to

8. Here process A that was replaced by B gets the CPU again: it executes a few
instructions that restore the contents of the eflags and ebp registers. The first of
these two instructions is labeled as 1:

1:
 popl %ebp
 popfl

Notice how these pop instructions refer to the kernel stack of the prev process.
They will be executed when the scheduler selects prev as the new process to be

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 3: Processes

executed on the CPU, thus invoking switch_to with prev as the second parame-
ter. Therefore, the esp register points to the prev’s Kernel Mode stack.

9. Copies the content of the eax register (loaded in step 1 above) into the memory
location identified by the third parameter last of the switch_to macro:
 movl %eax, last

As discussed earlier, the eax register points to the descriptor of the process that
has just been replaced.*

The _ _switch_to () function

The _ _switch_to() function does the bulk of the process switch started by the
switch_to() macro. It acts on the prev_p and next_p parameters that denote the
former process and the new process. This function call is different from the average
function call, though, because _ _switch_to() takes the prev_p and next_p parame-
ters from the eax and edx registers (where we saw they were stored), not from the
stack like most functions. To force the function to go to the registers for its parame-
ters, the kernel uses the _ _attribute_ _ and regparm keywords, which are nonstand-
ard extensions of the C language implemented by the gcc compiler. The _ _switch_
to() function is declared in the include/asm-i386/system.h header file as follows:

_ _switch_to(struct task_struct *prev_p,
 struct task_struct *next_p)
 _ _attribute_ _(regparm(3));

The steps performed by the function are the following:

1. Executes the code yielded by the _ _unlazy_fpu() macro (see the section “Saving
and Loading the FPU, MMX, and XMM Registers” later in this chapter) to
optionally save the contents of the FPU, MMX, and XMM registers of the prev_p
process.

_ _unlazy_fpu(prev_p);

2. Executes the smp_processor_id() macro to get the index of the local CPU,
namely the CPU that executes the code. The macro gets the index from the cpu
field of the thread_info structure of the current process and stores it into the cpu
local variable.

3. Loads next_p->thread.esp0 in the esp0 field of the TSS relative to the local CPU;
as we’ll see in the section “Issuing a System Call via the sysenter Instruction” in
Chapter 10, any future privilege level change from User Mode to Kernel Mode
raised by a sysenter assembly instruction will copy this address in the esp register:

init_tss[cpu].esp0 = next_p->thread.esp0;

* As stated earlier in this section, the current implementation of the schedule() function reuses the prev local
variable, so that the assembly language instruction looks like movl %eax,prev.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Switch | 109

4. Loads in the Global Descriptor Table of the local CPU the Thread-Local Storage
(TLS) segments used by the next_p process; the three Segment Selectors are
stored in the tls_array array inside the process descriptor (see the section “Seg-
mentation in Linux” in Chapter 2).

cpu_gdt_table[cpu][6] = next_p->thread.tls_array[0];
cpu_gdt_table[cpu][7] = next_p->thread.tls_array[1];
cpu_gdt_table[cpu][8] = next_p->thread.tls_array[2];

5. Stores the contents of the fs and gs segmentation registers in prev_p->thread.fs
and prev_p->thread.gs, respectively; the corresponding assembly language
instructions are:

movl %fs, 40(%esi)
movl %gs, 44(%esi)

The esi register points to the prev_p->thread structure.

6. If the fs or the gs segmentation register have been used either by the prev_p or
by the next_p process (i.e., if they have a nonzero value), loads into these regis-
ters the values stored in the thread_struct descriptor of the next_p process. This
step logically complements the actions performed in the previous step. The main
assembly language instructions are:

movl 40(%ebx),%fs
movl 44(%ebx),%gs

The ebx register points to the next_p->thread structure. The code is actually
more intricate, as an exception might be raised by the CPU when it detects an
invalid segment register value. The code takes this possibility into account by
adopting a “fix-up” approach (see the section “Dynamic Address Checking: The
Fix-up Code” in Chapter 10).

7. Loads six of the dr0, . . . , dr7 debug registers* with the contents of the next_p->
thread.debugreg array. This is done only if next_p was using the debug registers
when it was suspended (that is, field next_p->thread.debugreg[7] is not 0).
These registers need not be saved, because the prev_p->thread.debugreg array is
modified only when a debugger wants to monitor prev:

if (next_p->thread.debugreg[7]){
 loaddebug(&next_p->thread, 0);
 loaddebug(&next_p->thread, 1);
 loaddebug(&next_p->thread, 2);
 loaddebug(&next_p->thread, 3);
 /* no 4 and 5 */
 loaddebug(&next_p->thread, 6);
 loaddebug(&next_p->thread, 7);
}

* The 80×86 debug registers allow a process to be monitored by the hardware. Up to four breakpoint areas
may be defined. Whenever a monitored process issues a linear address included in one of the breakpoint
areas, an exception occurs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 3: Processes

8. Updates the I/O bitmap in the TSS, if necessary. This must be done when either
next_p or prev_p has its own customized I/O Permission Bitmap:

if (prev_p->thread.io_bitmap_ptr || next_p->thread.io_bitmap_ptr)
 handle_io_bitmap(&next_p->thread, &init_tss[cpu]);

Because processes seldom modify the I/O Permission Bitmap, this bitmap is han-
dled in a “lazy” mode: the actual bitmap is copied into the TSS of the local CPU
only if a process actually accesses an I/O port in the current timeslice. The cus-
tomized I/O Permission Bitmap of a process is stored in a buffer pointed to by
the io_bitmap_ptr field of the thread_info structure. The handle_io_bitmap()
function sets up the io_bitmap field of the TSS used by the local CPU for the
next_p process as follows:

• If the next_p process does not have its own customized I/O Permission Bit-
map, the io_bitmap field of the TSS is set to the value 0x8000.

• If the next_p process has its own customized I/O Permission Bitmap, the io_
bitmap field of the TSS is set to the value 0x9000.

The io_bitmap field of the TSS should contain an offset inside the TSS where the
actual bitmap is stored. The 0x8000 and 0x9000 values point outside of the TSS
limit and will thus cause a “General protection” exception whenever the User
Mode process attempts to access an I/O port (see the section “Exceptions” in
Chapter 4). The do_general_protection() exception handler will check the value
stored in the io_bitmap field: if it is 0x8000, the function sends a SIGSEGV signal to
the User Mode process; otherwise, if it is 0x9000, the function copies the process
bitmap (pointed to by the io_bitmap_ptr field in the thread_info structure) in the
TSS of the local CPU, sets the io_bitmap field to the actual bitmap offset (104),
and forces a new execution of the faulty assembly language instruction.

9. Terminates. The __switch_to() C function ends by means of the statement:
return prev_p;

The corresponding assembly language instructions generated by the compiler
are:

movl %edi,%eax
ret

The prev_p parameter (now in edi) is copied into eax, because by default the
return value of any C function is passed in the eax register. Notice that the value
of eax is thus preserved across the invocation of _ _switch_to(); this is quite
important, because the invoking switch_to macro assumes that eax always stores
the address of the process descriptor being replaced.

The ret assembly language instruction loads the eip program counter with the
return address stored on top of the stack. However, the _ _switch_to() function
has been invoked simply by jumping into it. Therefore, the ret instruction finds
on the stack the address of the instruction labeled as 1, which was pushed by
the switch_to macro. If next_p was never suspended before because it is being

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Switch | 111

executed for the first time, the function finds the starting address of the ret_
from_fork() function (see the section “The clone(), fork(), and vfork() System
Calls” later in this chapter).

Saving and Loading the FPU, MMX, and XMM Registers
Starting with the Intel 80486DX, the arithmetic floating-point unit (FPU) has been
integrated into the CPU. The name mathematical coprocessor continues to be used in
memory of the days when floating-point computations were executed by an expen-
sive special-purpose chip. To maintain compatibility with older models, however,
floating-point arithmetic functions are performed with ESCAPE instructions, which
are instructions with a prefix byte ranging between 0xd8 and 0xdf. These instruc-
tions act on the set of floating-point registers included in the CPU. Clearly, if a pro-
cess is using ESCAPE instructions, the contents of the floating-point registers belong
to its hardware context and should be saved.

In later Pentium models, Intel introduced a new set of assembly language instruc-
tions into its microprocessors. They are called MMX instructions and are supposed to
speed up the execution of multimedia applications. MMX instructions act on the
floating-point registers of the FPU. The obvious disadvantage of this architectural
choice is that programmers cannot mix floating-point instructions and MMX instruc-
tions. The advantage is that operating system designers can ignore the new instruc-
tion set, because the same facility of the task-switching code for saving the state of
the floating-point unit can also be relied upon to save the MMX state.

MMX instructions speed up multimedia applications, because they introduce a sin-
gle-instruction multiple-data (SIMD) pipeline inside the processor. The Pentium III
model extends that SIMD capability: it introduces the SSE extensions (Streaming
SIMD Extensions), which adds facilities for handling floating-point values contained
in eight 128-bit registers called the XMM registers. Such registers do not overlap with
the FPU and MMX registers, so SSE and FPU/MMX instructions may be freely
mixed. The Pentium 4 model introduces yet another feature: the SSE2 extensions,
which is basically an extension of SSE supporting higher-precision floating-point val-
ues. SSE2 uses the same set of XMM registers as SSE.

The 80×86 microprocessors do not automatically save the FPU, MMX, and XMM
registers in the TSS. However, they include some hardware support that enables ker-
nels to save these registers only when needed. The hardware support consists of a TS
(Task-Switching) flag in the cr0 register, which obeys the following rules:

• Every time a hardware context switch is performed, the TS flag is set.

• Every time an ESCAPE, MMX, SSE, or SSE2 instruction is executed when the TS
flag is set, the control unit raises a “Device not available” exception (see
Chapter 4).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 3: Processes

The TS flag allows the kernel to save and restore the FPU, MMX, and XMM registers
only when really needed. To illustrate how it works, suppose that a process A is
using the mathematical coprocessor. When a context switch occurs from A to B, the
kernel sets the TS flag and saves the floating-point registers into the TSS of process
A. If the new process B does not use the mathematical coprocessor, the kernel won’t
need to restore the contents of the floating-point registers. But as soon as B tries to
execute an ESCAPE or MMX instruction, the CPU raises a “Device not available”
exception, and the corresponding handler loads the floating-point registers with the
values saved in the TSS of process B.

Let’s now describe the data structures introduced to handle selective loading of the
FPU, MMX, and XMM registers. They are stored in the thread.i387 subfield of the
process descriptor, whose format is described by the i387_union union:

union i387_union {
 struct i387_fsave_struct fsave;
 struct i387_fxsave_struct fxsave;
 struct i387_soft_struct soft;
};

As you see, the field may store just one of three different types of data structures. The
i387_soft_struct type is used by CPU models without a mathematical coprocessor;
the Linux kernel still supports these old chips by emulating the coprocessor via soft-
ware. We don’t discuss this legacy case further, however. The i387_fsave_struct
type is used by CPU models with a mathematical coprocessor and, optionally, an
MMX unit. Finally, the i387_fxsave_struct type is used by CPU models featuring
SSE and SSE2 extensions.

The process descriptor includes two additional flags:

• The TS_USEDFPU flag, which is included in the status field of the thread_info
descriptor. It specifies whether the process used the FPU, MMX, or XMM regis-
ters in the current execution run.

• The PF_USED_MATH flag, which is included in the flags field of the task_struct
descriptor. This flag specifies whether the contents of the thread.i387 subfield
are significant. The flag is cleared (not significant) in two cases, shown in the fol-
lowing list.

— When the process starts executing a new program by invoking an execve()
system call (see Chapter 20). Because control will never return to the former
program, the data currently stored in thread.i387 is never used again.

— When a process that was executing a program in User Mode starts execut-
ing a signal handler procedure (see Chapter 11). Because signal handlers are
asynchronous with respect to the program execution flow, the floating-point
registers could be meaningless to the signal handler. However, the kernel
saves the floating-point registers in thread.i387 before starting the handler
and restores them after the handler terminates. Therefore, a signal handler is
allowed to use the mathematical coprocessor.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Process Switch | 113

Saving the FPU registers

As stated earlier, the __switch_to() function executes the _ _unlazy_fpu macro, pass-
ing the process descriptor of the prev process being replaced as an argument. The
macro checks the value of the TS_USEDFPU flags of prev. If the flag is set, prev has used
an FPU, MMX, SSE, or SSE2 instructions; therefore, the kernel must save the rela-
tive hardware context:

if (prev->thread_info->status & TS_USEDFPU)
 save_init_fpu(prev);

The save_init_fpu() function, in turn, executes essentially the following operations:

1. Dumps the contents of the FPU registers in the process descriptor of prev and
then reinitializes the FPU. If the CPU uses SSE/SSE2 extensions, it also dumps
the contents of the XMM registers and reinitializes the SSE/SSE2 unit. A couple
of powerful extended inline assembly language instructions take care of every-
thing, either:
 asm volatile("fxsave %0 ; fnclex"
 : "=m" (prev->thread.i387.fxsave));

if the CPU uses SSE/SSE2 extensions, or otherwise:
 asm volatile("fnsave %0 ; fwait"
 : "=m" (prev->thread.i387.fsave));

2. Resets the TS_USEDFPU flag of prev:
 prev->thread_info->status &= ~TS_USEDFPU;

3. Sets the TS flag of cr0 by means of the stts() macro, which in practice yields
assembly language instructions like the following:
 movl %cr0, %eax
 orl $8,%eax
 movl %eax, %cr0

Loading the FPU registers

The contents of the floating-point registers are not restored right after the next pro-
cess resumes execution. However, the TS flag of cr0 has been set by _ _unlazy_fpu().
Thus, the first time the next process tries to execute an ESCAPE, MMX, or SSE/SSE2
instruction, the control unit raises a “Device not available” exception, and the kernel
(more precisely, the exception handler involved by the exception) runs the math_
state_restore() function. The next process is identified by this handler as current.

void math_state_restore()
{
 asm volatile ("clts"); /* clear the TS flag of cr0 */
 if (!(current->flags & PF_USED_MATH))
 init_fpu(current);
 restore_fpu(current);
 current->thread.status |= TS_USEDFPU;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 3: Processes

The function clears the TC flags of cr0, so that further FPU, MMX, or SSE/SSE2
instructions executed by the process won’t trigger the “Device not available” excep-
tion. If the contents of the thread.i387 subfield are not significant, i.e., if the PF_
USED_MATH flag is equal to 0, init_fpu() is invoked to reset the thread.i387 subfield
and to set the PF_USED_MATH flag of current to 1. The restore_fpu() function is then
invoked to load the FPU registers with the proper values stored in the thread.i387
subfield. To do this, either the fxrstor or the frstor assembly language instructions
are used, depending on whether the CPU supports SSE/SSE2 extensions. Finally,
math_state_restore() sets the TS_USEDFPU flag.

Using the FPU, MMX, and SSE/SSE2 units in Kernel Mode

Even the kernel can make use of the FPU, MMX, or SSE/SSE2 units. In doing so, of
course, it should avoid interfering with any computation carried on by the current
User Mode process. Therefore:

• Before using the coprocessor, the kernel must invoke kernel_fpu_begin(), which
essentially calls save_init_fpu() to save the contents of the registers if the User
Mode process used the FPU (TS_USEDFPU flag), and then resets the TS flag of the
cr0 register.

• After using the coprocessor, the kernel must invoke kernel_fpu_end(), which
sets the TS flag of the cr0 register.

Later, when the User Mode process executes a coprocessor instruction, the math_
state_restore() function will restore the contents of the registers, just as in process
switch handling.

It should be noted, however, that the execution time of kernel_fpu_begin() is rather
large when the current User Mode process is using the coprocessor, so much as to
nullify the speedup obtained by using the FPU, MMX, or SSE/SSE2 units. As a mat-
ter of fact, the kernel uses them only in a few places, typically when moving or clear-
ing large memory areas or when computing checksum functions.

Creating Processes
Unix operating systems rely heavily on process creation to satisfy user requests. For
example, the shell creates a new process that executes another copy of the shell
whenever the user enters a command.

Traditional Unix systems treat all processes in the same way: resources owned by the
parent process are duplicated in the child process. This approach makes process cre-
ation very slow and inefficient, because it requires copying the entire address space
of the parent process. The child process rarely needs to read or modify all the
resources inherited from the parent; in many cases, it issues an immediate execve()
and wipes out the address space that was so carefully copied.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Processes | 115

Modern Unix kernels solve this problem by introducing three different mechanisms:

• The Copy On Write technique allows both the parent and the child to read the
same physical pages. Whenever either one tries to write on a physical page, the
kernel copies its contents into a new physical page that is assigned to the writing
process. The implementation of this technique in Linux is fully explained in
Chapter 9.

• Lightweight processes allow both the parent and the child to share many per-
process kernel data structures, such as the paging tables (and therefore the entire
User Mode address space), the open file tables, and the signal dispositions.

• The vfork() system call creates a process that shares the memory address space
of its parent. To prevent the parent from overwriting data needed by the child,
the parent’s execution is blocked until the child exits or executes a new pro-
gram. We’ll learn more about the vfork() system call in the following section.

The clone(), fork(), and vfork() System Calls
Lightweight processes are created in Linux by using a function named clone(),
which uses the following parameters:

fn
Specifies a function to be executed by the new process; when the function
returns, the child terminates. The function returns an integer, which represents
the exit code for the child process.

arg
Points to data passed to the fn() function.

flags
Miscellaneous information. The low byte specifies the signal number to be sent
to the parent process when the child terminates; the SIGCHLD signal is generally
selected. The remaining three bytes encode a group of clone flags, which are
shown in Table 3-8.

child_stack
Specifies the User Mode stack pointer to be assigned to the esp register of the
child process. The invoking process (the parent) should always allocate a new
stack for the child.

tls
Specifies the address of a data structure that defines a Thread Local Storage seg-
ment for the new lightweight process (see the section “The Linux GDT” in
Chapter 2). Meaningful only if the CLONE_SETTLS flag is set.

ptid
Specifies the address of a User Mode variable of the parent process that will hold
the PID of the new lightweight process. Meaningful only if the CLONE_PARENT_
SETTID flag is set.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 3: Processes

ctid
Specifies the address of a User Mode variable of the new lightweight process that
will hold the PID of such process. Meaningful only if the CLONE_CHILD_SETTID flag
is set.

clone() is actually a wrapper function defined in the C library (see the section
“POSIX APIs and System Calls” in Chapter 10), which sets up the stack of the new

Table 3-8. Clone flags

Flag name Description

CLONE_VM Shares the memory descriptor and all Page Tables (see Chapter 9).

CLONE_FS Shares the table that identifies the root directory and the current working directory, as
well as the value of the bitmask used to mask the initial file permissions of a new file
(the so-called file umask).

CLONE_FILES Shares the table that identifies the open files (see Chapter 12).

CLONE_SIGHAND Shares the tables that identify the signal handlers and the blocked and pending signals
(see Chapter 11). If this flag is true, the CLONE_VM flag must also be set.

CLONE_PTRACE If traced, the parent wants the child to be traced too. Furthermore, the debugger may
want to trace the child on its own; in this case, the kernel forces the flag to 1.

CLONE_VFORK Set when the system call issued is a vfork() (see later in this section).

CLONE_PARENT Sets the parent of the child (parent and real_parent fields in the process
descriptor) to the parent of the calling process.

CLONE_THREAD Inserts the child into the same thread group of the parent, and forces the child to share
the signal descriptor of the parent. The child’s tgid and group_leader fields are
set accordingly. If this flag is true, the CLONE_SIGHAND flag must also be set.

CLONE_NEWNS Set if the clone needs its own namespace, that is, its own view of the mounted filesys-
tems (see Chapter 12); it is not possible to specify both CLONE_NEWNS and CLONE_
FS.

CLONE_SYSVSEM Shares the System V IPC undoable semaphore operations (see the section “IPC Sema-
phores” in Chapter 19).

CLONE_SETTLS Creates a new Thread Local Storage (TLS) segment for the lightweight process; the
segment is described in the structure pointed to by the tls parameter.

CLONE_PARENT_SETTID Writes the PID of the child into the User Mode variable of the parent pointed to by the
ptid parameter.

CLONE_CHILD_CLEARTID When set, the kernel sets up a mechanism to be triggered when the child process will
exit or when it will start executing a new program. In these cases, the kernel will clear
the User Mode variable pointed to by the ctid parameter and will awaken any pro-
cess waiting for this event.

CLONE_DETACHED A legacy flag ignored by the kernel.

CLONE_UNTRACED Set by the kernel to override the value of the CLONE_PTRACE flag (used for disabling
tracing of kernel threads; see the section “Kernel Threads” later in this chapter).

CLONE_CHILD_SETTID Writes the PID of the child into the User Mode variable of the child pointed to by the
ctid parameter.

CLONE_STOPPED Forces the child to start in the TASK_STOPPED state.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Processes | 117

lightweight process and invokes a clone() system call hidden to the programmer.
The sys_clone() service routine that implements the clone() system call does not
have the fn and arg parameters. In fact, the wrapper function saves the pointer fn
into the child’s stack position corresponding to the return address of the wrapper
function itself; the pointer arg is saved on the child’s stack right below fn. When the
wrapper function terminates, the CPU fetches the return address from the stack and
executes the fn(arg) function.

The traditional fork() system call is implemented by Linux as a clone() system call
whose flags parameter specifies both a SIGCHLD signal and all the clone flags cleared,
and whose child_stack parameter is the current parent stack pointer. Therefore, the
parent and child temporarily share the same User Mode stack. But thanks to the
Copy On Write mechanism, they usually get separate copies of the User Mode stack
as soon as one tries to change the stack.

The vfork() system call, introduced in the previous section, is implemented by
Linux as a clone() system call whose flags parameter specifies both a SIGCHLD signal
and the flags CLONE_VM and CLONE_VFORK, and whose child_stack parameter is equal to
the current parent stack pointer.

The do_fork() function

The do_fork() function, which handles the clone(), fork(), and vfork() system
calls, acts on the following parameters:

clone_flags
Same as the flags parameter of clone()

stack_start
Same as the child_stack parameter of clone()

regs
Pointer to the values of the general purpose registers saved into the Kernel Mode
stack when switching from User Mode to Kernel Mode (see the section “The do_
IRQ() function” in Chapter 4)

stack_size
Unused (always set to 0)

parent_tidptr, child_tidptr
Same as the corresponding ptid and ctid parameters of clone()

do_fork() makes use of an auxiliary function called copy_process() to set up the pro-
cess descriptor and any other kernel data structure required for child’s execution.
Here are the main steps performed by do_fork():

1. Allocates a new PID for the child by looking in the pidmap_array bitmap (see the
earlier section “Identifying a Process”).

2. Checks the ptrace field of the parent (current->ptrace): if it is not zero, the par-
ent process is being traced by another process, thus do_fork() checks whether

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 3: Processes

the debugger wants to trace the child on its own (independently of the value of
the CLONE_PTRACE flag specified by the parent); in this case, if the child is not a ker-
nel thread (CLONE_UNTRACED flag cleared), the function sets the CLONE_PTRACE flag.

3. Invokes copy_process() to make a copy of the process descriptor. If all needed
resources are available, this function returns the address of the task_struct
descriptor just created. This is the workhorse of the forking procedure, and we
will describe it right after do_fork().

4. If either the CLONE_STOPPED flag is set or the child process must be traced, that is,
the PT_PTRACED flag is set in p->ptrace, it sets the state of the child to TASK_
STOPPED and adds a pending SIGSTOP signal to it (see the section “The Role of Sig-
nals” in Chapter 11). The state of the child will remain TASK_STOPPED until
another process (presumably the tracing process or the parent) will revert its
state to TASK_RUNNING, usually by means of a SIGCONT signal.

5. If the CLONE_STOPPED flag is not set, it invokes the wake_up_new_task() function,
which performs the following operations:

a. Adjusts the scheduling parameters of both the parent and the child (see
“The Scheduling Algorithm” in Chapter 7).

b. If the child will run on the same CPU as the parent,* and parent and child do
not share the same set of page tables (CLONE_VM flag cleared), it then forces
the child to run before the parent by inserting it into the parent’s runqueue
right before the parent. This simple step yields better performance if the
child flushes its address space and executes a new program right after the
forking. If we let the parent run first, the Copy On Write mechanism would
give rise to a series of unnecessary page duplications.

c. Otherwise, if the child will not be run on the same CPU as the parent, or if
parent and child share the same set of page tables (CLONE_VM flag set), it
inserts the child in the last position of the parent’s runqueue.

6. If the CLONE_STOPPED flag is set, it puts the child in the TASK_STOPPED state.

7. If the parent process is being traced, it stores the PID of the child in the ptrace_
message field of current and invokes ptrace_notify(), which essentially stops the
current process and sends a SIGCHLD signal to its parent. The “grandparent” of
the child is the debugger that is tracing the parent; the SIGCHLD signal notifies the
debugger that current has forked a child, whose PID can be retrieved by looking
into the current->ptrace_message field.

8. If the CLONE_VFORK flag is specified, it inserts the parent process in a wait queue
and suspends it until the child releases its memory address space (that is, until
the child either terminates or executes a new program).

9. Terminates by returning the PID of the child.

* The parent process might be moved on to another CPU while the kernel forks the new process.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Processes | 119

The copy_process() function

The copy_process() function sets up the process descriptor and any other kernel data
structure required for a child’s execution. Its parameters are the same as do_fork(),
plus the PID of the child. Here is a description of its most significant steps:

1. Checks whether the flags passed in the clone_flags parameter are compatible. In
particular, it returns an error code in the following cases:

a. Both the flags CLONE_NEWNS and CLONE_FS are set.

b. The CLONE_THREAD flag is set, but the CLONE_SIGHAND flag is cleared (light-
weight processes in the same thread group must share signals).

c. The CLONE_SIGHAND flag is set, but the CLONE_VM flag is cleared (lightweight
processes sharing the signal handlers must also share the memory descriptor).

2. Performs any additional security checks by invoking security_task_create()
and, later, security_task_alloc(). The Linux kernel 2.6 offers hooks for secu-
rity extensions that enforce a security model stronger than the one adopted by
traditional Unix. See Chapter 20 for details.

3. Invokes dup_task_struct() to get the process descriptor for the child. This func-
tion performs the following actions:

a. Invokes _ _unlazy_fpu() on the current process to save, if necessary, the
contents of the FPU, MMX, and SSE/SSE2 registers in the thread_info struc-
ture of the parent. Later, dup_task_struct() will copy these values in the
thread_info structure of the child.

b. Executes the alloc_task_struct() macro to get a process descriptor (task_
struct structure) for the new process, and stores its address in the tsk local
variable.

c. Executes the alloc_thread_info macro to get a free memory area to store the
thread_info structure and the Kernel Mode stack of the new process, and
saves its address in the ti local variable. As explained in the earlier section
“Identifying a Process,” the size of this memory area is either 8 KB or 4 KB.

d. Copies the contents of the current’s process descriptor into the task_struct
structure pointed to by tsk, then sets tsk->thread_info to ti.

e. Copies the contents of the current’s thread_info descriptor into the struc-
ture pointed to by ti, then sets ti->task to tsk.

f. Sets the usage counter of the new process descriptor (tsk->usage) to 2 to
specify that the process descriptor is in use and that the corresponding pro-
cess is alive (its state is not EXIT_ZOMBIE or EXIT_DEAD).

g. Returns the process descriptor pointer of the new process (tsk).

4. Checks whether the value stored in current->signal->rlim[RLIMIT_NPROC].rlim_
cur is smaller than or equal to the current number of processes owned by the
user. If so, an error code is returned, unless the process has root privileges. The

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 3: Processes

function gets the current number of processes owned by the user from a per-user
data structure named user_struct. This data structure can be found through a
pointer in the user field of the process descriptor.

5. Increases the usage counter of the user_struct structure (tsk->user->_ _count
field) and the counter of the processes owned by the user (tsk->user->
processes).

6. Checks that the number of processes in the system (stored in the nr_threads
variable) does not exceed the value of the max_threads variable. The default value
of this variable depends on the amount of RAM in the system. The general rule
is that the space taken by all thread_info descriptors and Kernel Mode stacks
cannot exceed 1/8 of the physical memory. However, the system administrator
may change this value by writing in the /proc/sys/kernel/threads-max file.

7. If the kernel functions implementing the execution domain and the executable
format (see Chapter 20) of the new process are included in kernel modules, it
increases their usage counters (see Appendix B).

8. Sets a few crucial fields related to the process state:

a. Initializes the big kernel lock counter tsk->lock_depth to -1 (see the section
“The Big Kernel Lock” in Chapter 5).

b. Initializes the tsk->did_exec field to 0: it counts the number of execve() sys-
tem calls issued by the process.

c. Updates some of the flags included in the tsk->flags field that have been
copied from the parent process: first clears the PF_SUPERPRIV flag, which
indicates whether the process has used any of its superuser privileges, then
sets the PF_FORKNOEXEC flag, which indicates that the child has not yet issued
an execve() system call.

9. Stores the PID of the new process in the tsk->pid field.

10. If the CLONE_PARENT_SETTID flag in the clone_flags parameter is set, it copies the
child’s PID into the User Mode variable addressed by the parent_tidptr parame-
ter.

11. Initializes the list_head data structures and the spin locks included in the child’s
process descriptor, and sets up several other fields related to pending signals,
timers, and time statistics.

12. Invokes copy_semundo(), copy_files(), copy_fs(), copy_sighand(), copy_
signal(), copy_mm(), and copy_namespace() to create new data structures and
copy into them the values of the corresponding parent process data structures,
unless specified differently by the clone_flags parameter.

13. Invokes copy_thread() to initialize the Kernel Mode stack of the child process
with the values contained in the CPU registers when the clone() system call was
issued (these values have been saved in the Kernel Mode stack of the parent, as
described in Chapter 10). However, the function forces the value 0 into the field

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Processes | 121

corresponding to the eax register (this is the child’s return value of the fork() or
clone() system call). The thread.esp field in the descriptor of the child process is
initialized with the base address of the child’s Kernel Mode stack, and the address
of an assembly language function (ret_from_fork()) is stored in the thread.eip
field. If the parent process makes use of an I/O Permission Bitmap, the child gets
a copy of such bitmap. Finally, if the CLONE_SETTLS flag is set, the child gets the
TLS segment specified by the User Mode data structure pointed to by the tls
parameter of the clone() system call.*

14. If either CLONE_CHILD_SETTID or CLONE_CHILD_CLEARTID is set in the clone_flags
parameter, it copies the value of the child_tidptr parameter in the tsk->set_
chid_tid or tsk->clear_child_tid field, respectively. These flags specify that the
value of the variable pointed to by child_tidptr in the User Mode address space
of the child has to be changed, although the actual write operations will be done
later.

15. Turns off the TIF_SYSCALL_TRACE flag in the thread_info structure of the child, so
that the ret_from_fork() function will not notify the debugging process about
the system call termination (see the section “Entering and Exiting a System Call”
in Chapter 10). (The system call tracing of the child is not disabled, because it is
controlled by the PTRACE_SYSCALL flag in tsk->ptrace.)

16. Initializes the tsk->exit_signal field with the signal number encoded in the low
bits of the clone_flags parameter, unless the CLONE_THREAD flag is set, in which
case initializes the field to -1. As we’ll see in the section “Process Termination”
later in this chapter, only the death of the last member of a thread group (usu-
ally, the thread group leader) causes a signal notifying the parent of the thread
group leader.

17. Invokes sched_fork() to complete the initialization of the scheduler data struc-
ture of the new process. The function also sets the state of the new process to
TASK_RUNNING and sets the preempt_count field of the thread_info structure to 1,
thus disabling kernel preemption (see the section “Kernel Preemption” in
Chapter 5). Moreover, in order to keep process scheduling fair, the function
shares the remaining timeslice of the parent between the parent and the child
(see “The scheduler_tick() Function” in Chapter 7).

18. Sets the cpu field in the thread_info structure of the new process to the number
of the local CPU returned by smp_processor_id().

19. Initializes the fields that specify the parenthood relationships. In particular, if
CLONE_PARENT or CLONE_THREAD are set, it initializes tsk->real_parent and tsk->

* A careful reader might wonder how copy_thread() gets the value of the tls parameter of clone(), because
tls is not passed to do_fork() and nested functions. As we’ll see in Chapter 10, the parameters of the system
calls are usually passed to the kernel by copying their values into some CPU register; thus, these values are
saved in the Kernel Mode stack together with the other registers. The copy_thread() function just looks at
the address saved in the Kernel Mode stack location corresponding to the value of esi.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 3: Processes

parent to the value in current->real_parent; the parent of the child thus appears
as the parent of the current process. Otherwise, it sets the same fields to current.

20. If the child does not need to be traced (CLONE_PTRACE flag not set), it sets the tsk->
ptrace field to 0. This field stores a few flags used when a process is being traced
by another process. In such a way, even if the current process is being traced, the
child will not.

21. Executes the SET_LINKS macro to insert the new process descriptor in the pro-
cess list.

22. If the child must be traced (PT_PTRACED flag in the tsk->ptrace field set), it sets
tsk->parent to current->parent and inserts the child into the trace list of the
debugger.

23. Invokes attach_pid() to insert the PID of the new process descriptor in the
pidhash[PIDTYPE_PID] hash table.

24. If the child is a thread group leader (flag CLONE_THREAD cleared):

a. Initializes tsk->tgid to tsk->pid.

b. Initializes tsk->group_leader to tsk.

c. Invokes three times attach_pid() to insert the child in the PID hash tables of
type PIDTYPE_TGID, PIDTYPE_PGID, and PIDTYPE_SID.

25. Otherwise, if the child belongs to the thread group of its parent (CLONE_THREAD
flag set):

a. Initializes tsk->tgid to tsk->current->tgid.

b. Initializes tsk->group_leader to the value in current->group_leader.

c. Invokes attach_pid() to insert the child in the PIDTYPE_TGID hash table
(more specifically, in the per-PID list of the current->group_leader process).

26. A new process has now been added to the set of processes: increases the value of
the nr_threads variable.

27. Increases the total_forks variable to keep track of the number of forked pro-
cesses.

28. Terminates by returning the child’s process descriptor pointer (tsk).

Let’s go back to what happens after do_fork() terminates. Now we have a complete
child process in the runnable state. But it isn’t actually running. It is up to the sched-
uler to decide when to give the CPU to this child. At some future process switch, the
schedule bestows this favor on the child process by loading a few CPU registers with
the values of the thread field of the child’s process descriptor. In particular, esp is
loaded with thread.esp (that is, with the address of child’s Kernel Mode stack), and
eip is loaded with the address of ret_from_fork(). This assembly language function
invokes the schedule_tail() function (which in turn invokes the finish_task_
switch() function to complete the process switch; see the section “The schedule()
Function” in Chapter 7), reloads all other registers with the values stored in the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Processes | 123

stack, and forces the CPU back to User Mode. The new process then starts its execu-
tion right at the end of the fork(), vfork(), or clone() system call. The value
returned by the system call is contained in eax: the value is 0 for the child and equal
to the PID for the child’s parent. To understand how this is done, look back at what
copy_thread() does on the eax register of the child’s process (step 13 of copy_
process()).

The child process executes the same code as the parent, except that the fork returns a
0 (see step 13 of copy_process()). The developer of the application can exploit this
fact, in a manner familiar to Unix programmers, by inserting a conditional statement
in the program based on the PID value that forces the child to behave differently
from the parent process.

Kernel Threads
Traditional Unix systems delegate some critical tasks to intermittently running pro-
cesses, including flushing disk caches, swapping out unused pages, servicing net-
work connections, and so on. Indeed, it is not efficient to perform these tasks in
strict linear fashion; both their functions and the end user processes get better
response if they are scheduled in the background. Because some of the system pro-
cesses run only in Kernel Mode, modern operating systems delegate their functions
to kernel threads, which are not encumbered with the unnecessary User Mode con-
text. In Linux, kernel threads differ from regular processes in the following ways:

• Kernel threads run only in Kernel Mode, while regular processes run alterna-
tively in Kernel Mode and in User Mode.

• Because kernel threads run only in Kernel Mode, they use only linear addresses
greater than PAGE_OFFSET. Regular processes, on the other hand, use all four
gigabytes of linear addresses, in either User Mode or Kernel Mode.

Creating a kernel thread

The kernel_thread() function creates a new kernel thread. It receives as parameters
the address of the kernel function to be executed (fn), the argument to be passed to
that function (arg), and a set of clone flags (flags). The function essentially invokes
do_fork() as follows:

do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, pregs, 0, NULL, NULL);

The CLONE_VM flag avoids the duplication of the page tables of the calling process: this
duplication would be a waste of time and memory, because the new kernel thread
will not access the User Mode address space anyway. The CLONE_UNTRACED flag
ensures that no process will be able to trace the new kernel thread, even if the calling
process is being traced.

The pregs parameter passed to do_fork() corresponds to the address in the Kernel
Mode stack where the copy_thread() function will find the initial values of the CPU

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 3: Processes

registers for the new thread. The kernel_thread() function builds up this stack area
so that:

• The ebx and edx registers will be set by copy_thread() to the values of the param-
eters fn and arg, respectively.

• The eip register will be set to the address of the following assembly language
fragment:

movl %edx,%eax
pushl %edx
call *%ebx
pushl %eax
call do_exit

Therefore, the new kernel thread starts by executing the fn(arg) function. If this
function terminates, the kernel thread executes the _exit() system call passing to it
the return value of fn() (see the section “Destroying Processes” later in this chapter).

Process 0

The ancestor of all processes, called process 0, the idle process, or, for historical rea-
sons, the swapper process, is a kernel thread created from scratch during the initial-
ization phase of Linux (see Appendix A). This ancestor process uses the following
statically allocated data structures (data structures for all other processes are dynami-
cally allocated):

• A process descriptor stored in the init_task variable, which is initialized by the
INIT_TASK macro.

• A thread_info descriptor and a Kernel Mode stack stored in the init_thread_
union variable and initialized by the INIT_THREAD_INFO macro.

• The following tables, which the process descriptor points to:

— init_mm

— init_fs

— init_files

— init_signals

— init_sighand

The tables are initialized, respectively, by the following macros:

— INIT_MM

— INIT_FS

— INIT_FILES

— INIT_SIGNALS

— INIT_SIGHAND

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Processes | 125

• The master kernel Page Global Directory stored in swapper_pg_dir (see the sec-
tion “Kernel Page Tables” in Chapter 2).

The start_kernel() function initializes all the data structures needed by the kernel,
enables interrupts, and creates another kernel thread, named process 1 (more com-
monly referred to as the init process):

kernel_thread(init, NULL, CLONE_FS|CLONE_SIGHAND);

The newly created kernel thread has PID 1 and shares all per-process kernel data
structures with process 0. When selected by the scheduler, the init process starts exe-
cuting the init() function.

After having created the init process, process 0 executes the cpu_idle() function,
which essentially consists of repeatedly executing the hlt assembly language instruc-
tion with the interrupts enabled (see Chapter 4). Process 0 is selected by the sched-
uler only when there are no other processes in the TASK_RUNNING state.

In multiprocessor systems there is a process 0 for each CPU. Right after the power-
on, the BIOS of the computer starts a single CPU while disabling the others. The
swapper process running on CPU 0 initializes the kernel data structures, then enables
the other CPUs and creates the additional swapper processes by means of the copy_
process() function passing to it the value 0 as the new PID. Moreover, the kernel
sets the cpu field of the thread_info descriptor of each forked process to the proper
CPU index.

Process 1

The kernel thread created by process 0 executes the init() function, which in turn
completes the initialization of the kernel. Then init() invokes the execve() system
call to load the executable program init. As a result, the init kernel thread becomes a
regular process having its own per-process kernel data structure (see Chapter 20). The
init process stays alive until the system is shut down, because it creates and monitors
the activity of all processes that implement the outer layers of the operating system.

Other kernel threads

Linux uses many other kernel threads. Some of them are created in the initialization
phase and run until shutdown; others are created “on demand,” when the kernel
must execute a task that is better performed in its own execution context.

A few examples of kernel threads (besides process 0 and process 1) are:

keventd (also called events)
Executes the functions in the keventd_wq workqueue (see Chapter 4).

kapmd
Handles the events related to the Advanced Power Management (APM).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 3: Processes

kswapd
Reclaims memory, as described in the section “Periodic Reclaiming” in
Chapter 17.

pdflush
Flushes “dirty” buffers to disk to reclaim memory, as described in the section
“The pdflush Kernel Threads” in Chapter 15.

kblockd
Executes the functions in the kblockd_workqueue workqueue. Essentially, it peri-
odically activates the block device drivers, as described in the section “Activat-
ing the Block Device Driver” in Chapter 14.

ksoftirqd
Runs the tasklets (see section “Softirqs and Tasklets” in Chapter 4); there is one
of these kernel threads for each CPU in the system.

Destroying Processes
Most processes “die” in the sense that they terminate the execution of the code they
were supposed to run. When this occurs, the kernel must be notified so that it can
release the resources owned by the process; this includes memory, open files, and
any other odds and ends that we will encounter in this book, such as semaphores.

The usual way for a process to terminate is to invoke the exit() library function,
which releases the resources allocated by the C library, executes each function regis-
tered by the programmer, and ends up invoking a system call that evicts the process
from the system. The exit() library function may be inserted by the programmer
explicitly. Additionally, the C compiler always inserts an exit() function call right
after the last statement of the main() function.

Alternatively, the kernel may force a whole thread group to die. This typically occurs
when a process in the group has received a signal that it cannot handle or ignore (see
Chapter 11) or when an unrecoverable CPU exception has been raised in Kernel
Mode while the kernel was running on behalf of the process (see Chapter 4).

Process Termination
In Linux 2.6 there are two system calls that terminate a User Mode application:

• The exit_group() system call, which terminates a full thread group, that is, a
whole multithreaded application. The main kernel function that implements this
system call is called do_group_exit(). This is the system call that should be
invoked by the exit() C library function.

• The _exit() system call, which terminates a single process, regardless of any
other process in the thread group of the victim. The main kernel function that

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Destroying Processes | 127

implements this system call is called do_exit(). This is the system call invoked,
for instance, by the pthread_exit() function of the LinuxThreads library.

The do_group_exit() function

The do_group_exit() function kills all processes belonging to the thread group of
current. It receives as a parameter the process termination code, which is either a
value specified in the exit_group() system call (normal termination) or an error code
supplied by the kernel (abnormal termination). The function executes the following
operations:

1. Checks whether the SIGNAL_GROUP_EXIT flag of the exiting process is not zero,
which means that the kernel already started an exit procedure for this thread
group. In this case, it considers as exit code the value stored in current->signal-
>group_exit_code, and jumps to step 4.

2. Otherwise, it sets the SIGNAL_GROUP_EXIT flag of the process and stores the termi-
nation code in the current->signal->group_exit_code field.

3. Invokes the zap_other_threads() function to kill the other processes in the
thread group of current, if any. In order to do this, the function scans the per-
PID list in the PIDTYPE_TGID hash table corresponding to current->tgid; for each
process in the list different from current, it sends a SIGKILL signal to it (see
Chapter 11). As a result, all such processes will eventually execute the do_exit()
function, and thus they will be killed.

4. Invokes the do_exit() function passing to it the process termination code. As
we’ll see below, do_exit() kills the process and never returns.

The do_exit() function

All process terminations are handled by the do_exit() function, which removes most
references to the terminating process from kernel data structures. The do_exit()
function receives as a parameter the process termination code and essentially exe-
cutes the following actions:

1. Sets the PF_EXITING flag in the flag field of the process descriptor to indicate that
the process is being eliminated.

2. Removes, if necessary, the process descriptor from a dynamic timer queue via
the del_timer_sync() function (see Chapter 6).

3. Detaches from the process descriptor the data structures related to paging, sema-
phores, filesystem, open file descriptors, namespaces, and I/O Permission Bit-
map, respectively, with the exit_mm(), exit_sem(), _ _exit_files(), _ _exit_fs(),
exit_namespace(), and exit_thread() functions. These functions also remove
each of these data structures if no other processes are sharing them.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 3: Processes

4. If the kernel functions implementing the execution domain and the executable
format (see Chapter 20) of the process being killed are included in kernel mod-
ules, the function decreases their usage counters.

5. Sets the exit_code field of the process descriptor to the process termination
code. This value is either the _exit() or exit_group() system call parameter
(normal termination), or an error code supplied by the kernel (abnormal termi-
nation).

6. Invokes the exit_notify() function to perform the following operations:

a. Updates the parenthood relationships of both the parent process and the
child processes. All child processes created by the terminating process
become children of another process in the same thread group, if any is run-
ning, or otherwise of the init process.

b. Checks whether the exit_signal process descriptor field of the process being
terminated is different from -1, and whether the process is the last member
of its thread group (notice that these conditions always hold for any normal
process; see step 16 in the description of copy_process() in the earlier sec-
tion “The clone(), fork(), and vfork() System Calls”). In this case, the func-
tion sends a signal (usually SIGCHLD) to the parent of the process being
terminated to notify the parent about a child’s death.

c. Otherwise, if the exit_signal field is equal to -1 or the thread group
includes other processes, the function sends a SIGCHLD signal to the parent
only if the process is being traced (in this case the parent is the debugger,
which is thus informed of the death of the lightweight process).

d. If the exit_signal process descriptor field is equal to -1 and the process is
not being traced, it sets the exit_state field of the process descriptor to
EXIT_DEAD, and invokes release_task() to reclaim the memory of the
remaining process data structures and to decrease the usage counter of the
process descriptor (see the following section). The usage counter becomes
equal to 1 (see step 3f in the copy_process() function), so that the process
descriptor itself is not released right away.

e. Otherwise, if the exit_signal process descriptor field is not equal to -1 or
the process is being traced, it sets the exit_state field to EXIT_ZOMBIE. We’ll
see what happens to zombie processes in the following section.

f. Sets the PF_DEAD flag in the flags field of the process descriptor (see the sec-
tion “The schedule() Function” in Chapter 7).

7. Invokes the schedule() function (see Chapter 7) to select a new process to run.
Because a process in an EXIT_ZOMBIE state is ignored by the scheduler, the pro-
cess stops executing right after the switch_to macro in schedule() is invoked. As
we’ll see in Chapter 7, the scheduler will check the PF_DEAD flag and will decrease

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Destroying Processes | 129

the usage counter in the descriptor of the zombie process being replaced to
denote the fact that the process is no longer alive.

Process Removal
The Unix operating system allows a process to query the kernel to obtain the PID of
its parent process or the execution state of any of its children. A process may, for
instance, create a child process to perform a specific task and then invoke some
wait()-like library function to check whether the child has terminated. If the child
has terminated, its termination code will tell the parent process if the task has been
carried out successfully.

To comply with these design choices, Unix kernels are not allowed to discard data
included in a process descriptor field right after the process terminates. They are
allowed to do so only after the parent process has issued a wait()-like system call
that refers to the terminated process. This is why the EXIT_ZOMBIE state has been
introduced: although the process is technically dead, its descriptor must be saved
until the parent process is notified.

What happens if parent processes terminate before their children? In such a case, the
system could be flooded with zombie processes whose process descriptors would
stay forever in RAM. As mentioned earlier, this problem is solved by forcing all
orphan processes to become children of the init process. In this way, the init process
will destroy the zombies while checking for the termination of one of its legitimate
children through a wait()-like system call.

The release_task() function detaches the last data structures from the descriptor of
a zombie process; it is applied on a zombie process in two possible ways: by the do_
exit() function if the parent is not interested in receiving signals from the child, or
by the wait4() or waitpid() system calls after a signal has been sent to the parent. In
the latter case, the function also will reclaim the memory used by the process
descriptor, while in the former case the memory reclaiming will be done by the
scheduler (see Chapter 7). This function executes the following steps:

1. Decreases the number of processes belonging to the user owner of the termi-
nated process. This value is stored in the user_struct structure mentioned ear-
lier in the chapter (see step 4 of copy_process()).

2. If the process is being traced, the function removes it from the debugger’s
ptrace_children list and assigns the process back to its original parent.

3. Invokes _ _exit_signal() to cancel any pending signal and to release the signal_
struct descriptor of the process. If the descriptor is no longer used by other
lightweight processes, the function also removes this data structure. Moreover,
the function invokes exit_itimers() to detach any POSIX interval timer from
the process.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 3: Processes

4. Invokes _ _exit_sighand() to get rid of the signal handlers.

5. Invokes _ _unhash_process(), which in turn:

a. Decreases by 1 the nr_threads variable.

b. Invokes detach_pid() twice to remove the process descriptor from the
pidhash hash tables of type PIDTYPE_PID and PIDTYPE_TGID.

c. If the process is a thread group leader, invokes again detach_pid() twice to
remove the process descriptor from the PIDTYPE_PGID and PIDTYPE_SID hash
tables.

d. Uses the REMOVE_LINKS macro to unlink the process descriptor from the pro-
cess list.

6. If the process is not a thread group leader, the leader is a zombie, and the pro-
cess is the last member of the thread group, the function sends a signal to the
parent of the leader to notify it of the death of the process.

7. Invokes the sched_exit() function to adjust the timeslice of the parent process
(this step logically complements step 17 in the description of copy_process())

8. Invokes put_task_struct() to decrease the process descriptor’s usage counter; if
the counter becomes zero, the function drops any remaining reference to the
process:

a. Decreases the usage counter (_ _count field) of the user_struct data struc-
ture of the user that owns the process (see step 5 of copy_process()), and
releases that data structure if the usage counter becomes zero.

b. Releases the process descriptor and the memory area used to contain the
thread_info descriptor and the Kernel Mode stack.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

131

Chapter 4 CHAPTER 4

Interrupts and Exceptions

An interrupt is usually defined as an event that alters the sequence of instructions
executed by a processor. Such events correspond to electrical signals generated by
hardware circuits both inside and outside the CPU chip.

Interrupts are often divided into synchronous and asynchronous interrupts:

• Synchronous interrupts are produced by the CPU control unit while executing
instructions and are called synchronous because the control unit issues them
only after terminating the execution of an instruction.

• Asynchronous interrupts are generated by other hardware devices at arbitrary
times with respect to the CPU clock signals.

Intel microprocessor manuals designate synchronous and asynchronous interrupts as
exceptions and interrupts, respectively. We’ll adopt this classification, although we’ll
occasionally use the term “interrupt signal” to designate both types together (syn-
chronous as well as asynchronous).

Interrupts are issued by interval timers and I/O devices; for instance, the arrival of a
keystroke from a user sets off an interrupt.

Exceptions, on the other hand, are caused either by programming errors or by anom-
alous conditions that must be handled by the kernel. In the first case, the kernel han-
dles the exception by delivering to the current process one of the signals familiar to
every Unix programmer. In the second case, the kernel performs all the steps needed
to recover from the anomalous condition, such as a Page Fault or a request—via an
assembly language instruction such as int or sysenter—for a kernel service.

We start by describing in the next section the motivation for introducing such sig-
nals. We then show how the well-known IRQs (Interrupt ReQuests) issued by I/O
devices give rise to interrupts, and we detail how 80×86 processors handle inter-
rupts and exceptions at the hardware level. Then we illustrate, in the section “Initial-
izing the Interrupt Descriptor Table,” how Linux initializes all the data structures

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 4: Interrupts and Exceptions

required by the 80×86 interrupt architecture. The remaining three sections describe
how Linux handles interrupt signals at the software level.

One word of caution before moving on: in this chapter, we cover only “classic”
interrupts common to all PCs; we do not cover the nonstandard interrupts of some
architectures.

The Role of Interrupt Signals
As the name suggests, interrupt signals provide a way to divert the processor to code
outside the normal flow of control. When an interrupt signal arrives, the CPU must
stop what it’s currently doing and switch to a new activity; it does this by saving the
current value of the program counter (i.e., the content of the eip and cs registers) in
the Kernel Mode stack and by placing an address related to the interrupt type into
the program counter.

There are some things in this chapter that will remind you of the context switch
described in the previous chapter, carried out when a kernel substitutes one process
for another. But there is a key difference between interrupt handling and process
switching: the code executed by an interrupt or by an exception handler is not a pro-
cess. Rather, it is a kernel control path that runs at the expense of the same process
that was running when the interrupt occurred (see the later section “Nested Execu-
tion of Exception and Interrupt Handlers”). As a kernel control path, the interrupt
handler is lighter than a process (it has less context and requires less time to set up or
tear down).

Interrupt handling is one of the most sensitive tasks performed by the kernel,
because it must satisfy the following constraints:

• Interrupts can come anytime, when the kernel may want to finish something else
it was trying to do. The kernel’s goal is therefore to get the interrupt out of the
way as soon as possible and defer as much processing as it can. For instance,
suppose a block of data has arrived on a network line. When the hardware inter-
rupts the kernel, it could simply mark the presence of data, give the processor
back to whatever was running before, and do the rest of the processing later
(such as moving the data into a buffer where its recipient process can find it, and
then restarting the process). The activities that the kernel needs to perform in
response to an interrupt are thus divided into a critical urgent part that the ker-
nel executes right away and a deferrable part that is left for later.

• Because interrupts can come anytime, the kernel might be handling one of them
while another one (of a different type) occurs. This should be allowed as much
as possible, because it keeps the I/O devices busy (see the later section “Nested
Execution of Exception and Interrupt Handlers”). As a result, the interrupt han-
dlers must be coded so that the corresponding kernel control paths can be exe-
cuted in a nested manner. When the last kernel control path terminates, the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupts and Exceptions | 133

kernel must be able to resume execution of the interrupted process or switch to
another process if the interrupt signal has caused a rescheduling activity.

• Although the kernel may accept a new interrupt signal while handling a previ-
ous one, some critical regions exist inside the kernel code where interrupts must
be disabled. Such critical regions must be limited as much as possible because,
according to the previous requirement, the kernel, and particularly the interrupt
handlers, should run most of the time with the interrupts enabled.

Interrupts and Exceptions
The Intel documentation classifies interrupts and exceptions as follows:

• Interrupts:

Maskable interrupts
All Interrupt Requests (IRQs) issued by I/O devices give rise to maskable
interrupts. A maskable interrupt can be in two states: masked or unmasked;
a masked interrupt is ignored by the control unit as long as it remains
masked.

Nonmaskable interrupts
Only a few critical events (such as hardware failures) give rise to non-
maskable interrupts. Nonmaskable interrupts are always recognized by the
CPU.

• Exceptions:

Processor-detected exceptions
Generated when the CPU detects an anomalous condition while executing
an instruction. These are further divided into three groups, depending on
the value of the eip register that is saved on the Kernel Mode stack when the
CPU control unit raises the exception.

Faults
Can generally be corrected; once corrected, the program is allowed to
restart with no loss of continuity. The saved value of eip is the address
of the instruction that caused the fault, and hence that instruction can
be resumed when the exception handler terminates. As we’ll see in the
section “Page Fault Exception Handler” in Chapter 9, resuming the
same instruction is necessary whenever the handler is able to correct the
anomalous condition that caused the exception.

Traps
Reported immediately following the execution of the trapping instruc-
tion; after the kernel returns control to the program, it is allowed to
continue its execution with no loss of continuity. The saved value of eip
is the address of the instruction that should be executed after the one
that caused the trap. A trap is triggered only when there is no need to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 4: Interrupts and Exceptions

reexecute the instruction that terminated. The main use of traps is for
debugging purposes. The role of the interrupt signal in this case is to
notify the debugger that a specific instruction has been executed (for
instance, a breakpoint has been reached within a program). Once the
user has examined the data provided by the debugger, she may ask that
execution of the debugged program resume, starting from the next
instruction.

Aborts
A serious error occurred; the control unit is in trouble, and it may be
unable to store in the eip register the precise location of the instruction
causing the exception. Aborts are used to report severe errors, such as
hardware failures and invalid or inconsistent values in system tables.
The interrupt signal sent by the control unit is an emergency signal used
to switch control to the corresponding abort exception handler. This
handler has no choice but to force the affected process to terminate.

Programmed exceptions
Occur at the request of the programmer. They are triggered by int or int3
instructions; the into (check for overflow) and bound (check on address
bound) instructions also give rise to a programmed exception when the con-
dition they are checking is not true. Programmed exceptions are handled by
the control unit as traps; they are often called software interrupts. Such
exceptions have two common uses: to implement system calls and to notify
a debugger of a specific event (see Chapter 10).

Each interrupt or exception is identified by a number ranging from 0 to 255; Intel
calls this 8-bit unsigned number a vector. The vectors of nonmaskable interrupts and
exceptions are fixed, while those of maskable interrupts can be altered by program-
ming the Interrupt Controller (see the next section).

IRQs and Interrupts
Each hardware device controller capable of issuing interrupt requests usually has a
single output line designated as the Interrupt ReQuest (IRQ) line.* All existing IRQ
lines are connected to the input pins of a hardware circuit called the Programmable
Interrupt Controller, which performs the following actions:

1. Monitors the IRQ lines, checking for raised signals. If two or more IRQ lines are
raised, selects the one having the lower pin number.

2. If a raised signal occurs on an IRQ line:

a. Converts the raised signal received into a corresponding vector.

* More sophisticated devices use several IRQ lines. For instance, a PCI card can use up to four IRQ lines.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupts and Exceptions | 135

b. Stores the vector in an Interrupt Controller I/O port, thus allowing the CPU
to read it via the data bus.

c. Sends a raised signal to the processor INTR pin—that is, issues an interrupt.

d. Waits until the CPU acknowledges the interrupt signal by writing into one
of the Programmable Interrupt Controllers (PIC) I/O ports; when this occurs,
clears the INTR line.

3. Goes back to step 1.

The IRQ lines are sequentially numbered starting from 0; therefore, the first IRQ line
is usually denoted as IRQ0. Intel’s default vector associated with IRQn is n+32. As
mentioned before, the mapping between IRQs and vectors can be modified by issu-
ing suitable I/O instructions to the Interrupt Controller ports.

Each IRQ line can be selectively disabled. Thus, the PIC can be programmed to dis-
able IRQs. That is, the PIC can be told to stop issuing interrupts that refer to a given
IRQ line, or to resume issuing them. Disabled interrupts are not lost; the PIC sends
them to the CPU as soon as they are enabled again. This feature is used by most
interrupt handlers, because it allows them to process IRQs of the same type serially.

Selective enabling/disabling of IRQs is not the same as global masking/unmasking of
maskable interrupts. When the IF flag of the eflags register is clear, each maskable
interrupt issued by the PIC is temporarily ignored by the CPU. The cli and sti
assembly language instructions, respectively, clear and set that flag.

Traditional PICs are implemented by connecting “in cascade” two 8259A-style exter-
nal chips. Each chip can handle up to eight different IRQ input lines. Because the
INT output line of the slave PIC is connected to the IRQ2 pin of the master PIC, the
number of available IRQ lines is limited to 15.

The Advanced Programmable Interrupt Controller (APIC)

The previous description refers to PICs designed for uniprocessor systems. If the sys-
tem includes a single CPU, the output line of the master PIC can be connected in a
straightforward way to the INTR pin the CPU. However, if the system includes two
or more CPUs, this approach is no longer valid and more sophisticated PICs are
needed.

Being able to deliver interrupts to each CPU in the system is crucial for fully exploit-
ing the parallelism of the SMP architecture. For that reason, Intel introduced starting
with Pentium III a new component designated as the I/O Advanced Programmable
Interrupt Controller (I/O APIC). This chip is the advanced version of the old 8259A
Programmable Interrupt Controller; to support old operating systems, recent moth-
erboards include both types of chip. Moreover, all current 80 × 86 microprocessors
include a local APIC. Each local APIC has 32-bit registers, an internal clock; a local
timer device; and two additional IRQ lines, LINT0 and LINT1, reserved for local

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 4: Interrupts and Exceptions

APIC interrupts. All local APICs are connected to an external I/O APIC, giving rise to
a multi-APIC system.

Figure 4-1 illustrates in a schematic way the structure of a multi-APIC system. An
APIC bus connects the “frontend” I/O APIC to the local APICs. The IRQ lines com-
ing from the devices are connected to the I/O APIC, which therefore acts as a router
with respect to the local APICs. In the motherboards of the Pentium III and earlier
processors, the APIC bus was a serial three-line bus; starting with the Pentium 4, the
APIC bus is implemented by means of the system bus. However, because the APIC
bus and its messages are invisible to software, we won’t give further details.

The I/O APIC consists of a set of 24 IRQ lines, a 24-entry Interrupt Redirection
Table, programmable registers, and a message unit for sending and receiving APIC
messages over the APIC bus. Unlike IRQ pins of the 8259A, interrupt priority is not
related to pin number: each entry in the Redirection Table can be individually pro-
grammed to indicate the interrupt vector and priority, the destination processor, and
how the processor is selected. The information in the Redirection Table is used to
translate each external IRQ signal into a message to one or more local APIC units via
the APIC bus.

Interrupt requests coming from external hardware devices can be distributed among
the available CPUs in two ways:

Static distribution
The IRQ signal is delivered to the local APICs listed in the corresponding Redi-
rection Table entry. The interrupt is delivered to one specific CPU, to a subset of
CPUs, or to all CPUs at once (broadcast mode).

Figure 4-1. Multi-APIC system

I/O
APIC

Interrupt Controller Communication (ICC) bus

external
IRQs

CPU 0

local
APIC

local IRQs
(LINT0, LINT1)

CPU 1

local
APIC

local IRQs
(LINT0, LINT1)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupts and Exceptions | 137

Dynamic distribution
The IRQ signal is delivered to the local APIC of the processor that is executing
the process with the lowest priority.

Every local APIC has a programmable task priority register (TPR), which is used
to compute the priority of the currently running process. Intel expects this regis-
ter to be modified in an operating system kernel by each process switch.

If two or more CPUs share the lowest priority, the load is distributed between
them using a technique called arbitration. Each CPU is assigned a different arbi-
tration priority ranging from 0 (lowest) to 15 (highest) in the arbitration priority
register of the local APIC.

Every time an interrupt is delivered to a CPU, its corresponding arbitration pri-
ority is automatically set to 0, while the arbitration priority of any other CPU is
increased. When the arbitration priority register becomes greater than 15, it is
set to the previous arbitration priority of the winning CPU increased by 1. There-
fore, interrupts are distributed in a round-robin fashion among CPUs with the
same task priority.*

Besides distributing interrupts among processors, the multi-APIC system allows
CPUs to generate interprocessor interrupts. When a CPU wishes to send an interrupt
to another CPU, it stores the interrupt vector and the identifier of the target’s local
APIC in the Interrupt Command Register (ICR) of its own local APIC. A message is
then sent via the APIC bus to the target’s local APIC, which therefore issues a corre-
sponding interrupt to its own CPU.

Interprocessor interrupts (in short, IPIs) are a crucial component of the SMP archi-
tecture. They are actively used by Linux to exchange messages among CPUs (see
later in this chapter).

Many of the current uniprocessor systems include an I/O APIC chip, which may be
configured in two distinct ways:

• As a standard 8259A-style external PIC connected to the CPU. The local APIC is
disabled and the two LINT0 and LINT1 local IRQ lines are configured, respec-
tively, as the INTR and NMI pins.

• As a standard external I/O APIC. The local APIC is enabled, and all external
interrupts are received through the I/O APIC.

* The Pentium 4 local APIC doesn’t have an arbitration priority register; the arbitration mechanism is hidden
in the bus arbitration circuitry. The Intel manuals state that if the operating system kernel does not regularly
update the task priority registers, performance may be suboptimal because interrupts might always be ser-
viced by the same CPU.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 4: Interrupts and Exceptions

Exceptions
The 80×86 microprocessors issue roughly 20 different exceptions.* The kernel must
provide a dedicated exception handler for each exception type. For some exceptions,
the CPU control unit also generates a hardware error code and pushes it on the Ker-
nel Mode stack before starting the exception handler.

The following list gives the vector, the name, the type, and a brief description of the
exceptions found in 80×86 processors. Additional information may be found in the
Intel technical documentation.

0 - “Divide error” (fault)
Raised when a program issues an integer division by 0.

1- “Debug” (trap or fault)
Raised when the TF flag of eflags is set (quite useful to implement single-step
execution of a debugged program) or when the address of an instruction or
operand falls within the range of an active debug register (see the section “Hard-
ware Context” in Chapter 3).

2 - Not used
Reserved for nonmaskable interrupts (those that use the NMI pin).

3 - “Breakpoint” (trap)
Caused by an int3 (breakpoint) instruction (usually inserted by a debugger).

4 - “Overflow” (trap)
An into (check for overflow) instruction has been executed while the OF (over-
flow) flag of eflags is set.

5 - “Bounds check” (fault)
A bound (check on address bound) instruction is executed with the operand out-
side of the valid address bounds.

6 - “Invalid opcode” (fault)
The CPU execution unit has detected an invalid opcode (the part of the machine
instruction that determines the operation performed).

7 - “Device not available” (fault)
An ESCAPE, MMX, or SSE/SSE2 instruction has been executed with the TS flag
of cr0 set (see the section “Saving and Loading the FPU, MMX, and XMM Regis-
ters” in Chapter 3).

8 - “Double fault” (abort)
Normally, when the CPU detects an exception while trying to call the handler
for a prior exception, the two exceptions can be handled serially. In a few cases,
however, the processor cannot handle them serially, so it raises this exception.

* The exact number depends on the processor model.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupts and Exceptions | 139

9 - “Coprocessor segment overrun” (abort)
Problems with the external mathematical coprocessor (applies only to old 80386
microprocessors).

10 - “Invalid TSS” (fault)
The CPU has attempted a context switch to a process having an invalid Task
State Segment.

11 - “Segment not present” (fault)
A reference was made to a segment not present in memory (one in which the
Segment-Present flag of the Segment Descriptor was cleared).

12 - “Stack segment fault” (fault)
The instruction attempted to exceed the stack segment limit, or the segment
identified by ss is not present in memory.

13 - “General protection” (fault)
One of the protection rules in the protected mode of the 80×86 has been
violated.

14 - “Page Fault” (fault)
The addressed page is not present in memory, the corresponding Page Table
entry is null, or a violation of the paging protection mechanism has occurred.

15 - Reserved by Intel

16 - “Floating-point error” (fault)
The floating-point unit integrated into the CPU chip has signaled an error condi-
tion, such as numeric overflow or division by 0.*

17 - “Alignment check” (fault)
The address of an operand is not correctly aligned (for instance, the address of a
long integer is not a multiple of 4).

18 - “Machine check” (abort)
A machine-check mechanism has detected a CPU or bus error.

19 - “SIMD floating point exception” (fault)
The SSE or SSE2 unit integrated in the CPU chip has signaled an error condition
on a floating-point operation.

The values from 20 to 31 are reserved by Intel for future development. As illustrated
in Table 4-1, each exception is handled by a specific exception handler (see the sec-
tion “Exception Handling” later in this chapter), which usually sends a Unix signal
to the process that caused the exception.

* The 80 × 86 microprocessors also generate this exception when performing a signed division whose result
cannot be stored as a signed integer (for instance, a division between –2,147,483,648 and –1).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 4: Interrupts and Exceptions

Interrupt Descriptor Table
A system table called Interrupt Descriptor Table (IDT) associates each interrupt or
exception vector with the address of the corresponding interrupt or exception han-
dler. The IDT must be properly initialized before the kernel enables interrupts.

The IDT format is similar to that of the GDT and the LDTs examined in Chapter 2.
Each entry corresponds to an interrupt or an exception vector and consists of an 8-byte
descriptor. Thus, a maximum of 256×8=2048 bytes are required to store the IDT.

The idtr CPU register allows the IDT to be located anywhere in memory: it specifies
both the IDT base linear address and its limit (maximum length). It must be initial-
ized before enabling interrupts by using the lidt assembly language instruction.

The IDT may include three types of descriptors; Figure 4-2 illustrates the meaning of
the 64 bits included in each of them. In particular, the value of the Type field encoded
in the bits 40–43 identifies the descriptor type.

Table 4-1. Signals sent by the exception handlers

Exception Exception handler Signal

0 Divide error divide_error() SIGFPE

1 Debug debug() SIGTRAP

2 NMI nmi() None

3 Breakpoint int3() SIGTRAP

4 Overflow overflow() SIGSEGV

5 Bounds check bounds() SIGSEGV

6 Invalid opcode invalid_op() SIGILL

7 Device not available device_not_available() None

8 Double fault doublefault_fn() None

9 Coprocessor segment overrun coprocessor_segment_overrun() SIGFPE

10 Invalid TSS invalid_TSS() SIGSEGV

11 Segment not present segment_not_present() SIGBUS

12 Stack segment fault stack_segment() SIGBUS

13 General protection general_protection() SIGSEGV

14 Page Fault page_fault() SIGSEGV

15 Intel-reserved None None

16 Floating-point error coprocessor_error() SIGFPE

17 Alignment check alignment_check() SIGBUS

18 Machine check machine_check() None

19 SIMD floating point simd_coprocessor_error() SIGFPE

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupts and Exceptions | 141

The descriptors are:

Task gate
Includes the TSS selector of the process that must replace the current one when
an interrupt signal occurs.

Interrupt gate
Includes the Segment Selector and the offset inside the segment of an interrupt
or exception handler. While transferring control to the proper segment, the pro-
cessor clears the IF flag, thus disabling further maskable interrupts.

Trap gate
Similar to an interrupt gate, except that while transferring control to the proper
segment, the processor does not modify the IF flag.

As we’ll see in the later section “Interrupt, Trap, and System Gates,” Linux uses
interrupt gates to handle interrupts and trap gates to handle exceptions.*

Figure 4-2. Gate descriptors’ format

* The “Double fault” exception, which denotes a type of kernel misbehavior, is the only exception handled by
means of a task gate (see the section “Exception Handling” later in this chapter.).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 326263

RESERVED P
D
P
L

0

TSS SEGMENT SELECTOR RESERVED

Task Gate Descriptor

0 1 0 1 RESERVED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 326263

OFFSET (16-31) P
D
P
L

0

SEGMENT SELECTOR OFFSET (0-15)

Interrupt Gate Descriptor

1 1 1 0 RESERVED0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 326263

OFFSET (16-31) P
D
P
L

0

SEGMENT SELECTOR OFFSET (0-15)

Trap Gate Descriptor

1 1 1 1 RESERVED0 0 0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 4: Interrupts and Exceptions

Hardware Handling of Interrupts and Exceptions
We now describe how the CPU control unit handles interrupts and exceptions. We
assume that the kernel has been initialized, and thus the CPU is operating in Pro-
tected Mode.

After executing an instruction, the cs and eip pair of registers contain the logical
address of the next instruction to be executed. Before dealing with that instruction, the
control unit checks whether an interrupt or an exception occurred while the control unit
executed the previous instruction. If one occurred, the control unit does the following:

1. Determines the vector i (0≤ i ≤255) associated with the interrupt or the
exception.

2. Reads the i th entry of the IDT referred by the idtr register (we assume in the fol-
lowing description that the entry contains an interrupt or a trap gate).

3. Gets the base address of the GDT from the gdtr register and looks in the GDT to
read the Segment Descriptor identified by the selector in the IDT entry. This
descriptor specifies the base address of the segment that includes the interrupt or
exception handler.

4. Makes sure the interrupt was issued by an authorized source. First, it compares
the Current Privilege Level (CPL), which is stored in the two least significant bits
of the cs register, with the Descriptor Privilege Level (DPL) of the Segment
Descriptor included in the GDT. Raises a “General protection” exception if the
CPL is lower than the DPL, because the interrupt handler cannot have a lower
privilege than the program that caused the interrupt. For programmed excep-
tions, makes a further security check: compares the CPL with the DPL of the
gate descriptor included in the IDT and raises a “General protection” exception
if the DPL is lower than the CPL. This last check makes it possible to prevent
access by user applications to specific trap or interrupt gates.

5. Checks whether a change of privilege level is taking place—that is, if CPL is dif-
ferent from the selected Segment Descriptor’s DPL. If so, the control unit must
start using the stack that is associated with the new privilege level. It does this by
performing the following steps:

a. Reads the tr register to access the TSS segment of the running process.

b. Loads the ss and esp registers with the proper values for the stack segment
and stack pointer associated with the new privilege level. These values are
found in the TSS (see the section “Task State Segment” in Chapter 3).

c. In the new stack, it saves the previous values of ss and esp, which define the
logical address of the stack associated with the old privilege level.

6. If a fault has occurred, it loads cs and eip with the logical address of the instruc-
tion that caused the exception so that it can be executed again.

7. Saves the contents of eflags, cs, and eip in the stack.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Nested Execution of Exception and Interrupt Handlers | 143

8. If the exception carries a hardware error code, it saves it on the stack.

9. Loads cs and eip, respectively, with the Segment Selector and the Offset fields of
the Gate Descriptor stored in the i th entry of the IDT. These values define the
logical address of the first instruction of the interrupt or exception handler.

The last step performed by the control unit is equivalent to a jump to the interrupt or
exception handler. In other words, the instruction processed by the control unit after
dealing with the interrupt signal is the first instruction of the selected handler.

After the interrupt or exception is processed, the corresponding handler must relin-
quish control to the interrupted process by issuing the iret instruction, which forces
the control unit to:

1. Load the cs, eip, and eflags registers with the values saved on the stack. If a
hardware error code has been pushed in the stack on top of the eip contents, it
must be popped before executing iret.

2. Check whether the CPL of the handler is equal to the value contained in the two
least significant bits of cs (this means the interrupted process was running at the
same privilege level as the handler). If so, iret concludes execution; otherwise,
go to the next step.

3. Load the ss and esp registers from the stack and return to the stack associated
with the old privilege level.

4. Examine the contents of the ds, es, fs, and gs segment registers; if any of them
contains a selector that refers to a Segment Descriptor whose DPL value is lower
than CPL, clear the corresponding segment register. The control unit does this to
forbid User Mode programs that run with a CPL equal to 3 from using segment
registers previously used by kernel routines (with a DPL equal to 0). If these reg-
isters were not cleared, malicious User Mode programs could exploit them in
order to access the kernel address space.

Nested Execution of Exception and Interrupt Handlers
Every interrupt or exception gives rise to a kernel control path or separate sequence of
instructions that execute in Kernel Mode on behalf of the current process. For instance,
when an I/O device raises an interrupt, the first instructions of the corresponding ker-
nel control path are those that save the contents of the CPU registers in the Kernel
Mode stack, while the last are those that restore the contents of the registers.

Kernel control paths may be arbitrarily nested; an interrupt handler may be inter-
rupted by another interrupt handler, thus giving rise to a nested execution of kernel
control paths, as shown in Figure 4-3. As a result, the last instructions of a kernel
control path that is taking care of an interrupt do not always put the current process
back into User Mode: if the level of nesting is greater than 1, these instructions will
put into execution the kernel control path that was interrupted last, and the CPU
will continue to run in Kernel Mode.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 4: Interrupts and Exceptions

The price to pay for allowing nested kernel control paths is that an interrupt handler
must never block, that is, no process switch can take place until an interrupt handler
is running. In fact, all the data needed to resume a nested kernel control path is
stored in the Kernel Mode stack, which is tightly bound to the current process.

Assuming that the kernel is bug free, most exceptions can occur only while the CPU
is in User Mode. Indeed, they are either caused by programming errors or triggered
by debuggers. However, the “Page Fault” exception may occur in Kernel Mode. This
happens when the process attempts to address a page that belongs to its address
space but is not currently in RAM. While handling such an exception, the kernel
may suspend the current process and replace it with another one until the requested
page is available. The kernel control path that handles the “Page Fault” exception
resumes execution as soon as the process gets the processor again.

Because the “Page Fault” exception handler never gives rise to further exceptions, at
most two kernel control paths associated with exceptions (the first one caused by a
system call invocation, the second one caused by a Page Fault) may be stacked, one
on top of the other.

In contrast to exceptions, interrupts issued by I/O devices do not refer to data struc-
tures specific to the current process, although the kernel control paths that handle
them run on behalf of that process. As a matter of fact, it is impossible to predict
which process will be running when a given interrupt occurs.

An interrupt handler may preempt both other interrupt handlers and exception han-
dlers. Conversely, an exception handler never preempts an interrupt handler. The
only exception that can be triggered in Kernel Mode is “Page Fault,” which we just
described. But interrupt handlers never perform operations that can induce page
faults, and thus, potentially, a process switch.

Linux interleaves kernel control paths for two major reasons:

• To improve the throughput of programmable interrupt controllers and device
controllers. Assume that a device controller issues a signal on an IRQ line: the
PIC transforms it into an external interrupt, and then both the PIC and the

Figure 4-3. An example of nested execution of kernel control paths

User Mode

Kernel Mode

IRQ i

iret

iret

IRQ j IRQ k

IRQ n

iret

iret

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initializing the Interrupt Descriptor Table | 145

device controller remain blocked until the PIC receives an acknowledgment from
the CPU. Thanks to kernel control path interleaving, the kernel is able to send
the acknowledgment even when it is handling a previous interrupt.

• To implement an interrupt model without priority levels. Because each interrupt
handler may be deferred by another one, there is no need to establish predefined
priorities among hardware devices. This simplifies the kernel code and improves
its portability.

On multiprocessor systems, several kernel control paths may execute concurrently.
Moreover, a kernel control path associated with an exception may start executing on
a CPU and, due to a process switch, migrate to another CPU.

Initializing the Interrupt Descriptor Table
Now that we understand what the 80×86 microprocessors do with interrupts and
exceptions at the hardware level, we can move on to describe how the Interrupt
Descriptor Table is initialized.

Remember that before the kernel enables the interrupts, it must load the initial
address of the IDT table into the idtr register and initialize all the entries of that
table. This activity is done while initializing the system (see Appendix A).

The int instruction allows a User Mode process to issue an interrupt signal that has
an arbitrary vector ranging from 0 to 255. Therefore, initialization of the IDT must
be done carefully, to block illegal interrupts and exceptions simulated by User Mode
processes via int instructions. This can be achieved by setting the DPL field of the
particular Interrupt or Trap Gate Descriptor to 0. If the process attempts to issue one
of these interrupt signals, the control unit checks the CPL value against the DPL field
and issues a “General protection” exception.

In a few cases, however, a User Mode process must be able to issue a programmed
exception. To allow this, it is sufficient to set the DPL field of the corresponding
Interrupt or Trap Gate Descriptors to 3—that is, as high as possible.

Let’s now see how Linux implements this strategy.

Interrupt, Trap, and System Gates
As mentioned in the earlier section “Interrupt Descriptor Table,” Intel provides three
types of interrupt descriptors: Task, Interrupt, and Trap Gate Descriptors. Linux
uses a slightly different breakdown and terminology from Intel when classifying the
interrupt descriptors included in the Interrupt Descriptor Table:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 4: Interrupts and Exceptions

Interrupt gate
An Intel interrupt gate that cannot be accessed by a User Mode process (the
gate’s DPL field is equal to 0). All Linux interrupt handlers are activated by
means of interrupt gates, and all are restricted to Kernel Mode.

System gate
An Intel trap gate that can be accessed by a User Mode process (the gate’s DPL
field is equal to 3). The three Linux exception handlers associated with the vec-
tors 4, 5, and 128 are activated by means of system gates, so the three assembly
language instructions into, bound, and int $0x80 can be issued in User Mode.

System interrupt gate
An Intel interrupt gate that can be accessed by a User Mode process (the gate’s
DPL field is equal to 3). The exception handler associated with the vector 3 is
activated by means of a system interrupt gate, so the assembly language instruc-
tion int3 can be issued in User Mode.

Trap gate
An Intel trap gate that cannot be accessed by a User Mode process (the gate’s
DPL field is equal to 0). Most Linux exception handlers are activated by means
of trap gates.

Task gate
An Intel task gate that cannot be accessed by a User Mode process (the gate’s
DPL field is equal to 0). The Linux handler for the “Double fault” exception is
activated by means of a task gate.

The following architecture-dependent functions are used to insert gates in the IDT:

set_intr_gate(n,addr)
Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the
gate is set to the kernel code’s Segment Selector. The Offset field is set to addr,
which is the address of the interrupt handler. The DPL field is set to 0.

set_system_gate(n,addr)
Inserts a trap gate in the n th IDT entry. The Segment Selector inside the gate is
set to the kernel code’s Segment Selector. The Offset field is set to addr, which is
the address of the exception handler. The DPL field is set to 3.

set_system_intr_gate(n,addr)
Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the
gate is set to the kernel code’s Segment Selector. The Offset field is set to addr,
which is the address of the exception handler. The DPL field is set to 3.

set_trap_gate(n,addr)
Similar to the previous function, except the DPL field is set to 0.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initializing the Interrupt Descriptor Table | 147

set_task_gate(n,gdt)
Inserts a task gate in the n th IDT entry. The Segment Selector inside the gate
stores the index in the GDT of the TSS containing the function to be activated.
The Offset field is set to 0, while the DPL field is set to 3.

Preliminary Initialization of the IDT
The IDT is initialized and used by the BIOS routines while the computer still oper-
ates in Real Mode. Once Linux takes over, however, the IDT is moved to another
area of RAM and initialized a second time, because Linux does not use any BIOS
routine (see Appendix A).

The IDT is stored in the idt_table table, which includes 256 entries. The 6-byte idt_
descr variable stores both the size of the IDT and its address and is used in the sys-
tem initialization phase when the kernel sets up the idtr register with the lidt
assembly language instruction.*

During kernel initialization, the setup_idt() assembly language function starts by
filling all 256 entries of idt_table with the same interrupt gate, which refers to the
ignore_int() interrupt handler:

setup_idt:
 lea ignore_int, %edx
 movl $(__KERNEL_CS << 16), %eax
 movw %dx, %ax /* selector = 0x0010 = cs */
 movw $0x8e00, %dx /* interrupt gate, dpl=0, present */
 lea idt_table, %edi
 mov $256, %ecx
rp_sidt:
 movl %eax, (%edi)
 movl %edx, 4(%edi)
 addl $8, %edi
 dec %ecx
 jne rp_sidt
 ret

The ignore_int() interrupt handler, which is in assembly language, may be viewed
as a null handler that executes the following actions:

1. Saves the content of some registers in the stack.

2. Invokes the printk() function to print an “Unknown interrupt” system message.

3. Restores the register contents from the stack.

4. Executes an iret instruction to restart the interrupted program.

* Some old Pentium models have the notorious “f00f” bug, which allows User Mode programs to freeze the
system. When executing on such CPUs, Linux uses a workaround based on initializing the idtr register with
a fix-mapped read-only linear address pointing to the actual IDT (see the section “Fix-Mapped Linear
Addresses” in Chapter 2).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 4: Interrupts and Exceptions

The ignore_int() handler should never be executed. The occurrence of “Unknown
interrupt” messages on the console or in the log files denotes either a hardware prob-
lem (an I/O device is issuing unforeseen interrupts) or a kernel problem (an inter-
rupt or exception is not being handled properly).

Following this preliminary initialization, the kernel makes a second pass in the IDT
to replace some of the null handlers with meaningful trap and interrupt handlers.
Once this is done, the IDT includes a specialized interrupt, trap, or system gate for
each different exception issued by the control unit and for each IRQ recognized by
the interrupt controller.

The next two sections illustrate in detail how this is done for exceptions and interrupts.

Exception Handling
Most exceptions issued by the CPU are interpreted by Linux as error conditions.
When one of them occurs, the kernel sends a signal to the process that caused the
exception to notify it of an anomalous condition. If, for instance, a process performs
a division by zero, the CPU raises a “Divide error” exception, and the corresponding
exception handler sends a SIGFPE signal to the current process, which then takes the
necessary steps to recover or (if no signal handler is set for that signal) abort.

There are a couple of cases, however, where Linux exploits CPU exceptions to man-
age hardware resources more efficiently. A first case is already described in the sec-
tion “Saving and Loading the FPU, MMX, and XMM Registers” in Chapter 3. The
“Device not available” exception is used together with the TS flag of the cr0 register
to force the kernel to load the floating point registers of the CPU with new values. A
second case involves the “Page Fault” exception, which is used to defer allocating
new page frames to the process until the last possible moment. The corresponding
handler is complex because the exception may, or may not, denote an error condi-
tion (see the section “Page Fault Exception Handler” in Chapter 9).

Exception handlers have a standard structure consisting of three steps:

1. Save the contents of most registers in the Kernel Mode stack (this part is coded
in assembly language).

2. Handle the exception by means of a high-level C function.

3. Exit from the handler by means of the ret_from_exception() function.

To take advantage of exceptions, the IDT must be properly initialized with an excep-
tion handler function for each recognized exception. It is the job of the trap_init()
function to insert the final values—the functions that handle the exceptions—into all
IDT entries that refer to nonmaskable interrupts and exceptions. This is accom-
plished through the set_trap_gate(), set_intr_gate(), set_system_gate(), set_
system_intr_gate(), and set_task_gate() functions:

set_trap_gate(0,÷_error);
set_trap_gate(1,&debug);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Exception Handling | 149

set_intr_gate(2,&nmi);
set_system_intr_gate(3,&int3);
set_system_gate(4,&overflow);
set_system_gate(5,&bounds);
set_trap_gate(6,&invalid_op);
set_trap_gate(7,&device_not_available);
set_task_gate(8,31);
set_trap_gate(9,&coprocessor_segment_overrun);
set_trap_gate(10,&invalid_TSS);
set_trap_gate(11,&segment_not_present);
set_trap_gate(12,&stack_segment);
set_trap_gate(13,&general_protection);
set_intr_gate(14,&page_fault);
set_trap_gate(16,&coprocessor_error);
set_trap_gate(17,&alignment_check);
set_trap_gate(18,&machine_check);
set_trap_gate(19,&simd_coprocessor_error);
set_system_gate(128,&system_call);

The “Double fault” exception is handled by means of a task gate instead of a trap or
system gate, because it denotes a serious kernel misbehavior. Thus, the exception
handler that tries to print out the register values does not trust the current value of
the esp register. When such an exception occurs, the CPU fetches the Task Gate
Descriptor stored in the entry at index 8 of the IDT. This descriptor points to the
special TSS segment descriptor stored in the 32nd entry of the GDT. Next, the CPU
loads the eip and esp registers with the values stored in the corresponding TSS seg-
ment. As a result, the processor executes the doublefault_fn() exception handler on
its own private stack.

Now we will look at what a typical exception handler does once it is invoked. Our
description of exception handling will be a bit sketchy for lack of space. In particular
we won’t be able to cover:

1. The signal codes (see Table 11-8 in Chapter 11) sent by some handlers to the
User Mode processes.

2. Exceptions that occur when the kernel is operating in MS-DOS emulation mode
(vm86 mode), which must be dealt with differently.

3. “Debug” exceptions.

Saving the Registers for the Exception Handler
Let’s use handler_name to denote the name of a generic exception handler. (The
actual names of all the exception handlers appear on the list of macros in the previ-
ous section.) Each exception handler starts with the following assembly language
instructions:

handler_name:
 pushl $0 /* only for some exceptions */
 pushl $do_handler_name
 jmp error_code

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 4: Interrupts and Exceptions

If the control unit is not supposed to automatically insert a hardware error code on
the stack when the exception occurs, the corresponding assembly language fragment
includes a pushl $0 instruction to pad the stack with a null value. Then the address
of the high-level C function is pushed on the stack; its name consists of the excep-
tion handler name prefixed by do_.

The assembly language fragment labeled as error_code is the same for all exception
handlers except the one for the “Device not available” exception (see the section
“Saving and Loading the FPU, MMX, and XMM Registers” in Chapter 3). The code
performs the following steps:

1. Saves the registers that might be used by the high-level C function on the stack.

2. Issues a cld instruction to clear the direction flag DF of eflags, thus making sure
that autoincreases on the edi and esi registers will be used with string
instructions.*

3. Copies the hardware error code saved in the stack at location esp+36 in edx.
Stores the value –1 in the same stack location. As we’ll see in the section “Reexe-
cution of System Calls” in Chapter 11, this value is used to separate 0x80 excep-
tions from other exceptions.

4. Loads edi with the address of the high-level do_handler_name() C function
saved in the stack at location esp+32; writes the contents of es in that stack
location.

5. Loads in the eax register the current top location of the Kernel Mode stack. This
address identifies the memory cell containing the last register value saved in
step 1.

6. Loads the user data Segment Selector into the ds and es registers.

7. Invokes the high-level C function whose address is now stored in edi.

The invoked function receives its arguments from the eax and edx registers rather
than from the stack. We have already run into a function that gets its arguments
from the CPU registers: the _ _switch_to() function, discussed in the section “Per-
forming the Process Switch” in Chapter 3.

Entering and Leaving the Exception Handler
As already explained, the names of the C functions that implement exception han-
dlers always consist of the prefix do_ followed by the handler name. Most of these
functions invoke the do_trap() function to store the hardware error code and the

* A single assembly language “string instruction,” such as rep;movsb, is able to act on a whole block of data
(string).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handling | 151

exception vector in the process descriptor of current, and then send a suitable signal
to that process:

current->thread.error_code = error_code;
current->thread.trap_no = vector;
force_sig(sig_number, current);

The current process takes care of the signal right after the termination of the excep-
tion handler. The signal will be handled either in User Mode by the process’s own
signal handler (if it exists) or in Kernel Mode. In the latter case, the kernel usually
kills the process (see Chapter 11). The signals sent by the exception handlers are
listed in Table 4-1.

The exception handler always checks whether the exception occurred in User Mode
or in Kernel Mode and, in the latter case, whether it was due to an invalid argument
passed to a system call. We’ll describe in the section “Dynamic Address Checking:
The Fix-up Code” in Chapter 10 how the kernel defends itself against invalid argu-
ments passed to system calls. Any other exception raised in Kernel Mode is due to a
kernel bug. In this case, the exception handler knows the kernel is misbehaving. In
order to avoid data corruption on the hard disks, the handler invokes the die() func-
tion, which prints the contents of all CPU registers on the console (this dump is
called kernel oops) and terminates the current process by calling do_exit() (see “Pro-
cess Termination” in Chapter 3).

When the C function that implements the exception handling terminates, the code
performs a jmp instruction to the ret_from_exception() function. This function is
described in the later section “Returning from Interrupts and Exceptions.”

Interrupt Handling
As we explained earlier, most exceptions are handled simply by sending a Unix sig-
nal to the process that caused the exception. The action to be taken is thus deferred
until the process receives the signal; as a result, the kernel is able to process the
exception quickly.

This approach does not hold for interrupts, because they frequently arrive long after
the process to which they are related (for instance, a process that requested a data
transfer) has been suspended and a completely unrelated process is running. So it
would make no sense to send a Unix signal to the current process.

Interrupt handling depends on the type of interrupt. For our purposes, we’ll distin-
guish three main classes of interrupts:

I/O interrupts
An I/O device requires attention; the corresponding interrupt handler must
query the device to determine the proper course of action. We cover this type of
interrupt in the later section “I/O Interrupt Handling.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 4: Interrupts and Exceptions

Timer interrupts
Some timer, either a local APIC timer or an external timer, has issued an inter-
rupt; this kind of interrupt tells the kernel that a fixed-time interval has elapsed.
These interrupts are handled mostly as I/O interrupts; we discuss the peculiar
characteristics of timer interrupts in Chapter 6.

Interprocessor interrupts
A CPU issued an interrupt to another CPU of a multiprocessor system. We cover
such interrupts in the later section “Interprocessor Interrupt Handling.”

I/O Interrupt Handling
In general, an I/O interrupt handler must be flexible enough to service several
devices at the same time. In the PCI bus architecture, for instance, several devices
may share the same IRQ line. This means that the interrupt vector alone does not tell
the whole story. In the example shown in Table 4-3, the same vector 43 is assigned
to the USB port and to the sound card. However, some hardware devices found in
older PC architectures (such as ISA) do not reliably operate if their IRQ line is shared
with other devices.

Interrupt handler flexibility is achieved in two distinct ways, as discussed in the fol-
lowing list.

IRQ sharing
The interrupt handler executes several interrupt service routines (ISRs). Each ISR
is a function related to a single device sharing the IRQ line. Because it is not pos-
sible to know in advance which particular device issued the IRQ, each ISR is exe-
cuted to verify whether its device needs attention; if so, the ISR performs all the
operations that need to be executed when the device raises an interrupt.

IRQ dynamic allocation
An IRQ line is associated with a device driver at the last possible moment; for
instance, the IRQ line of the floppy device is allocated only when a user accesses
the floppy disk device. In this way, the same IRQ vector may be used by several
hardware devices even if they cannot share the IRQ line; of course, the hardware
devices cannot be used at the same time. (See the discussion at the end of this
section.)

Not all actions to be performed when an interrupt occurs have the same urgency. In
fact, the interrupt handler itself is not a suitable place for all kind of actions. Long
noncritical operations should be deferred, because while an interrupt handler is run-
ning, the signals on the corresponding IRQ line are temporarily ignored. Most
important, the process on behalf of which an interrupt handler is executed must
always stay in the TASK_RUNNING state, or a system freeze can occur. Therefore, inter-
rupt handlers cannot perform any blocking procedure such as an I/O disk operation.
Linux divides the actions to be performed following an interrupt into three classes:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handling | 153

Critical
Actions such as acknowledging an interrupt to the PIC, reprogramming the PIC
or the device controller, or updating data structures accessed by both the device
and the processor. These can be executed quickly and are critical, because they
must be performed as soon as possible. Critical actions are executed within the
interrupt handler immediately, with maskable interrupts disabled.

Noncritical
Actions such as updating data structures that are accessed only by the processor
(for instance, reading the scan code after a keyboard key has been pushed).
These actions can also finish quickly, so they are executed by the interrupt han-
dler immediately, with the interrupts enabled.

Noncritical deferrable
Actions such as copying a buffer’s contents into the address space of a process
(for instance, sending the keyboard line buffer to the terminal handler process).
These may be delayed for a long time interval without affecting the kernel opera-
tions; the interested process will just keep waiting for the data. Noncritical defer-
rable actions are performed by means of separate functions that are discussed in
the later section “Softirqs and Tasklets.”

Regardless of the kind of circuit that caused the interrupt, all I/O interrupt handlers
perform the same four basic actions:

1. Save the IRQ value and the register’s contents on the Kernel Mode stack.

2. Send an acknowledgment to the PIC that is servicing the IRQ line, thus allowing
it to issue further interrupts.

3. Execute the interrupt service routines (ISRs) associated with all the devices that
share the IRQ.

4. Terminate by jumping to the ret_from_intr() address.

Several descriptors are needed to represent both the state of the IRQ lines and the
functions to be executed when an interrupt occurs. Figure 4-4 represents in a sche-
matic way the hardware circuits and the software functions used to handle an inter-
rupt. These functions are discussed in the following sections.

Interrupt vectors

As illustrated in Table 4-2, physical IRQs may be assigned any vector in the range
32–238. However, Linux uses vector 128 to implement system calls.

The IBM-compatible PC architecture requires that some devices be statically con-
nected to specific IRQ lines. In particular:

• The interval timer device must be connected to the IRQ0 line (see Chapter 6).

• The slave 8259A PIC must be connected to the IRQ2 line (although more
advanced PICs are now being used, Linux still supports 8259A-style PICs).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 4: Interrupts and Exceptions

• The external mathematical coprocessor must be connected to the IRQ13 line
(although recent 80 × 86 processors no longer use such a device, Linux contin-
ues to support the hardy 80386 model).

• In general, an I/O device can be connected to a limited number of IRQ lines. (As
a matter of fact, when playing with an old PC where IRQ sharing is not possible,
you might not succeed in installing a new card because of IRQ conflicts with
other already present hardware devices.)

Figure 4-4. I/O interrupt handling

Table 4-2. Interrupt vectors in Linux

Vector range Use

0–19 (0x0–0x13) Nonmaskable interrupts and exceptions

20–31 (0x14–0x1f) Intel-reserved

32–127 (0x20–0x7f) External interrupts (IRQs)

128 (0x80) Programmed exception for system calls (see Chapter 10)

129–238 (0x81–0xee) External interrupts (IRQs)

239 (0xef) Local APIC timer interrupt (see Chapter 6)

240 (0xf0) Local APIC thermal interrupt (introduced in the Pentium 4 models)

241–250 (0xf1–0xfa) Reserved by Linux for future use

251–253 (0xfb–0xfd) Interprocessor interrupts (see the section “Interprocessor Interrupt Handling” later in this
chapter)

HARDWARE

Device 1 Device 2

PIC

IRQn

interrupt[n]

do_IRQ(n)

Interrupt service
routine 1

Interrupt service
routine 2

IDT[32+n]

SOFTWARE
(Interrupt Handler)

INT

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handling | 155

There are three ways to select a line for an IRQ-configurable device:

• By setting hardware jumpers (only on very old device cards).

• By a utility program shipped with the device and executed when installing it.
Such a program may either ask the user to select an available IRQ number or
probe the system to determine an available number by itself.

• By a hardware protocol executed at system startup. Peripheral devices declare
which interrupt lines they are ready to use; the final values are then negotiated to
reduce conflicts as much as possible. Once this is done, each interrupt handler
can read the assigned IRQ by using a function that accesses some I/O ports of
the device. For instance, drivers for devices that comply with the Peripheral
Component Interconnect (PCI) standard use a group of functions such as pci_
read_config_byte() to access the device configuration space.

Table 4-3 shows a fairly arbitrary arrangement of devices and IRQs, such as those
that might be found on one particular PC.

The kernel must discover which I/O device corresponds to the IRQ number before
enabling interrupts. Otherwise, for example, how could the kernel handle a signal

254 (0xfe) Local APIC error interrupt (generated when the local APIC detects an erroneous condition)

255 (0xff) Local APIC spurious interrupt (generated if the CPU masks an interrupt while the hardware
device raises it)

Table 4-3. An example of IRQ assignment to I/O devices

IRQ INT Hardware device

0 32 Timer

1 33 Keyboard

2 34 PIC cascading

3 35 Second serial port

4 36 First serial port

6 38 Floppy disk

8 40 System clock

10 42 Network interface

11 43 USB port, sound card

12 44 PS/2 mouse

13 45 Mathematical coprocessor

14 46 EIDE disk controller’s first chain

15 47 EIDE disk controller’s second chain

Table 4-2. Interrupt vectors in Linux (continued)

Vector range Use

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 4: Interrupts and Exceptions

from a SCSI disk without knowing which vector corresponds to the device? The cor-
respondence is established while initializing each device driver (see Chapter 13).

IRQ data structures

As always, when discussing complicated operations involving state transitions, it
helps to understand first where key data is stored. Thus, this section explains the
data structures that support interrupt handling and how they are laid out in various
descriptors. Figure 4-5 illustrates schematically the relationships between the main
descriptors that represent the state of the IRQ lines. (The figure does not illustrate
the data structures needed to handle softirqs and tasklets; they are discussed later in
this chapter.)

Every interrupt vector has its own irq_desc_t descriptor, whose fields are listed in
Table 4-4. All such descriptors are grouped together in the irq_desc array.

Figure 4-5. IRQ descriptors

Table 4-4. The irq_desc_t descriptor

Field Description

handler Points to the PIC object (hw_irq_controller descriptor) that services the IRQ line.

handler_data Pointer to data used by the PIC methods.

action Identifies the interrupt service routines to be invoked when the IRQ occurs. The field points to
the first element of the list of irqaction descriptors associated with the IRQ. The
irqaction descriptor is described later in the chapter.

status A set of flags describing the IRQ line status (see Table 4-5).

depth Shows 0 if the IRQ line is enabled and a positive value if it has been disabled at least once.

irq_count Counter of interrupt occurrences on the IRQ line (for diagnostic use only).

irqs_unhandled Counter of unhandled interrupt occurrences on the IRQ line (for diagnostic use only).

lock A spin lock used to serialize the accesses to the IRQ descriptor and to the PIC (see Chapter 5).

0 i NR_IRQS-1

irq_desc

irq_desc_t

hw_irq_controller

irqaction irqaction

next next

action

handler

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handling | 157

An interrupt is unexpected if it is not handled by the kernel, that is, either if there is
no ISR associated with the IRQ line, or if no ISR associated with the line recognizes
the interrupt as raised by its own hardware device. Usually the kernel checks the
number of unexpected interrupts received on an IRQ line, so as to disable the line in
case a faulty hardware device keeps raising an interrupt over and over. Because the
IRQ line can be shared among several devices, the kernel does not disable the line as
soon as it detects a single unhandled interrupt. Rather, the kernel stores in the irq_
count and irqs_unhandled fields of the irq_desc_t descriptor the total number of
interrupts and the number of unexpected interrupts, respectively; when the
100,000th interrupt is raised, the kernel disables the line if the number of unhandled
interrupts is above 99,900 (that is, if less than 101 interrupts over the last 100,000
received are expected interrupts from hardware devices sharing the line).

The status of an IRQ line is described by the flags listed in Table 4-5.

The depth field and the IRQ_DISABLED flag of the irq_desc_t descriptor specify
whether the IRQ line is enabled or disabled. Every time the disable_irq() or
disable_irq_nosync() function is invoked, the depth field is increased; if depth is
equal to 0, the function disables the IRQ line and sets its IRQ_DISABLED flag.* Con-
versely, each invocation of the enable_irq() function decreases the field; if depth
becomes 0, the function enables the IRQ line and clears its IRQ_DISABLED flag.

During system initialization, the init_IRQ() function sets the status field of each
IRQ main descriptor to IRQ_DISABLED. Moreover, init_IRQ() updates the IDT by
replacing the interrupt gates set up by setup_idt() (see the section “Preliminary

Table 4-5. Flags describing the IRQ line status

Flag name Description

IRQ_INPROGRESS A handler for the IRQ is being executed.

IRQ_DISABLED The IRQ line has been deliberately disabled by a device driver.

IRQ_PENDING An IRQ has occurred on the line; its occurrence has been acknowledged to the PIC, but it has not
yet been serviced by the kernel.

IRQ_REPLAY The IRQ line has been disabled but the previous IRQ occurrence has not yet been acknowledged
to the PIC.

IRQ_AUTODETECT The kernel is using the IRQ line while performing a hardware device probe.

IRQ_WAITING The kernel is using the IRQ line while performing a hardware device probe; moreover, the corre-
sponding interrupt has not been raised.

IRQ_LEVEL Not used on the 80 × 86 architecture.

IRQ_MASKED Not used.

IRQ_PER_CPU Not used on the 80 × 86 architecture.

* In contrast to disable_irq_nosync(), disable_irq(n) waits until all interrupt handlers for IRQn that are run-
ning on other CPUs have completed before returning.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 4: Interrupts and Exceptions

Initialization of the IDT,” earlier in this chapter) with new ones. This is accom-
plished through the following statements:

for (i = 0; i < NR_IRQS; i++)
 if (i+32 != 128)
 set_intr_gate(i+32,interrupt[i]);

This code looks in the interrupt array to find the interrupt handler addresses that it
uses to set up the interrupt gates. Each entry n of the interrupt array stores the
address of the interrupt handler for IRQn (see the later section “Saving the registers
for the interrupt handler”). Notice that the interrupt gate corresponding to
vector 128 is left untouched, because it is used for the system call’s programmed
exception.

In addition to the 8259A chip that was mentioned near the beginning of this chap-
ter, Linux supports several other PIC circuits such as the SMP IO-APIC, Intel PIIX4’s
internal 8259 PIC, and SGI’s Visual Workstation Cobalt (IO-)APIC. To handle all
such devices in a uniform way, Linux uses a PIC object, consisting of the PIC name
and seven PIC standard methods. The advantage of this object-oriented approach is
that drivers need not to be aware of the kind of PIC installed in the system. Each
driver-visible interrupt source is transparently wired to the appropriate controller.
The data structure that defines a PIC object is called hw_interrupt_type (also called
hw_irq_controller).

For the sake of concreteness, let’s assume that our computer is a uniprocessor with
two 8259A PICs, which provide 16 standard IRQs. In this case, the handler field in
each of the 16 irq_desc_t descriptors points to the i8259A_irq_type variable, which
describes the 8259A PIC. This variable is initialized as follows:

struct hw_interrupt_type i8259A_irq_type = {
 .typename = "XT-PIC",
 .startup = startup_8259A_irq,
 .shutdown = shutdown_8259A_irq,
 .enable = enable_8259A_irq,
 .disable = disable_8259A_irq,
 .ack = mask_and_ack_8259A,
 .end = end_8259A_irq,
 .set_affinity = NULL
};

The first field in this structure, "XT-PIC", is the PIC name. Next come the pointers to
six different functions used to program the PIC. The first two functions start up and
shut down an IRQ line of the chip, respectively. But in the case of the 8259A chip,
these functions coincide with the third and fourth functions, which enable and dis-
able the line. The mask_and_ack_8259A() function acknowledges the IRQ received by
sending the proper bytes to the 8259A I/O ports. The end_8259A_irq() function is
invoked when the interrupt handler for the IRQ line terminates. The last set_
affinity method is set to NULL: it is used in multiprocessor systems to declare the
“affinity” of CPUs for specified IRQs—that is, which CPUs are enabled to handle
specific IRQs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handling | 159

As described earlier, multiple devices can share a single IRQ. Therefore, the kernel
maintains irqaction descriptors (see Figure 4-5 earlier in this chapter), each of which
refers to a specific hardware device and a specific interrupt. The fields included in
such descriptor are shown in Table 4-6, and the flags are shown in Table 4-7.

Finally, the irq_stat array includes NR_CPUS entries, one for every possible CPU in the
system. Each entry of type irq_cpustat_t includes a few counters and flags used by
the kernel to keep track of what each CPU is currently doing (see Table 4-8).

IRQ distribution in multiprocessor systems

Linux sticks to the Symmetric Multiprocessing model (SMP); this means, essentially,
that the kernel should not have any bias toward one CPU with respect to the others.

Table 4-6. Fields of the irqaction descriptor

Field name Description

handler Points to the interrupt service routine for an I/O device. This is the key field that allows many devices to share
the same IRQ.

flags This field includes a few fields that describe the relationships between the IRQ line and the I/O device (see
Table 4-7).

mask Not used.

name The name of the I/O device (shown when listing the serviced IRQs by reading the /proc/interrupts file).

dev_id A private field for the I/O device. Typically, it identifies the I/O device itself (for instance, it could be equal to its
major and minor numbers; see the section “Device Files” in Chapter 13), or it points to the device driver’s data.

next Points to the next element of a list of irqaction descriptors. The elements in the list refer to hardware
devices that share the same IRQ.

irq IRQ line.

dir Points to the descriptor of the /proc/irq/n directory associated with the IRQn.

Table 4-7. Flags of the irqaction descriptor

Flag name Description

SA_INTERRUPT The handler must execute with interrupts disabled.

SA_SHIRQ The device permits its IRQ line to be shared with other devices.

SA_SAMPLE_RANDOM The device may be considered a source of events that occurs randomly; it can thus be used by
the kernel random number generator. (Users can access this feature by taking random num-
bers from the /dev/random and /dev/urandom device files.)

Table 4-8. Fields of the irq_cpustat_t structure

Field name Description

_ _softirq_pending Set of flags denoting the pending softirqs (see the section “Softirqs” later in this chapter)

idle_timestamp Time when the CPU became idle (significant only if the CPU is currently idle)

_ _nmi_count Number of occurrences of NMI interrupts

apic_timer_irqs Number of occurrences of local APIC timer interrupts (see Chapter 6)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 4: Interrupts and Exceptions

As a consequence, the kernel tries to distribute the IRQ signals coming from the
hardware devices in a round-robin fashion among all the CPUs. Therefore, all the
CPUs should spend approximately the same fraction of their execution time servic-
ing I/O interrupts.

In the earlier section “The Advanced Programmable Interrupt Controller (APIC),”
we said that the multi-APIC system has sophisticated mechanisms to dynamically
distribute the IRQ signals among the CPUs.

During system bootstrap, the booting CPU executes the setup_IO_APIC_irqs() func-
tion to initialize the I/O APIC chip. The 24 entries of the Interrupt Redirection Table
of the chip are filled, so that all IRQ signals from the I/O hardware devices can be
routed to each CPU in the system according to the “lowest priority” scheme (see the
earlier section “IRQs and Interrupts”). During system bootstrap, moreover, all CPUs
execute the setup_local_APIC() function, which takes care of initializing the local
APICs. In particular, the task priority register (TPR) of each chip is initialized to a fixed
value, meaning that the CPU is willing to handle every kind of IRQ signal, regardless
of its priority. The Linux kernel never modifies this value after its initialization.

All task priority registers contain the same value, thus all CPUs always have the same
priority. To break a tie, the multi-APIC system uses the values in the arbitration pri-
ority registers of local APICs, as explained earlier. Because such values are automati-
cally changed after every interrupt, the IRQ signals are, in most cases, fairly
distributed among all CPUs.*

In short, when a hardware device raises an IRQ signal, the multi-APIC system selects
one of the CPUs and delivers the signal to the corresponding local APIC, which in
turn interrupts its CPU. No other CPUs are notified of the event.

All this is magically done by the hardware, so it should be of no concern for the ker-
nel after multi-APIC system initialization. Unfortunately, in some cases the hard-
ware fails to distribute the interrupts among the microprocessors in a fair way (for
instance, some Pentium 4–based SMP motherboards have this problem). Therefore,
Linux 2.6 makes use of a special kernel thread called kirqd to correct, if necessary,
the automatic assignment of IRQs to CPUs.

The kernel thread exploits a nice feature of multi-APIC systems, called the IRQ affin-
ity of a CPU: by modifying the Interrupt Redirection Table entries of the I/O APIC, it
is possible to route an interrupt signal to a specific CPU. This can be done by invok-
ing the set_ioapic_affinity_irq() function, which acts on two parameters: the IRQ
vector to be rerouted and a 32-bit mask denoting the CPUs that can receive the IRQ.
The IRQ affinity of a given interrupt also can be changed by the system administra-

* There is an exception, though. Linux usually sets up the local APICs in such a way to honor the focus pro-
cessor, when it exists. A focus process will catch all IRQs of the same type as long as it has received an IRQ
of that type, and it has not finished executing the interrupt handler. However, Intel has dropped support for
focus processors in the Pentium 4 model.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handling | 161

tor by writing a new CPU bitmap mask into the /proc/irq/n/smp_affinity file (n being
the interrupt vector).

The kirqd kernel thread periodically executes the do_irq_balance() function, which
keeps track of the number of interrupt occurrences received by every CPU in the
most recent time interval. If the function discovers that the IRQ load imbalance
between the heaviest loaded CPU and the least loaded CPU is significantly high, then
it either selects an IRQ to be “moved” from a CPU to another, or rotates all IRQs
among all existing CPUs.

Multiple Kernel Mode stacks

As mentioned in the section “Identifying a Process” in Chapter 3, the thread_info
descriptor of each process is coupled with a Kernel Mode stack in a thread_union
data structure composed by one or two page frames, according to an option selected
when the kernel has been compiled. If the size of the thread_union structure is 8 KB,
the Kernel Mode stack of the current process is used for every type of kernel control
path: exceptions, interrupts, and deferrable functions (see the later section “Softirqs
and Tasklets”). Conversely, if the size of the thread_union structure is 4 KB, the ker-
nel makes use of three types of Kernel Mode stacks:

• The exception stack is used when handling exceptions (including system calls).
This is the stack contained in the per-process thread_union data structure, thus
the kernel makes use of a different exception stack for each process in the system.

• The hard IRQ stack is used when handling interrupts. There is one hard IRQ
stack for each CPU in the system, and each stack is contained in a single page
frame.

• The soft IRQ stack is used when handling deferrable functions (softirqs or
tasklets; see the later section “Softirqs and Tasklets”). There is one soft IRQ
stack for each CPU in the system, and each stack is contained in a single page
frame.

All hard IRQ stacks are contained in the hardirq_stack array, while all soft IRQ
stacks are contained in the softirq_stack array. Each array element is a union of type
irq_ctx that span a single page. At the bottom of this page is stored a thread_info
structure, while the spare memory locations are used for the stack; remember that
each stack grows towards lower addresses. Thus, hard IRQ stacks and soft IRQ
stacks are very similar to the exception stacks described in the section “Identifying a
Process” in Chapter 3; the only difference is that the thread_info structure coupled
with each stack is associated with a CPU rather than a process.

The hardirq_ctx and softirq_ctx arrays allow the kernel to quickly determine the
hard IRQ stack and soft IRQ stack of a given CPU, respectively: they contain point-
ers to the corresponding irq_ctx elements.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 4: Interrupts and Exceptions

Saving the registers for the interrupt handler

When a CPU receives an interrupt, it starts executing the code at the address found
in the corresponding gate of the IDT (see the earlier section “Hardware Handling of
Interrupts and Exceptions”).

As with other context switches, the need to save registers leaves the kernel developer
with a somewhat messy coding job, because the registers have to be saved and
restored using assembly language code. However, within those operations, the pro-
cessor is expected to call and return from a C function. In this section, we describe
the assembly language task of handling registers; in the next, we show some of the
acrobatics required in the C function that is subsequently invoked.

Saving registers is the first task of the interrupt handler. As already mentioned, the
address of the interrupt handler for IRQn is initially stored in the interrupt[n] entry
and then copied into the interrupt gate included in the proper IDT entry.

The interrupt array is built through a few assembly language instructions in the
arch/i386/kernel/entry.S file. The array includes NR_IRQS elements, where the NR_IRQS
macro yields either the number 224 if the kernel supports a recent I/O APIC chip,* or
the number 16 if the kernel uses the older 8259A PIC chips. The element at index n
in the array stores the address of the following two assembly language instructions:

 pushl $n-256
 jmp common_interrupt

The result is to save on the stack the IRQ number associated with the interrupt
minus 256. The kernel represents all IRQs through negative numbers, because it
reserves positive interrupt numbers to identify system calls (see Chapter 10). The
same code for all interrupt handlers can then be executed while referring to this
number. The common code starts at label common_interrupt and consists of the fol-
lowing assembly language macros and instructions:

common_interrupt:
 SAVE_ALL
 movl %esp,%eax
 call do_IRQ
 jmp ret_from_intr

The SAVE_ALL macro expands to the following fragment:

cld
push %es
push %ds
pushl %eax
pushl %ebp
pushl %edi
pushl %esi

* 256 vectors is an architectural limit for the 80×86 architecture. 32 of them are used or reserved for the CPU,
so the usable vector space consists of 224 vectors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handling | 163

pushl %edx
pushl %ecx
pushl %ebx
movl $_ _USER_DS,%edx
movl %edx,%ds
movl %edx,%es

SAVE_ALL saves all the CPU registers that may be used by the interrupt handler on the
stack, except for eflags, cs, eip, ss, and esp, which are already saved automatically by
the control unit (see the earlier section “Hardware Handling of Interrupts and Excep-
tions”). The macro then loads the selector of the user data segment into ds and es.

After saving the registers, the address of the current top stack location is saved in the
eax register; then, the interrupt handler invokes the do_IRQ() function. When the ret
instruction of do_IRQ() is executed (when that function terminates) control is trans-
ferred to ret_from_intr() (see the later section “Returning from Interrupts and
Exceptions”).

The do_IRQ() function

The do_IRQ() function is invoked to execute all interrupt service routines associated
with an interrupt. It is declared as follows:

_ _attribute_ _((regparm(3))) unsigned int do_IRQ(struct pt_regs *regs)

The regparm keyword instructs the function to go to the eax register to find the value
of the regs argument; as seen above, eax points to the stack location containing the
last register value pushed on by SAVE_ALL.

The do_IRQ() function executes the following actions:

1. Executes the irq_enter() macro, which increases a counter representing the
number of nested interrupt handlers. The counter is stored in the preempt_count
field of the thread_info structure of the current process (see Table 4-10 later in
this chapter).

2. If the size of the thread_union structure is 4 KB, it switches to the hard IRQ
stack.In particular, the function performs the following substeps:

a. Executes the current_thread_info() function to get the address of the
thread_info descriptor associated with the Kernel Mode stack addressed by
the esp register (see the section “Identifying a Process” in Chapter 3).

b. Compares the address of the thread_info descriptor obtained in the previ-
ous step with the address stored in hardirq_ctx[smp_processor_id()], that
is, the address of the thread_info descriptor associated with the local CPU.
If the two addresses are equal, the kernel is already using the hard IRQ
stack, thus jumps to step 3. This happens when an IRQ is raised while the
kernel is still handling another interrupt.

c. Here the Kernel Mode stack has to be switched. Stores the pointer to the
current process descriptor in the task field of the thread_info descriptor in

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 4: Interrupts and Exceptions

irq_ctx union of the local CPU. This is done so that the current macro
works as expected while the kernel is using the hard IRQ stack (see the sec-
tion “Identifying a Process” in Chapter 3).

d. Stores the current value of the esp stack pointer register in the previous_esp
field of the thread_info descriptor in the irq_ctx union of the local CPU (this
field is used only when preparing the function call trace for a kernel oops).

e. Loads in the esp stack register the top location of the hard IRQ stack of the
local CPU (the value in hardirq_ctx[smp_processor_id()] plus 4096); the
previous value of the esp register is saved in the ebx register.

3. Invokes the _ _do_IRQ() function passing to it the pointer regs and the IRQ num-
ber obtained from the regs->orig_eax field (see the following section).

4. If the hard IRQ stack has been effectively switched in step 2e above, the function
copies the original stack pointer from the ebx register into the esp register, thus
switching back to the exception stack or soft IRQ stack that were in use before.

5. Executes the irq_exit() macro, which decreases the interrupt counter and
checks whether deferrable kernel functions are waiting to be executed (see the
section “Softirqs and Tasklets” later in this chapter).

6. Terminates: the control is transferred to the ret_from_intr() function (see the
later section “Returning from Interrupts and Exceptions”).

The _ _do_IRQ() function

The _ _do_IRQ() function receives as its parameters an IRQ number (through the eax
register) and a pointer to the pt_regs structure where the User Mode register values
have been saved (through the edx register).

The function is equivalent to the following code fragment:

spin_lock(&(irq_desc[irq].lock));
irq_desc[irq].handler->ack(irq);
irq_desc[irq].status &= ~(IRQ_REPLAY | IRQ_WAITING);
irq_desc[irq].status |= IRQ_PENDING;
if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))
 && irq_desc[irq].action) {
 irq_desc[irq].status |= IRQ_INPROGRESS;
 do {
 irq_desc[irq].status &= ~IRQ_PENDING;
 spin_unlock(&(irq_desc[irq].lock));
 handle_IRQ_event(irq, regs, irq_desc[irq].action);
 spin_lock(&(irq_desc[irq].lock));
 } while (irq_desc[irq].status & IRQ_PENDING);
 irq_desc[irq].status &= ~IRQ_INPROGRESS;
}
irq_desc[irq].handler->end(irq);
spin_unlock(&(irq_desc[irq].lock));

Before accessing the main IRQ descriptor, the kernel acquires the corresponding spin
lock. We’ll see in Chapter 5 that the spin lock protects against concurrent accesses

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handling | 165

by different CPUs. This spin lock is necessary in a multiprocessor system, because
other interrupts of the same kind may be raised, and other CPUs might take care of
the new interrupt occurrences. Without the spin lock, the main IRQ descriptor
would be accessed concurrently by several CPUs. As we’ll see, this situation must be
absolutely avoided.

After acquiring the spin lock, the function invokes the ack method of the main IRQ
descriptor. When using the old 8259A PIC, the corresponding mask_and_ack_8259A()
function acknowledges the interrupt on the PIC and also disables the IRQ line. Mask-
ing the IRQ line ensures that the CPU does not accept further occurrences of this type
of interrupt until the handler terminates. Remember that the _ _do_IRQ() function
runs with local interrupts disabled; in fact, the CPU control unit automatically clears
the IF flag of the eflags register because the interrupt handler is invoked through an
IDT’s interrupt gate. However, we’ll see shortly that the kernel might re-enable local
interrupts before executing the interrupt service routines of this interrupt.

When using the I/O APIC, however, things are much more complicated. Depending
on the type of interrupt, acknowledging the interrupt could either be done by the ack
method or delayed until the interrupt handler terminates (that is, acknowledgement
could be done by the end method). In either case, we can take for granted that the
local APIC doesn’t accept further interrupts of this type until the handler terminates,
although further occurrences of this type of interrupt may be accepted by other CPUs.

The _ _do_IRQ() function then initializes a few flags of the main IRQ descriptor. It
sets the IRQ_PENDING flag because the interrupt has been acknowledged (well, sort of),
but not yet really serviced; it also clears the IRQ_WAITING and IRQ_REPLAY flags (but we
don’t have to care about them now).

Now _ _do_IRQ() checks whether it must really handle the interrupt. There are three
cases in which nothing has to be done. These are discussed in the following list.

IRQ_DISABLED is set
A CPU might execute the _ _do_IRQ() function even if the corresponding IRQ
line is disabled; you’ll find an explanation for this nonintuitive case in the later
section “Reviving a lost interrupt.” Moreover, buggy motherboards may gener-
ate spurious interrupts even when the IRQ line is disabled in the PIC.

IRQ_INPROGRESS is set
In a multiprocessor system, another CPU might be handling a previous occur-
rence of the same interrupt. Why not defer the handling of this occurrence to
that CPU? This is exactly what is done by Linux. This leads to a simpler kernel
architecture because device drivers’ interrupt service routines need not to be
reentrant (their execution is serialized). Moreover, the freed CPU can quickly
return to what it was doing, without dirtying its hardware cache; this is benefi-
cial to system performance. The IRQ_INPROGRESS flag is set whenever a CPU is
committed to execute the interrupt service routines of the interrupt; therefore,
the _ _do_IRQ() function checks it before starting the real work.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 4: Interrupts and Exceptions

irq_desc[irq].action is NULL
This case occurs when there is no interrupt service routine associated with the
interrupt. Normally, this happens only when the kernel is probing a hardware
device.

Let’s suppose that none of the three cases holds, so the interrupt has to be serviced. The
_ _do_IRQ() function sets the IRQ_INPROGRESS flag and starts a loop. In each iteration,
the function clears the IRQ_PENDING flag, releases the interrupt spin lock, and executes
the interrupt service routines by invoking handle_IRQ_event() (described later in the
chapter). When the latter function terminates, _ _do_IRQ() acquires the spin lock again
and checks the value of the IRQ_PENDING flag. If it is clear, no further occurrence of the
interrupt has been delivered to another CPU, so the loop ends. Conversely, if IRQ_
PENDING is set, another CPU has executed the do_IRQ() function for this type of inter-
rupt while this CPU was executing handle_IRQ_event(). Therefore, do_IRQ() performs
another iteration of the loop, servicing the new occurrence of the interrupt.*

Our _ _do_IRQ() function is now going to terminate, either because it has already
executed the interrupt service routines or because it had nothing to do. The function
invokes the end method of the main IRQ descriptor. When using the old 8259A PIC,
the corresponding end_8259A_irq() function reenables the IRQ line (unless the inter-
rupt occurrence was spurious). When using the I/O APIC, the end method acknowl-
edges the interrupt (if not already done by the ack method).

Finally, _ _do_IRQ() releases the spin lock: the hard work is finished!

Reviving a lost interrupt

The _ _do_IRQ() function is small and simple, yet it works properly in most cases.
Indeed, the IRQ_PENDING, IRQ_INPROGRESS, and IRQ_DISABLED flags ensure that inter-
rupts are correctly handled even when the hardware is misbehaving. However, things
may not work so smoothly in a multiprocessor system.

Suppose that a CPU has an IRQ line enabled. A hardware device raises the IRQ line,
and the multi-APIC system selects our CPU for handling the interrupt. Before the
CPU acknowledges the interrupt, the IRQ line is masked out by another CPU; as a
consequence, the IRQ_DISABLED flag is set. Right afterwards, our CPU starts handling
the pending interrupt; therefore, the do_IRQ() function acknowledges the interrupt
and then returns without executing the interrupt service routines because it finds the
IRQ_DISABLED flag set. Therefore, even though the interrupt occurred before the IRQ
line was disabled, it gets lost.

To cope with this scenario, the enable_irq() function, which is used by the kernel to
enable an IRQ line, checks first whether an interrupt has been lost. If so, the func-
tion forces the hardware to generate a new occurrence of the lost interrupt:

* Because IRQ_PENDING is a flag and not a counter, only the second occurrence of the interrupt can be recog-
nized. Further occurrences in each iteration of the do_IRQ()’s loop are simply lost.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handling | 167

spin_lock_irqsave(&(irq_desc[irq].lock), flags);
if (--irq_desc[irq].depth == 0) {
 irq_desc[irq].status &= ~IRQ_DISABLED;
 if (irq_desc[irq].status & (IRQ_PENDING | IRQ_REPLAY))
 == IRQ_PENDING) {
 irq_desc[irq].status |= IRQ_REPLAY;
 hw_resend_irq(irq_desc[irq].handler,irq);
 }
 irq_desc[irq].handler->enable(irq);
}
spin_lock_irqrestore(&(irq_desc[irq].lock), flags);

The function detects that an interrupt was lost by checking the value of the IRQ_PENDING
flag. The flag is always cleared when leaving the interrupt handler; therefore, if the IRQ
line is disabled and the flag is set, then an interrupt occurrence has been acknowledged
but not yet serviced. In this case the hw_resend_irq() function raises a new interrupt.
This is obtained by forcing the local APIC to generate a self-interrupt (see the later sec-
tion “Interprocessor Interrupt Handling”). The role of the IRQ_REPLAY flag is to ensure
that exactly one self-interrupt is generated. Remember that the _ _do_IRQ() function
clears that flag when it starts handling the interrupt.

Interrupt service routines

As mentioned previously, an interrupt service routine handles an interrupt by execut-
ing an operation specific to one type of device. When an interrupt handler must exe-
cute the ISRs, it invokes the handle_IRQ_event() function. This function essentially
performs the following steps:

1. Enables the local interrupts with the sti assembly language instruction if the SA_
INTERRUPT flag is clear.

2. Executes each interrupt service routine of the interrupt through the following
code:

retval = 0;
do {
 retval |= action->handler(irq, action->dev_id, regs);
 action = action->next;
} while (action);

At the start of the loop, action points to the start of a list of irqaction data struc-
tures that indicate the actions to be taken upon receiving the interrupt (see
Figure 4-5 earlier in this chapter).

3. Disables local interrupts with the cli assembly language instruction.

4. Terminates by returning the value of the retval local variable, that is, 0 if no
interrupt service routine has recognized interrupt, 1 otherwise (see next).

All interrupt service routines act on the same parameters (once again they are passed
through the eax, edx, and ecx registers, respectively):

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 4: Interrupts and Exceptions

irq
The IRQ number

dev_id
The device identifier

regs
A pointer to a pt_regs structure on the Kernel Mode (exception) stack contain-
ing the registers saved right after the interrupt occurred. The pt_regs structure
consists of 15 fields:

• The first nine fields are the register values pushed by SAVE_ALL

• The tenth field, referenced through a field called orig_eax, encodes the IRQ
number

• The remaining fields correspond to the register values pushed on automati-
cally by the control unit

The first parameter allows a single ISR to handle several IRQ lines, the second one
allows a single ISR to take care of several devices of the same type, and the last one
allows the ISR to access the execution context of the interrupted kernel control path.
In practice, most ISRs do not use these parameters.

Every interrupt service routine returns the value 1 if the interrupt has been effec-
tively handled, that is, if the signal was raised by the hardware device handled by the
interrupt service routine (and not by another device sharing the same IRQ); it returns
the value 0 otherwise. This return code allows the kernel to update the counter of
unexpected interrupts mentioned in the section “IRQ data structures” earlier in this
chapter.

The SA_INTERRUPT flag of the main IRQ descriptor determines whether interrupts
must be enabled or disabled when the do_IRQ() function invokes an ISR. An ISR that
has been invoked with the interrupts in one state is allowed to put them in the oppo-
site state. In a uniprocessor system, this can be achieved by means of the cli (disable
interrupts) and sti (enable interrupts) assembly language instructions.

The structure of an ISR depends on the characteristics of the device handled. We’ll
give a couple of examples of ISRs in Chapter 6 and Chapter 13.

Dynamic allocation of IRQ lines

As noted in section “Interrupt vectors,” a few vectors are reserved for specific
devices, while the remaining ones are dynamically handled. There is, therefore, a way
in which the same IRQ line can be used by several hardware devices even if they do
not allow IRQ sharing. The trick is to serialize the activation of the hardware devices
so that just one owns the IRQ line at a time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupt Handling | 169

Before activating a device that is going to use an IRQ line, the corresponding driver
invokes request_irq(). This function creates a new irqaction descriptor and initial-
izes it with the parameter values; it then invokes the setup_irq() function to insert
the descriptor in the proper IRQ list. The device driver aborts the operation if setup_
irq() returns an error code, which usually means that the IRQ line is already in use
by another device that does not allow interrupt sharing. When the device operation
is concluded, the driver invokes the free_irq() function to remove the descriptor
from the IRQ list and release the memory area.

Let’s see how this scheme works on a simple example. Assume a program wants to
address the /dev/fd0 device file, which corresponds to the first floppy disk on the sys-
tem.* The program can do this either by directly accessing /dev/fd0 or by mounting a
filesystem on it. Floppy disk controllers are usually assigned IRQ6; given this, a
floppy driver may issue the following request:

request_irq(6, floppy_interrupt,
 SA_INTERRUPT|SA_SAMPLE_RANDOM, "floppy", NULL);

As can be observed, the floppy_interrupt() interrupt service routine must execute
with the interrupts disabled (SA_INTERRUPT flag set) and no sharing of the IRQ (SA_
SHIRQ flag missing). The SA_SAMPLE_RANDOM flag set means that accesses to the floppy
disk are a good source of random events to be used for the kernel random number
generator. When the operation on the floppy disk is concluded (either the I/O opera-
tion on /dev/fd0 terminates or the filesystem is unmounted), the driver releases IRQ6:

free_irq(6, NULL);

To insert an irqaction descriptor in the proper list, the kernel invokes the setup_irq(
) function, passing to it the parameters irq_nr, the IRQ number, and new (the
address of a previously allocated irqaction descriptor). This function:

1. Checks whether another device is already using the irq_nr IRQ and, if so,
whether the SA_SHIRQ flags in the irqaction descriptors of both devices specify
that the IRQ line can be shared. Returns an error code if the IRQ line cannot be
used.

2. Adds *new (the new irqaction descriptor pointed to by new) at the end of the list
to which irq_desc[irq_nr]->action points.

3. If no other device is sharing the same IRQ, the function clears the IRQ_DISABLED,
IRQ_AUTODETECT, IRQ_WAITING, and IRQ_INPROGRESS flags in the flags field of *new
and invokes the startup method of the irq_desc[irq_nr]->handler PIC object to
make sure that IRQ signals are enabled.

Here is an example of how setup_irq() is used, drawn from system initialization.
The kernel initializes the irq0 descriptor of the interval timer device by executing the
following instructions in the time_init() function (see Chapter 6):

* Floppy disks are “old” devices that do not usually allow IRQ sharing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 4: Interrupts and Exceptions

struct irqaction irq0 =
 {timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};
setup_irq(0, &irq0);

First, the irq0 variable of type irqaction is initialized: the handler field is set to the
address of the timer_interrupt() function, the flags field is set to SA_INTERRUPT, the
name field is set to "timer", and the fifth field is set to NULL to show that no dev_id
value is used. Next, the kernel invokes setup_irq() to insert irq0 in the list of
irqaction descriptors associated with IRQ0.

Interprocessor Interrupt Handling
Interprocessor interrupts allow a CPU to send interrupt signals to any other CPU in
the system. As explained in the section “The Advanced Programmable Interrupt
Controller (APIC)” earlier in this chapter, an interprocessor interrupt (IPI) is deliv-
ered not through an IRQ line, but directly as a message on the bus that connects the
local APIC of all CPUs (either a dedicated bus in older motherboards, or the system
bus in the Pentium 4–based motherboards).

On multiprocessor systems, Linux makes use of three kinds of interprocessor inter-
rupts (see also Table 4-2):

CALL_FUNCTION_VECTOR (vector 0xfb)
Sent to all CPUs but the sender, forcing those CPUs to run a function passed by
the sender. The corresponding interrupt handler is named call_function_
interrupt(). The function (whose address is passed in the call_data global vari-
able) may, for instance, force all other CPUs to stop, or may force them to set
the contents of the Memory Type Range Registers (MTRRs).* Usually this inter-
rupt is sent to all CPUs except the CPU executing the calling function by means
of the smp_call_function() facility function.

RESCHEDULE_VECTOR (vector 0xfc)
When a CPU receives this type of interrupt, the corresponding handler—named
reschedule_interrupt()—limits itself to acknowledging the interrupt. Resched-
uling is done automatically when returning from the interrupt (see the section
“Returning from Interrupts and Exceptions” later in this chapter).

INVALIDATE_TLB_VECTOR (vector 0xfd)
Sent to all CPUs but the sender, forcing them to invalidate their Translation
Lookaside Buffers. The corresponding handler, named invalidate_interrupt(),
flushes some TLB entries of the processor as described in the section “Handling
the Hardware Cache and the TLB” in Chapter 2.

* Starting with the Pentium Pro model, Intel microprocessors include these additional registers to easily cus-
tomize cache operations. For instance, Linux may use these registers to disable the hardware cache for the
addresses mapping the frame buffer of a PCI/AGP graphic card while maintaining the “write combining”
mode of operation: the paging unit combines write transfers into larger chunks before copying them into the
frame buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Softirqs and Tasklets | 171

The assembly language code of the interprocessor interrupt handlers is generated by
the BUILD_INTERRUPT macro: it saves the registers, pushes the vector number minus
256 on the stack, and then invokes a high-level C function having the same name as
the low-level handler preceded by smp_. For instance, the high-level handler of the
CALL_FUNCTION_VECTOR interprocessor interrupt that is invoked by the low-level call_
function_interrupt() handler is named smp_call_function_interrupt(). Each high-
level handler acknowledges the interprocessor interrupt on the local APIC and then
performs the specific action triggered by the interrupt.

Thanks to the following group of functions, issuing interprocessor interrupts (IPIs)
becomes an easy task:

send_IPI_all()
Sends an IPI to all CPUs (including the sender)

send_IPI_allbutself()
 Sends an IPI to all CPUs except the sender

send_IPI_self()
Sends an IPI to the sender CPU

send_IPI_mask()
Sends an IPI to a group of CPUs specified by a bit mask

Softirqs and Tasklets
We mentioned earlier in the section “Interrupt Handling” that several tasks among
those executed by the kernel are not critical: they can be deferred for a long period of
time, if necessary. Remember that the interrupt service routines of an interrupt handler
are serialized, and often there should be no occurrence of an interrupt until the corre-
sponding interrupt handler has terminated. Conversely, the deferrable tasks can exe-
cute with all interrupts enabled. Taking them out of the interrupt handler helps keep
kernel response time small. This is a very important property for many time-critical
applications that expect their interrupt requests to be serviced in a few milliseconds.

Linux 2.6 answers such a challenge by using two kinds of non-urgent interruptible
kernel functions: the so-called deferrable functions* (softirqs and tasklets), and those
executed by means of some work queues (we will describe them in the
section “Work Queues” later in this chapter).

Softirqs and tasklets are strictly correlated, because tasklets are implemented on top
of softirqs. As a matter of fact, the term “softirq,” which appears in the kernel source
code, often denotes both kinds of deferrable functions. Another widely used term is

* These are also called software interrupts, but we denote them as “deferrable functions” to avoid confusion
with programmed exceptions, which are referred to as “software interrupts” in Intel manuals.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 4: Interrupts and Exceptions

interrupt context: it specifies that the kernel is currently executing either an interrupt
handler or a deferrable function.

Softirqs are statically allocated (i.e., defined at compile time), while tasklets can also
be allocated and initialized at runtime (for instance, when loading a kernel module).
Softirqs can run concurrently on several CPUs, even if they are of the same type.
Thus, softirqs are reentrant functions and must explicitly protect their data struc-
tures with spin locks. Tasklets do not have to worry about this, because their execu-
tion is controlled more strictly by the kernel. Tasklets of the same type are always
serialized: in other words, the same type of tasklet cannot be executed by two CPUs
at the same time. However, tasklets of different types can be executed concurrently
on several CPUs. Serializing the tasklet simplifies the life of device driver developers,
because the tasklet function needs not be reentrant.

Generally speaking, four kinds of operations can be performed on deferrable functions:

Initialization

Defines a new deferrable function; this operation is usually done when the ker-
nel initializes itself or a module is loaded.

Activation
Marks a deferrable function as “pending”—to be run the next time the kernel
schedules a round of executions of deferrable functions. Activation can be done
at any time (even while handling interrupts).

Masking
Selectively disables a deferrable function so that it will not be executed by the ker-
nel even if activated. We’ll see in the section “Disabling and Enabling Deferrable
Functions” in Chapter 5 that disabling deferrable functions is sometimes essential.

Execution
Executes a pending deferrable function together with all other pending deferra-
ble functions of the same type; execution is performed at well-specified times,
explained later in the section “Softirqs.”

Activation and execution are bound together: a deferrable function that has been
activated by a given CPU must be executed on the same CPU. There is no self-evi-
dent reason suggesting that this rule is beneficial for system performance. Binding
the deferrable function to the activating CPU could in theory make better use of the
CPU hardware cache. After all, it is conceivable that the activating kernel thread
accesses some data structures that will also be used by the deferrable function. How-
ever, the relevant lines could easily be no longer in the cache when the deferrable
function is run because its execution can be delayed a long time. Moreover, binding
a function to a CPU is always a potentially “dangerous” operation, because one CPU
might end up very busy while the others are mostly idle.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Softirqs and Tasklets | 173

Softirqs
Linux 2.6 uses a limited number of softirqs. For most purposes, tasklets are good
enough and are much easier to write because they do not need to be reentrant.

As a matter of fact, only the six kinds of softirqs listed in Table 4-9 are currently
defined.

The index of a sofirq determines its priority: a lower index means higher priority
because softirq functions will be executed starting from index 0.

Data structures used for softirqs

The main data structure used to represent softirqs is the softirq_vec array, which
includes 32 elements of type softirq_action. The priority of a softirq is the index of
the corresponding softirq_action element inside the array. As shown in Table 4-9,
only the first six entries of the array are effectively used. The softirq_action data
structure consists of two fields: an action pointer to the softirq function and a data
pointer to a generic data structure that may be needed by the softirq function.

Another critical field used to keep track both of kernel preemption and of nesting of
kernel control paths is the 32-bit preempt_count field stored in the thread_info field
of each process descriptor (see the section “Identifying a Process” in Chapter 3). This
field encodes three distinct counters plus a flag, as shown in Table 4-10.

The first counter keeps track of how many times kernel preemption has been explic-
itly disabled on the local CPU; the value zero means that kernel preemption has not

Table 4-9. Softirqs used in Linux 2.6

Softirq Index (priority) Description

HI_SOFTIRQ 0 Handles high priority tasklets

TIMER_SOFTIRQ 1 Tasklets related to timer interrupts

NET_TX_SOFTIRQ 2 Transmits packets to network cards

NET_RX_SOFTIRQ 3 Receives packets from network cards

SCSI_SOFTIRQ 4 Post-interrupt processing of SCSI commands

TASKLET_SOFTIRQ 5 Handles regular tasklets

Table 4-10. Subfields of the preempt_count field (continues)

Bits Description

0–7 Preemption counter (max value = 255)

8–15 Softirq counter (max value = 255).

16–27 Hardirq counter (max value = 4096)

28 PREEMPT_ACTIVE flag

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 4: Interrupts and Exceptions

been explicitly disabled at all. The second counter specifies how many levels deep
the disabling of deferrable functions is (level 0 means that deferrable functions are
enabled). The third counter specifies the number of nested interrupt handlers on the
local CPU (the value is increased by irq_enter() and decreased by irq_exit(); see
the section “I/O Interrupt Handling” earlier in this chapter).

There is a good reason for the name of the preempt_count field: kernel preemptability
has to be disabled either when it has been explicitly disabled by the kernel code (pre-
emption counter not zero) or when the kernel is running in interrupt context. Thus,
to determine whether the current process can be preempted, the kernel quickly
checks for a zero value in the preempt_count field. Kernel preemption will be dis-
cussed in depth in the section “Kernel Preemption” in Chapter 5.

The in_interrupt() macro checks the hardirq and softirq counters in the current_
thread_info()->preempt_count field. If either one of these two counters is positive,
the macro yields a nonzero value, otherwise it yields the value zero. If the kernel does
not make use of multiple Kernel Mode stacks, the macro always looks at the
preempt_count field of the thread_info descriptor of the current process. If, however,
the kernel makes use of multiple Kernel Mode stacks, the macro might look at the
preempt_count field in the thread_info descriptor contained in a irq_ctx union asso-
ciated with the local CPU. In this case, the macro returns a nonzero value because
the field is always set to a positive value.

The last crucial data structure for implementing the softirqs is a per-CPU 32-bit
mask describing the pending softirqs; it is stored in the _ _softirq_pending field of
the irq_cpustat_t data structure (recall that there is one such structure per each CPU
in the system; see Table 4-8). To get and set the value of the bit mask, the kernel
makes use of the local_softirq_pending() macro that selects the softirq bit mask of
the local CPU.

Handling softirqs

The open_softirq() function takes care of softirq initialization. It uses three parame-
ters: the softirq index, a pointer to the softirq function to be executed, and a second
pointer to a data structure that may be required by the softirq function. open_
softirq() limits itself to initializing the proper entry of the softirq_vec array.

Softirqs are activated by means of the raise_softirq() function. This function,
which receives as its parameter the softirq index nr, performs the following actions:

1. Executes the local_irq_save macro to save the state of the IF flag of the eflags
register and to disable interrupts on the local CPU.

2. Marks the softirq as pending by setting the bit corresponding to the index nr in
the softirq bit mask of the local CPU.

3. If in_interrupt() yields the value 1, it jumps to step 5. This situation indicates
either that raise_softirq() has been invoked in interrupt context, or that the
softirqs are currently disabled.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Softirqs and Tasklets | 175

4. Otherwise, invokes wakeup_softirqd() to wake up, if necessary, the ksoftirqd
kernel thread of the local CPU (see later).

5. Executes the local_irq_restore macro to restore the state of the IF flag saved in
step 1.

Checks for active (pending) softirqs should be perfomed periodically, but without
inducing too much overhead. They are performed in a few points of the kernel code.
Here is a list of the most significant points (be warned that number and position of
the softirq checkpoints change both with the kernel version and with the supported
hardware architecture):

• When the kernel invokes the local_bh_enable() function* to enable softirqs on
the local CPU

• When the do_IRQ() function finishes handling an I/O interrupt and invokes the
irq_exit() macro

• If the system uses an I/O APIC, when the smp_apic_timer_interrupt() function
finishes handling a local timer interrupt (see the section “Timekeeping Architec-
ture in Multiprocessor Systems” in Chapter 6)

• In multiprocessor systems, when a CPU finishes handling a function triggered by
a CALL_FUNCTION_VECTOR interprocessor interrupt

• When one of the special ksoftirqd/n kernel threads is awakened (see later)

The do_softirq() function

If pending softirqs are detected at one such checkpoint (local_softirq_pending() is
not zero), the kernel invokes do_softirq() to take care of them. This function per-
forms the following actions:

1. If in_interrupt() yields the value one, this function returns. This situation indi-
cates either that do_softirq() has been invoked in interrupt context or that the
softirqs are currently disabled.

2. Executes local_irq_save to save the state of the IF flag and to disable the inter-
rupts on the local CPU.

3. If the size of the thread_union structure is 4 KB, it switches to the soft IRQ stack,
if necessary. This step is very similar to step 2 of do_IRQ() in the earlier section
“I/O Interrupt Handling;” of course, the softirq_ctx array is used instead of
hardirq_ctx.

4. Invokes the _ _do_softirq() function (see the following section).

* The name local_bh_enable() refers to a special type of deferrable function called “bottom half” that no
longer exists in Linux 2.6.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 4: Interrupts and Exceptions

5. If the soft IRQ stack has been effectively switched in step 3 above, it restores the
original stack pointer into the esp register, thus switching back to the exception
stack that was in use before.

6. Executes local_irq_restore to restore the state of the IF flag (local interrupts
enabled or disabled) saved in step 2 and returns.

The _ _do_softirq() function

The _ _do_softirq() function reads the softirq bit mask of the local CPU and exe-
cutes the deferrable functions corresponding to every set bit. While executing a soft-
irq function, new pending softirqs might pop up; in order to ensure a low latency
time for the deferrable funtions, _ _do_softirq() keeps running until all pending soft-
irqs have been executed. This mechanism, however, could force _ _do_softirq() to
run for long periods of time, thus considerably delaying User Mode processes. For
that reason, _ _do_softirq() performs a fixed number of iterations and then returns.
The remaining pending softirqs, if any, will be handled in due time by the ksoftirqd
kernel thread described in the next section. Here is a short description of the actions
performed by the function:

1. Initializes the iteration counter to 10.

2. Copies the softirq bit mask of the local CPU (selected by local_softirq_
pending()) in the pending local variable.

3. Invokes local_bh_disable() to increase the softirq counter. It is somewhat coun-
terintuitive that deferrable functions should be disabled before starting to exe-
cute them, but it really makes a lot of sense. Because the deferrable functions
mostly run with interrupts enabled, an interrupt can be raised in the middle of
the _ _do_softirq() function. When do_IRQ() executes the irq_exit() macro,
another instance of the _ _do_softirq() function could be started. This has to be
avoided, because deferrable functions must execute serially on the CPU. Thus,
the first instance of _ _do_softirq() disables deferrable functions, so that every
new instance of the function will exit at step 1 of do_softirq().

4. Clears the softirq bitmap of the local CPU, so that new softirqs can be activated
(the value of the bit mask has already been saved in the pending local variable in
step 2).

5. Executes local_irq_enable() to enable local interrupts.

6. For each bit set in the pending local variable, it executes the corresponding soft-
irq function; recall that the function address for the softirq with index n is stored
in softirq_vec[n]->action.

7. Executes local_irq_disable() to disable local interrupts.

8. Copies the softirq bit mask of the local CPU into the pending local variable and
decreases the iteration counter one more time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Softirqs and Tasklets | 177

9. If pending is not zero—at least one softirq has been activated since the start of
the last iteration—and the iteration counter is still positive, it jumps back to
step 4.

10. If there are more pending softirqs, it invokes wakeup_softirqd() to wake up the
kernel thread that takes care of the softirqs for the local CPU (see next section).

11. Subtracts 1 from the softirq counter, thus reenabling the deferrable functions.

The ksoftirqd kernel threads

In recent kernel versions, each CPU has its own ksoftirqd/n kernel thread (where n is
the logical number of the CPU). Each ksoftirqd/n kernel thread runs the ksoftirqd()
function, which essentially executes the following loop:

for(;;) {
 set_current_state(TASK_INTERRUPTIBLE);
 schedule();
 /* now in TASK_RUNNING state */
 while (local_softirq_pending()) {
 preempt_disable();
 do_softirq();
 preempt_enable();
 cond_resched();
 }
}

When awakened, the kernel thread checks the local_softirq_pending() softirq bit
mask and invokes, if necessary, do_softirq(). If there are no softirqs pending, the
function puts the current process in the TASK_INTERRUPTIBLE state and invokes then
the cond_resched() function to perform a process switch if required by the current
process (flag TIF_NEED_RESCHED of the current thread_info set).

The ksoftirqd/n kernel threads represent a solution for a critical trade-off problem.

Softirq functions may reactivate themselves; in fact, both the networking softirqs and
the tasklet softirqs do this. Moreover, external events, such as packet flooding on a
network card, may activate softirqs at very high frequency.

The potential for a continuous high-volume flow of softirqs creates a problem that is
solved by introducing kernel threads. Without them, developers are essentially faced
with two alternative strategies.

The first strategy consists of ignoring new softirqs that occur while do_softirq() is
running. In other words, the do_softirq() function could determine what softirqs
are pending when the function is started and then execute their functions. Next, it
would terminate without rechecking the pending softirqs. This solution is not good
enough. Suppose that a softirq function is reactivated during the execution of do_
softirq(). In the worst case, the softirq is not executed again until the next timer
interrupt, even if the machine is idle. As a result, softirq latency time is unacceptable
for networking developers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 4: Interrupts and Exceptions

The second strategy consists of continuously rechecking for pending softirqs. The
do_softirq() function could keep checking the pending softirqs and would termi-
nate only when none of them is pending. While this solution might satisfy network-
ing developers, it can certainly upset normal users of the system: if a high-frequency
flow of packets is received by a network card or a softirq function keeps activating
itself, the do_softirq() function never returns, and the User Mode programs are vir-
tually stopped.

The ksoftirqd/n kernel threads try to solve this difficult trade-off problem. The do_
softirq() function determines what softirqs are pending and executes their func-
tions. After a few iterations, if the flow of softirqs does not stop, the function wakes
up the kernel thread and terminates (step 10 of _ _do_softirq()). The kernel thread
has low priority, so user programs have a chance to run; but if the machine is idle,
the pending softirqs are executed quickly.

Tasklets
Tasklets are the preferred way to implement deferrable functions in I/O drivers. As
already explained, tasklets are built on top of two softirqs named HI_SOFTIRQ and
TASKLET_SOFTIRQ. Several tasklets may be associated with the same softirq, each
tasklet carrying its own function. There is no real difference between the two soft-
irqs, except that do_softirq() executes HI_SOFTIRQ’s tasklets before TASKLET_
SOFTIRQ’s tasklets.

Tasklets and high-priority tasklets are stored in the tasklet_vec and tasklet_hi_vec
arrays, respectively. Both of them include NR_CPUS elements of type tasklet_head, and
each element consists of a pointer to a list of tasklet descriptors. The tasklet descrip-
tor is a data structure of type tasklet_struct, whose fields are shown in Table 4-11.

The state field of the tasklet descriptor includes two flags:

TASKLET_STATE_SCHED
When set, this indicates that the tasklet is pending (has been scheduled for exe-
cution); it also means that the tasklet descriptor is inserted in one of the lists of
the tasklet_vec and tasklet_hi_vec arrays.

Table 4-11. The fields of the tasklet descriptor

Field name Description

next Pointer to next descriptor in the list

state Status of the tasklet

count Lock counter

func Pointer to the tasklet function

data An unsigned long integer that may be used by the tasklet function

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Softirqs and Tasklets | 179

TASKLET_STATE_RUN
When set, this indicates that the tasklet is being executed; on a uniprocessor sys-
tem this flag is not used because there is no need to check whether a specific
tasklet is running.

Let’s suppose you’re writing a device driver and you want to use a tasklet: what has
to be done? First of all, you should allocate a new tasklet_struct data structure and
initialize it by invoking tasklet_init(); this function receives as its parameters the
address of the tasklet descriptor, the address of your tasklet function, and its
optional integer argument.

The tasklet may be selectively disabled by invoking either tasklet_disable_nosync()
or tasklet_disable(). Both functions increase the count field of the tasklet descrip-
tor, but the latter function does not return until an already running instance of the
tasklet function has terminated. To reenable the tasklet, use tasklet_enable().

To activate the tasklet, you should invoke either the tasklet_schedule() function or
the tasklet_hi_schedule() function, according to the priority that you require for
the tasklet. The two functions are very similar; each of them performs the following
actions:

1. Checks the TASKLET_STATE_SCHED flag; if it is set, returns (the tasklet has already
been scheduled).

2. Invokes local_irq_save to save the state of the IF flag and to disable local inter-
rupts.

3. Adds the tasklet descriptor at the beginning of the list pointed to by tasklet_
vec[n] or tasklet_hi_vec[n], where n denotes the logical number of the local
CPU.

4. Invokes raise_softirq_irqoff() to activate either the TASKLET_SOFTIRQ or the HI_
SOFTIRQ softirq (this function is similar to raise_softirq(), except that it
assumes that local interrupts are already disabled).

5. Invokes local_irq_restore to restore the state of the IF flag.

Finally, let’s see how the tasklet is executed. We know from the previous section
that, once activated, softirq functions are executed by the do_softirq() function.
The softirq function associated with the HI_SOFTIRQ softirq is named tasklet_hi_
action(), while the function associated with TASKLET_SOFTIRQ is named tasklet_
action(). Once again, the two functions are very similar; each of them:

1. Disables local interrupts.

2. Gets the logical number n of the local CPU.

3. Stores the address of the list pointed to by tasklet_vec[n] or tasklet_hi_vec[n]
in the list local variable.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 4: Interrupts and Exceptions

4. Puts a NULL address in tasklet_vec[n] or tasklet_hi_vec[n], thus emptying the
list of scheduled tasklet descriptors.

5. Enables local interrupts.

6. For each tasklet descriptor in the list pointed to by list:

a. In multiprocessor systems, checks the TASKLET_STATE_RUN flag of the tasklet.

• If it is set, a tasklet of the same type is already running on another CPU,
so the function reinserts the task descriptor in the list pointed to by
tasklet_vec[n] or tasklet_hi_vec[n] and activates the TASKLET_SOFTIRQ
or HI_SOFTIRQ softirq again. In this way, execution of the tasklet is
deferred until no other tasklets of the same type are running on other
CPUs.

• Otherwise, the tasklet is not running on another CPU: sets the flag so
that the tasklet function cannot be executed on other CPUs.

b. Checks whether the tasklet is disabled by looking at the count field of the
tasklet descriptor. If the tasklet is disabled, it clears its TASKLET_STATE_RUN
flag and reinserts the task descriptor in the list pointed to by tasklet_vec[n]
or tasklet_hi_vec[n]; then the function activates the TASKLET_SOFTIRQ or HI_
SOFTIRQ softirq again.

c. If the tasklet is enabled, it clears the TASKLET_STATE_SCHED flag and executes
the tasklet function.

Notice that, unless the tasklet function reactivates itself, every tasklet activation trig-
gers at most one execution of the tasklet function.

Work Queues
The work queues have been introduced in Linux 2.6 and replace a similar construct
called “task queue” used in Linux 2.4. They allow kernel functions to be activated
(much like deferrable functions) and later executed by special kernel threads called
worker threads.

Despite their similarities, deferrable functions and work queues are quite different.
The main difference is that deferrable functions run in interrupt context while
functions in work queues run in process context. Running in process context is the
only way to execute functions that can block (for instance, functions that need to
access some block of data on disk) because, as already observed in the section
“Nested Execution of Exception and Interrupt Handlers” earlier in this chapter, no
process switch can take place in interrupt context. Neither deferrable functions nor
functions in a work queue can access the User Mode address space of a process. In
fact, a deferrable function cannot make any assumption about the process that is
currently running when it is executed. On the other hand, a function in a work
queue is executed by a kernel thread, so there is no User Mode address space to
access.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Work Queues | 181

Work queue data structures

The main data structure associated with a work queue is a descriptor called
workqueue_struct, which contains, among other things, an array of NR_CPUS elements,
the maximum number of CPUs in the system.* Each element is a descriptor of type
cpu_workqueue_struct, whose fields are shown in Table 4-12.

The worklist field of the cpu_workqueue_struct structure is the head of a doubly
linked list collecting the pending functions of the work queue. Every pending func-
tion is represented by a work_struct data structure, whose fields are shown in
Table 4-13.

Work queue functions

The create_workqueue("foo") function receives as its parameter a string of charac-
ters and returns the address of a workqueue_struct descriptor for the newly created

* The reason for duplicating the work queue data structures in multiprocessor systems is that per-CPU local
data structures yield a much more efficient code (see the section “Per-CPU Variables” in Chapter 5).

Table 4-12. The fields of the cpu_workqueue_struct structure

Field name Description

lock Spin lock used to protect the structure

remove_sequence Sequence number used by flush_workqueue()

insert_sequence Sequence number used by flush_workqueue()

worklist Head of the list of pending functions

more_work Wait queue where the worker thread waiting for more work to be done sleeps

work_done Wait queue where the processes waiting for the work queue to be flushed sleep

wq Pointer to the workqueue_struct structure containing this descriptor

thread Process descriptor pointer of the worker thread of the structure

run_depth Current execution depth of run_workqueue() (this field may become greater than one
when a function in the work queue list blocks)

Table 4-13. The fields of the work_struct structure

Field name Description

pending Set to 1 if the function is already in a work queue list, 0 otherwise

entry Pointers to next and previous elements in the list of pending functions

func Address of the pending function

data Pointer passed as a parameter to the pending function

wq_data Usually points to the parent cpu_workqueue_struct descriptor

timer Software timer used to delay the execution of the pending function

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 4: Interrupts and Exceptions

work queue. The function also creates n worker threads (where n is the number of
CPUs effectively present in the system), named after the string passed to the func-
tion: foo/0, foo/1, and so on. The create_singlethread_workqueue() function is simi-
lar, but it creates just one worker thread, no matter what the number of CPUs in the
system is. To destroy a work queue the kernel invokes the destroy_workqueue() func-
tion, which receives as its parameter a pointer to a workqueue_struct array.

queue_work() inserts a function (already packaged inside a work_struct descriptor) in
a work queue; it receives a pointer wq to the workqueue_struct descriptor and a
pointer work to the work_struct descriptor. queue_work() essentially performs the fol-
lowing steps:

1. Checks whether the function to be inserted is already present in the work queue
(work->pending field equal to 1); if so, terminates.

2. Adds the work_struct descriptor to the work queue list, and sets work->pending
to 1.

3. If a worker thread is sleeping in the more_work wait queue of the local CPU’s cpu_
workqueue_struct descriptor, the function wakes it up.

The queue_delayed_work() function is nearly identical to queue_work(), except that it
receives a third parameter representing a time delay in system ticks (see Chapter 6).
It is used to ensure a minimum delay before the execution of the pending function.
In practice, queue_delayed_work() relies on the software timer in the timer field of the
work_struct descriptor to defer the actual insertion of the work_struct descriptor in
the work queue list. cancel_delayed_work() cancels a previously scheduled work
queue function, provided that the corresponding work_struct descriptor has not
already been inserted in the work queue list.

Every worker thread continuously executes a loop inside the worker_thread() func-
tion; most of the time the thread is sleeping and waiting for some work to be queued.
Once awakened, the worker thread invokes the run_workqueue() function, which
essentially removes every work_struct descriptor from the work queue list of the
worker thread and executes the corresponding pending function. Because work
queue functions can block, the worker thread can be put to sleep and even migrated
to another CPU when resumed.*

Sometimes the kernel has to wait until all pending functions in a work queue have
been executed. The flush_workqueue() function receives a workqueue_struct descrip-
tor address and blocks the calling process until all functions that are pending in the
work queue terminate. The function, however, does not wait for any pending func-
tion that was added to the work queue following flush_workqueue() invocation; the

* Strangely enough, a worker thread can be executed by every CPU, not just the CPU corresponding to the
cpu_workqueue_struct descriptor to which the worker thread belongs. Therefore, queue_work() inserts a
function in the queue of the local CPU, but that function may be executed by any CPU in the systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Returning from Interrupts and Exceptions | 183

remove_sequence and insert_sequence fields of every cpu_workqueue_struct descrip-
tor are used to recognize the newly added pending functions.

The predefined work queue

In most cases, creating a whole set of worker threads in order to run a function is
overkill. Therefore, the kernel offers a predefined work queue called events, which
can be freely used by every kernel developer. The predefined work queue is nothing
more than a standard work queue that may include functions of different kernel lay-
ers and I/O drivers; its workqueue_struct descriptor is stored in the keventd_wq array.
To make use of the predefined work queue, the kernel offers the functions listed in
Table 4-14.

The predefined work queue saves significant system resources when the function is
seldom invoked. On the other hand, functions executed in the predefined work
queue should not block for a long time: because the execution of the pending func-
tions in the work queue list is serialized on each CPU, a long delay negatively affects
the other users of the predefined work queue.

In addition to the general events queue, you’ll find a few specialized work queues in
Linux 2.6. The most significant is the kblockd work queue used by the block device
layer (see Chapter 14).

Returning from Interrupts and Exceptions
We will finish the chapter by examining the termination phase of interrupt and
exception handlers. (Returning from a system call is a special case, and we shall
describe it in Chapter 10.) Although the main objective is clear—namely, to resume
execution of some program—several issues must be considered before doing it:

Number of kernel control paths being concurrently executed
If there is just one, the CPU must switch back to User Mode.

Pending process switch requests
If there is any request, the kernel must perform process scheduling; otherwise,
control is returned to the current process.

Pending signals
If a signal is sent to the current process, it must be handled.

Table 4-14. Helper functions for the predefined work queue

Predefined work queue function Equivalent standard work queue function

schedule_work(w) queue_work(keventd_wq,w)

schedule_delayed_work(w,d) queue_delayed_work(keventd_wq,w,d) (on any CPU)

schedule_delayed_work_on(cpu,w,d) queue_delayed_work(keventd_wq,w,d) (on a given CPU)

flush_scheduled_work() flush_workqueue(keventd_wq)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 4: Interrupts and Exceptions

Single-step mode
If a debugger is tracing the execution of the current process, single-step mode
must be restored before switching back to User Mode.

Virtual-8086 mode
If the CPU is in virtual-8086 mode, the current process is executing a legacy Real
Mode program, thus it must be handled in a special way.

A few flags are used to keep track of pending process switch requests, of pending sig-
nals, and of single step execution; they are stored in the flags field of the thread_
info descriptor. The field stores other flags as well, but they are not related to return-
ing from interrupts and exceptions. See Table 4-15 for a complete list of these flags.

The kernel assembly language code that accomplishes all these things is not, techni-
cally speaking, a function, because control is never returned to the functions that
invoke it. It is a piece of code with two different entry points: ret_from_intr() and
ret_from_exception(). As their names suggest, the kernel enters the former when ter-
minating an interrupt handler, and it enters the latter when terminating an excep-
tion handler. We shall refer to the two entry points as functions, because this makes
the description simpler.

The general flow diagram with the corresponding two entry points is illustrated in
Figure 4-6. The gray boxes refer to assembly language instructions that implement
kernel preemption (see Chapter 5); if you want to see what the kernel does when it is
compiled without support for kernel preemption, just ignore the gray boxes. The
ret_from_exception() and ret_from_intr() entry points look quite similar in the
flow diagram. A difference exists only if support for kernel preemption has been
selected as a compilation option: in this case, local interrupts are immediately dis-
abled when returning from exceptions.

Table 4-15. The flags field of the thread_info descriptor (continues)

Flag name Description

TIF_SYSCALL_TRACE System calls are being traced

TIF_NOTIFY_RESUME Not used in the 80x86 platform

TIF_SIGPENDING The process has pending signals

TIF_NEED_RESCHED Scheduling must be performed

TIF_SINGLESTEP Restore single step execution on return to User Mode

TIF_IRET Force return from system call via iret rather than sysexit

TIF_SYSCALL_AUDIT System calls are being audited

TIF_POLLING_NRFLAG The idle process is polling the TIF_NEED_RESCHED flag

TIF_MEMDIE The process is being destroyed to reclaim memory (see the section “The Out of Memory
Killer” in Chapter 17)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Returning from Interrupts and Exceptions | 185

The flow diagram gives a rough idea of the steps required to resume the execution of
an interrupted program. Now we will go into detail by discussing the assembly lan-
guage code.

The entry points

The ret_from_intr() and ret_from_exception() entry points are essentially equiva-
lent to the following assembly language code:

ret_from_exception:
 cli ; missing if kernel preemption is not supported
ret_from_intr:
 movl $-8192, %ebp ; -4096 if multiple Kernel Mode stacks are used
 andl %esp, %ebp

Figure 4-6. Returning from interrupts and exceptions

ret_from_exception:

Nested kernel
control paths?

ret_from_intr:

YES

Virtual
8086 mode?

schedule()
YES

NO

Virtual
8086 mode?

NO

do_notify_resume()

YES

save_v86_state()

Restore hardware context

NO

Need to
reschedule?

work_pending:

NO

restore_all:

cli

YES

resume_userspace:
cli

NO

Need to
reschedule?

YES

NO

YES

resume_kernel:

Is there work to
be done (rescheduling,
signals, single step) ?

YES

work_notifysig:

NO

Kernel preemption
enabled?

Resuming a
kernel control path

with IF=0?

work_resched:

need_resched:

NO

preempt_schedule_irq()

YES

cli

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 4: Interrupts and Exceptions

 movl 0x30(%esp), %eax
 movb 0x2c(%esp), %al
 testl $0x00020003, %eax
 jnz resume_userspace
 jpm resume_kernel

Recall that when returning from an interrupt, the local interrupts are disabled (see
step 3 in the earlier description of handle_IRQ_event()); thus, the cli assembly lan-
guage instruction is executed only when returning from an exception.

The kernel loads the address of the thread_info descriptor of current in the ebp regis-
ter (see “Identifying a Process” in Chapter 3).

Next, the values of the cs and eflags registers, which were pushed on the stack when
the interrupt or the exception occurred, are used to determine whether the inter-
rupted program was running in User Mode, or if the VM flag of eflags was set.* In
either case, a jump is made to the resume_userspace label. Otherwise, a jump is made
to the resume_kernel label.

Resuming a kernel control path

The assembly language code at the resume_kernel label is executed if the program to
be resumed is running in Kernel Mode:

resume_kernel:
 cli ; these three instructions are
 cmpl $0, 0x14(%ebp) ; missing if kernel preemption
 jz need_resched ; is not supported
restore_all:
 popl %ebx
 popl %ecx
 popl %edx
 popl %esi
 popl %edi
 popl %ebp
 popl %eax
 popl %ds
 popl %es
 addl $4, %esp
 iret

If the preempt_count field of the thread_info descriptor is zero (kernel preemption
enabled), the kernel jumps to the need_resched label. Otherwise, the interrupted pro-
gram is to be restarted. The function loads the registers with the values saved when
the interrupt or the exception started, and the function yields control by executing
the iret instruction.

* When this flag is set, programs are executed in virtual-8086 mode; see the Pentium manuals for more details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Returning from Interrupts and Exceptions | 187

Checking for kernel preemption

When this code is executed, none of the unfinished kernel control paths is an inter-
rupt handler, otherwise the preempt_count field would be greater than zero. How-
ever, as stated in “Nested Execution of Exception and Interrupt Handlers” earlier in
this chapter, there could be up to two kernel control paths associated with excep-
tions (beside the one that is terminating).

need_resched:
 movl 0x8(%ebp), %ecx
 testb $(1<<TIF_NEED_RESCHED), %cl
 jz restore_all
 testl $0x00000200,0x30(%esp)
 jz restore_all
 call preempt_schedule_irq
 jmp need_resched

If the TIF_NEED_RESCHED flag in the flags field of current->thread_info is zero, no
process switch is required, thus a jump is made to the restore_all label. Also a jump
to the same label is made if the kernel control path that is being resumed was run-
ning with the local interrupts disabled. In this case a process switch could corrupt
kernel data structures (see the section “When Synchronization Is Necessary” in
Chapter 5 for more details).

If a process switch is required, the preempt_schedule_irq() function is invoked: it
sets the PREEMPT_ACTIVE flag in the preempt_count field, temporarily sets the big ker-
nel lock counter to -1 (see the section “The Big Kernel Lock” in Chapter 5), enables
the local interrupts, and invokes schedule() to select another process to run. When
the former process will resume, preempt_schedule_irq() restores the previous value
of the big kernel lock counter, clears the PREEMPT_ACTIVE flag, and disables local inter-
rupts. The schedule() function will continue to be invoked as long as the TIF_NEED_
RESCHED flag of the current process is set.

Resuming a User Mode program

If the program to be resumed was running in User Mode, a jump is made to the
resume_userspace label:

resume_userspace:
 cli
 movl 0x8(%ebp), %ecx
 andl $0x0000ff6e, %ecx
 je restore_all
 jmp work_pending

After disabling the local interrupts, a check is made on the value of the flags field of
current->thread_info. If no flag except TIF_SYSCALL_TRACE, TIF_SYSCALL_AUDIT, or
TIF_SINGLESTEP is set, nothing remains to be done: a jump is made to the restore_all
label, thus resuming the User Mode program.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 4: Interrupts and Exceptions

Checking for rescheduling

The flags in the thread_info descriptor state that additional work is required before
resuming the interrupted program.

work_pending:
 testb $(1<<TIF_NEED_RESCHED), %cl
 jz work_notifysig
work_resched:
 call schedule
 cli
 jmp resume_userspace

If a process switch request is pending, schedule() is invoked to select another pro-
cess to run. When the former process will resume, a jump is made back to resume_
userspace.

Handling pending signals, virtual-8086 mode, and single stepping

There is other work to be done besides process switch requests:

work_notifysig:
 movl %esp, %eax
 testl $0x00020000, 0x30(%esp)
 je 1f
work_notifysig_v86:
 pushl %ecx
 call save_v86_state
 popl %ecx
 movl %eax, %esp
1:
 xorl %edx, %edx
 call do_notify_resume
 jmp restore_all

If the VM control flag in the eflags register of the User Mode program is set, the save_
v86_state() function is invoked to build up the virtual-8086 mode data structures in
the User Mode address space. Then the do_notify_resume() function is invoked to
take care of pending signals and single stepping. Finally, a jump is made to the
restore_all label to resume the interrupted program.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

189

Chapter 5 CHAPTER 5

Kernel Synchronization

You could think of the kernel as a server that answers requests; these requests can
come either from a process running on a CPU or an external device issuing an inter-
rupt request. We make this analogy to underscore that parts of the kernel are not run
serially, but in an interleaved way. Thus, they can give rise to race conditions, which
must be controlled through proper synchronization techniques. A general introduc-
tion to these topics can be found in the section “An Overview of Unix Kernels” in
Chapter 1.

We start this chapter by reviewing when, and to what extent, kernel requests are exe-
cuted in an interleaved fashion. We then introduce the basic synchronization primi-
tives implemented by the kernel and describe how they are applied in the most
common cases. Finally, we illustrate a few practical examples.

How the Kernel Services Requests
To get a better grasp of how kernel’s code is executed, we will look at the kernel as a
waiter who must satisfy two types of requests: those issued by customers and those
issued by a limited number of different bosses. The policy adopted by the waiter is
the following:

1. If a boss calls while the waiter is idle, the waiter starts servicing the boss.

2. If a boss calls while the waiter is servicing a customer, the waiter stops servicing
the customer and starts servicing the boss.

3. If a boss calls while the waiter is servicing another boss, the waiter stops servic-
ing the first boss and starts servicing the second one. When he finishes servicing
the new boss, he resumes servicing the former one.

4. One of the bosses may induce the waiter to leave the customer being currently
serviced. After servicing the last request of the bosses, the waiter may decide to
drop temporarily his customer and to pick up a new one.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 5: Kernel Synchronization

The services performed by the waiter correspond to the code executed when the
CPU is in Kernel Mode. If the CPU is executing in User Mode, the waiter is consid-
ered idle.

Boss requests correspond to interrupts, while customer requests correspond to sys-
tem calls or exceptions raised by User Mode processes. As we shall see in detail in
Chapter 10, User Mode processes that want to request a service from the kernel must
issue an appropriate instruction (on the 80×86, an int $0x80 or a sysenter instruc-
tion). Such instructions raise an exception that forces the CPU to switch from User
Mode to Kernel Mode. In the rest of this chapter, we will generally denote as “excep-
tions” both the system calls and the usual exceptions.

The careful reader has already associated the first three rules with the nesting of ker-
nel control paths described in “Nested Execution of Exception and Interrupt Han-
dlers” in Chapter 4. The fourth rule corresponds to one of the most interesting new
features included in the Linux 2.6 kernel, namely kernel preemption.

Kernel Preemption
It is surprisingly hard to give a good definition of kernel preemption. As a first try,
we could say that a kernel is preemptive if a process switch may occur while the
replaced process is executing a kernel function, that is, while it runs in Kernel Mode.
Unfortunately, in Linux (as well as in any other real operating system) things are
much more complicated:

• Both in preemptive and nonpreemptive kernels, a process running in Kernel Mode
can voluntarily relinquish the CPU, for instance because it has to sleep waiting for
some resource. We will call this kind of process switch a planned process switch.
However, a preemptive kernel differs from a nonpreemptive kernel on the way a
process running in Kernel Mode reacts to asynchronous events that could induce
a process switch—for instance, an interrupt handler that awakes a higher priority
process. We will call this kind of process switch a forced process switch.

• All process switches are performed by the switch_to macro. In both preemptive
and nonpreemptive kernels, a process switch occurs when a process has finished
some thread of kernel activity and the scheduler is invoked. However, in nonpre-
emptive kernels, the current process cannot be replaced unless it is about to switch
to User Mode (see the section “Performing the Process Switch” in Chapter 3).

Therefore, the main characteristic of a preemptive kernel is that a process running in
Kernel Mode can be replaced by another process while in the middle of a kernel
function.

Let’s give a couple of examples to illustrate the difference between preemptive and
nonpreemptive kernels.

While process A executes an exception handler (necessarily in Kernel Mode), a higher
priority process B becomes runnable. This could happen, for instance, if an IRQ occurs

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

How the Kernel Services Requests | 191

and the corresponding handler awakens process B. If the kernel is preemptive, a forced
process switch replaces process A with B. The exception handler is left unfinished and
will be resumed only when the scheduler selects again process A for execution. Con-
versely, if the kernel is nonpreemptive, no process switch occurs until process A either
finishes handling the exception handler or voluntarily relinquishes the CPU.

For another example, consider a process that executes an exception handler and
whose time quantum expires (see the section “The scheduler_tick() Function” in
Chapter 7). If the kernel is preemptive, the process may be replaced immediately;
however, if the kernel is nonpreemptive, the process continues to run until it finishes
handling the exception handler or voluntarily relinquishes the CPU.

The main motivation for making a kernel preemptive is to reduce the dispatch latency
of the User Mode processes, that is, the delay between the time they become runna-
ble and the time they actually begin running. Processes performing timely scheduled
tasks (such as external hardware controllers, environmental monitors, movie play-
ers, and so on) really benefit from kernel preemption, because it reduces the risk of
being delayed by another process running in Kernel Mode.

Making the Linux 2.6 kernel preemptive did not require a drastic change in the ker-
nel design with respect to the older nonpreemptive kernel versions. As described in
the section “Returning from Interrupts and Exceptions” in Chapter 4, kernel pre-
emption is disabled when the preempt_count field in the thread_info descriptor refer-
enced by the current_thread_info() macro is greater than zero. The field encodes
three different counters, as shown in Table 4-10 in Chapter 4, so it is greater than
zero when any of the following cases occurs:

1. The kernel is executing an interrupt service routine.

2. The deferrable functions are disabled (always true when the kernel is executing a
softirq or tasklet).

3. The kernel preemption has been explicitly disabled by setting the preemption
counter to a positive value.

The above rules tell us that the kernel can be preempted only when it is executing an
exception handler (in particular a system call) and the kernel preemption has not
been explicitly disabled. Furthermore, as described in the section “Returning from
Interrupts and Exceptions” in Chapter 4, the local CPU must have local interrupts
enabled, otherwise kernel preemption is not performed.

A few simple macros listed in Table 5-1 deal with the preemption counter in the
prempt_count field.

Table 5-1. Macros dealing with the preemption counter subfield

Macro Description

preempt_count() Selects the preempt_count field in the thread_info descriptor

preempt_disable() Increases by one the value of the preemption counter

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 5: Kernel Synchronization

The preempt_enable() macro decreases the preemption counter, then checks whether
the TIF_NEED_RESCHED flag is set (see Table 4-15 in Chapter 4). In this case, a process
switch request is pending, so the macro invokes the preempt_schedule() function,
which essentially executes the following code:

if (!current_thread_info->preempt_count && !irqs_disabled()) {
 current_thread_info->preempt_count = PREEMPT_ACTIVE;
 schedule();
 current_thread_info->preempt_count = 0;
}

The function checks whether local interrupts are enabled and the preempt_count field
of current is zero; if both conditions are true, it invokes schedule() to select another
process to run. Therefore, kernel preemption may happen either when a kernel con-
trol path (usually, an interrupt handler) is terminated, or when an exception handler
reenables kernel preemption by means of preempt_enable(). As we’ll see in the sec-
tion “Disabling and Enabling Deferrable Functions” later in this chapter, kernel pre-
emption may also happen when deferrable functions are enabled.

We’ll conclude this section by noticing that kernel preemption introduces a nonneg-
ligible overhead. For that reason, Linux 2.6 features a kernel configuration option
that allows users to enable or disable kernel preemption when compiling the kernel.

When Synchronization Is Necessary
Chapter 1 introduced the concepts of race condition and critical region for pro-
cesses. The same definitions apply to kernel control paths. In this chapter, a race
condition can occur when the outcome of a computation depends on how two or
more interleaved kernel control paths are nested. A critical region is a section of code
that must be completely executed by the kernel control path that enters it before
another kernel control path can enter it.

Interleaving kernel control paths complicates the life of kernel developers: they must
apply special care in order to identify the critical regions in exception handlers, inter-
rupt handlers, deferrable functions, and kernel threads. Once a critical region has

preempt_enable_no_resched() Decreases by one the value of the preemption counter

preempt_enable() Decreases by one the value of the preemption counter, and invokes
preempt_schedule() if the TIF_NEED_RESCHED flag in the
thread_info descriptor is set

get_cpu() Similar to preempt_disable(), but also returns the number of the
local CPU

put_cpu() Same as preempt_enable()

put_cpu_no_resched() Same as preempt_enable_no_resched()

Table 5-1. Macros dealing with the preemption counter subfield (continued)

Macro Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

How the Kernel Services Requests | 193

been identified, it must be suitably protected to ensure that any time at most one ker-
nel control path is inside that region.

Suppose, for instance, that two different interrupt handlers need to access the same
data structure that contains several related member variables—for instance, a buffer
and an integer indicating its length. All statements affecting the data structure must be
put into a single critical region. If the system includes a single CPU, the critical region
can be implemented by disabling interrupts while accessing the shared data structure,
because nesting of kernel control paths can only occur when interrupts are enabled.

On the other hand, if the same data structure is accessed only by the service routines
of system calls, and if the system includes a single CPU, the critical region can be
implemented quite simply by disabling kernel preemption while accessing the shared
data structure.

As you would expect, things are more complicated in multiprocessor systems. Many
CPUs may execute kernel code at the same time, so kernel developers cannot assume
that a data structure can be safely accessed just because kernel preemption is disabled
and the data structure is never addressed by an interrupt, exception, or softirq handler.

We’ll see in the following sections that the kernel offers a wide range of different syn-
chronization techniques. It is up to kernel designers to solve each synchronization
problem by selecting the most efficient technique.

When Synchronization Is Not Necessary
Some design choices already discussed in the previous chapter simplify somewhat
the synchronization of kernel control paths. Let us recall them briefly:

• All interrupt handlers acknowledge the interrupt on the PIC and also disable the
IRQ line. Further occurrences of the same interrupt cannot occur until the han-
dler terminates.

• Interrupt handlers, softirqs, and tasklets are both nonpreemptable and non-
blocking, so they cannot be suspended for a long time interval. In the worst case,
their execution will be slightly delayed, because other interrupts occur during
their execution (nested execution of kernel control paths).

• A kernel control path performing interrupt handling cannot be interrupted by a
kernel control path executing a deferrable function or a system call service routine.

• Softirqs and tasklets cannot be interleaved on a given CPU.

• The same tasklet cannot be executed simultaneously on several CPUs.

Each of the above design choices can be viewed as a constraint that can be
exploited to code some kernel functions more easily. Here are a few examples of
possible simplifications:

• Interrupt handlers and tasklets need not to be coded as reentrant functions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 5: Kernel Synchronization

• Per-CPU variables accessed by softirqs and tasklets only do not require synchro-
nization.

• A data structure accessed by only one kind of tasklet does not require synchroni-
zation.

The rest of this chapter describes what to do when synchronization is necessary—i.e.,
how to prevent data corruption due to unsafe accesses to shared data structures.

Synchronization Primitives
We now examine how kernel control paths can be interleaved while avoiding race
conditions among shared data. Table 5-2 lists the synchronization techniques used by
the Linux kernel. The “Scope” column indicates whether the synchronization tech-
nique applies to all CPUs in the system or to a single CPU. For instance, local inter-
rupt disabling applies to just one CPU (other CPUs in the system are not affected);
conversely, an atomic operation affects all CPUs in the system (atomic operations on
several CPUs cannot interleave while accessing the same data structure).

Let’s now briefly discuss each synchronization technique. In the later section “Syn-
chronizing Accesses to Kernel Data Structures,” we show how these synchronization
techniques can be combined to effectively protect kernel data structures.

Per-CPU Variables
The best synchronization technique consists in designing the kernel so as to avoid
the need for synchronization in the first place. As we’ll see, in fact, every explicit syn-
chronization primitive has a significant performance cost.

The simplest and most efficient synchronization technique consists of declaring ker-
nel variables as per-CPU variables. Basically, a per-CPU variable is an array of data
structures, one element per each CPU in the system.

Table 5-2. Various types of synchronization techniques used by the kernel

Technique Description Scope

Per-CPU variables Duplicate a data structure among the CPUs All CPUs

Atomic operation Atomic read-modify-write instruction to a counter All CPUs

Memory barrier Avoid instruction reordering Local CPU or All CPUs

Spin lock Lock with busy wait All CPUs

Semaphore Lock with blocking wait (sleep) All CPUs

Seqlocks Lock based on an access counter All CPUs

Local interrupt disabling Forbid interrupt handling on a single CPU Local CPU

Local softirq disabling Forbid deferrable function handling on a single CPU Local CPU

Read-copy-update (RCU) Lock-free access to shared data structures through pointers All CPUs

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 195

A CPU should not access the elements of the array corresponding to the other CPUs;
on the other hand, it can freely read and modify its own element without fear of race
conditions, because it is the only CPU entitled to do so. This also means, however,
that the per-CPU variables can be used only in particular cases—basically, when it
makes sense to logically split the data across the CPUs of the system.

The elements of the per-CPU array are aligned in main memory so that each data
structure falls on a different line of the hardware cache (see the section “Hardware
Cache” in Chapter 2). Therefore, concurrent accesses to the per-CPU array do not
result in cache line snooping and invalidation, which are costly operations in terms
of system performance.

While per-CPU variables provide protection against concurrent accesses from sev-
eral CPUs, they do not provide protection against accesses from asynchronous func-
tions (interrupt handlers and deferrable functions). In these cases, additional
synchronization primitives are required.

Furthermore, per-CPU variables are prone to race conditions caused by kernel pre-
emption, both in uniprocessor and multiprocessor systems. As a general rule, a ker-
nel control path should access a per-CPU variable with kernel preemption disabled.
Just consider, for instance, what would happen if a kernel control path gets the
address of its local copy of a per-CPU variable, and then it is preempted and moved
to another CPU: the address still refers to the element of the previous CPU.

Table 5-3 lists the main functions and macros offered by the kernel to use per-CPU
variables.

Atomic Operations
Several assembly language instructions are of type “read-modify-write”—that is,
they access a memory location twice, the first time to read the old value and the sec-
ond time to write a new value.

Table 5-3. Functions and macros for the per-CPU variables

Macro or function name Description

DEFINE_PER_CPU(type, name) Statically allocates a per-CPU array called name of type data structures

per_cpu(name, cpu) Selects the element for CPU cpu of the per-CPU array name

_ _get_cpu_var(name) Selects the local CPU’s element of the per-CPU array name

get_cpu_var(name) Disables kernel preemption, then selects the local CPU’s element of the
per-CPU array name

put_cpu_var(name) Enables kernel preemption (name is not used)

alloc_percpu(type) Dynamically allocates a per-CPU array of type data structures and returns
its address

free_percpu(pointer) Releases a dynamically allocated per-CPU array at address pointer

per_cpu_ptr(pointer, cpu) Returns the address of the element for CPU cpu of the per-CPU array at
address pointer

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 5: Kernel Synchronization

Suppose that two kernel control paths running on two CPUs try to “read-modify-
write” the same memory location at the same time by executing nonatomic opera-
tions. At first, both CPUs try to read the same location, but the memory arbiter (a
hardware circuit that serializes accesses to the RAM chips) steps in to grant access to
one of them and delay the other. However, when the first read operation has com-
pleted, the delayed CPU reads exactly the same (old) value from the memory loca-
tion. Both CPUs then try to write the same (new) value to the memory location;
again, the bus memory access is serialized by the memory arbiter, and eventually
both write operations succeed. However, the global result is incorrect because both
CPUs write the same (new) value. Thus, the two interleaving “read-modify-write”
operations act as a single one.

The easiest way to prevent race conditions due to “read-modify-write” instructions is
by ensuring that such operations are atomic at the chip level. Every such operation
must be executed in a single instruction without being interrupted in the middle and
avoiding accesses to the same memory location by other CPUs. These very small
atomic operations can be found at the base of other, more flexible mechanisms to cre-
ate critical regions.

Let’s review 80 × 86 instructions according to that classification:

• Assembly language instructions that make zero or one aligned memory access
are atomic.*

• Read-modify-write assembly language instructions (such as inc or dec) that read
data from memory, update it, and write the updated value back to memory are
atomic if no other processor has taken the memory bus after the read and before
the write. Memory bus stealing never happens in a uniprocessor system.

• Read-modify-write assembly language instructions whose opcode is prefixed by
the lock byte (0xf0) are atomic even on a multiprocessor system. When the con-
trol unit detects the prefix, it “locks” the memory bus until the instruction is fin-
ished. Therefore, other processors cannot access the memory location while the
locked instruction is being executed.

• Assembly language instructions whose opcode is prefixed by a rep byte (0xf2,
0xf3, which forces the control unit to repeat the same instruction several times)
are not atomic. The control unit checks for pending interrupts before executing a
new iteration.

When you write C code, you cannot guarantee that the compiler will use an atomic
instruction for an operation like a=a+1 or even for a++. Thus, the Linux kernel pro-
vides a special atomic_t type (an atomically accessible counter) and some special

* A data item is aligned in memory when its address is a multiple of its size in bytes. For instance, the address
of an aligned short integer must be a multiple of two, while the address of an aligned integer must be a mul-
tiple of four. Generally speaking, an unaligned memory access is not atomic.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 197

functions and macros (see Table 5-4) that act on atomic_t variables and are imple-
mented as single, atomic assembly language instructions. On multiprocessor sys-
tems, each such instruction is prefixed by a lock byte.

Another class of atomic functions operate on bit masks (see Table 5-5).

Optimization and Memory Barriers
When using optimizing compilers, you should never take for granted that instruc-
tions will be performed in the exact order in which they appear in the source code.
For example, a compiler might reorder the assembly language instructions in such a

Table 5-4. Atomic operations in Linux

Function Description

atomic_read(v) Return *v

atomic_set(v,i) Set *v to i

atomic_add(i,v) Add i to *v

atomic_sub(i,v) Subtract i from *v

atomic_sub_and_test(i, v) Subtract i from *v and return 1 if the result is zero; 0 otherwise

atomic_inc(v) Add 1 to *v

atomic_dec(v) Subtract 1 from *v

atomic_dec_and_test(v) Subtract 1 from *v and return 1 if the result is zero; 0 otherwise

atomic_inc_and_test(v) Add 1 to *v and return 1 if the result is zero; 0 otherwise

atomic_add_negative(i, v) Add i to *v and return 1 if the result is negative; 0 otherwise

atomic_inc_return(v) Add 1 to *v and return the new value of *v

atomic_dec_return(v) Subtract 1 from *v and return the new value of *v

atomic_add_return(i, v) Add i to *v and return the new value of *v

atomic_sub_return(i, v) Subtract i from *v and return the new value of *v

Table 5-5. Atomic bit handling functions in Linux

Function Description

test_bit(nr, addr) Return the value of the nrth bit of *addr

set_bit(nr, addr) Set the nrth bit of *addr

clear_bit(nr, addr) Clear the nrth bit of *addr

change_bit(nr, addr) Invert the nrth bit of *addr

test_and_set_bit(nr, addr) Set the nrth bit of *addr and return its old value

test_and_clear_bit(nr, addr) Clear the nrth bit of *addr and return its old value

test_and_change_bit(nr, addr) Invert the nrth bit of *addr and return its old value

atomic_clear_mask(mask, addr) Clear all bits of *addr specified by mask

atomic_set_mask(mask, addr) Set all bits of *addr specified by mask

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 5: Kernel Synchronization

way to optimize how registers are used. Moreover, modern CPUs usually execute
several instructions in parallel and might reorder memory accesses. These kinds of
reordering can greatly speed up the program.

When dealing with synchronization, however, reordering instructions must be
avoided. Things would quickly become hairy if an instruction placed after a synchro-
nization primitive is executed before the synchronization primitive itself. Therefore,
all synchronization primitives act as optimization and memory barriers.

An optimization barrier primitive ensures that the assembly language instructions cor-
responding to C statements placed before the primitive are not mixed by the compiler
with assembly language instructions corresponding to C statements placed after the
primitive. In Linux the barrier() macro, which expands into asm volatile("":::
"memory"), acts as an optimization barrier. The asm instruction tells the compiler to
insert an assembly language fragment (empty, in this case). The volatile keyword for-
bids the compiler to reshuffle the asm instruction with the other instructions of the pro-
gram. The memory keyword forces the compiler to assume that all memory locations in
RAM have been changed by the assembly language instruction; therefore, the compiler
cannot optimize the code by using the values of memory locations stored in CPU reg-
isters before the asm instruction. Notice that the optimization barrier does not ensure
that the executions of the assembly language instructions are not mixed by the CPU—
this is a job for a memory barrier.

A memory barrier primitive ensures that the operations placed before the primitive
are finished before starting the operations placed after the primitive. Thus, a mem-
ory barrier is like a firewall that cannot be passed by an assembly language instruc-
tion.

In the 80×86 processors, the following kinds of assembly language instructions are
said to be “serializing” because they act as memory barriers:

• All instructions that operate on I/O ports

• All instructions prefixed by the lock byte (see the section “Atomic Operations”)

• All instructions that write into control registers, system registers, or debug regis-
ters (for instance, cli and sti, which change the status of the IF flag in the
eflags register)

• The lfence, sfence, and mfence assembly language instructions, which have been
introduced in the Pentium 4 microprocessor to efficiently implement read mem-
ory barriers, write memory barriers, and read-write memory barriers, respec-
tively.

• A few special assembly language instructions; among them, the iret instruction
that terminates an interrupt or exception handler

Linux uses a few memory barrier primitives, which are shown in Table 5-6. These
primitives act also as optimization barriers, because we must make sure the compiler
does not move the assembly language instructions around the barrier. “Read memory

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 199

barriers” act only on instructions that read from memory, while “write memory barri-
ers” act only on instructions that write to memory. Memory barriers can be useful in
both multiprocessor and uniprocessor systems. The smp_xxx() primitives are used
whenever the memory barrier should prevent race conditions that might occur only in
multiprocessor systems; in uniprocessor systems, they do nothing. The other mem-
ory barriers are used to prevent race conditions occurring both in uniprocessor and
multiprocessor systems.

The implementations of the memory barrier primitives depend on the architecture of
the system. On an 80 × 86 microprocessor, the rmb() macro usually expands into
asm volatile("lfence") if the CPU supports the lfence assembly language instruction,
or into asm volatile("lock;addl $0,0(%%esp)":::"memory") otherwise. The asm state-
ment inserts an assembly language fragment in the code generated by the compiler and
acts as an optimization barrier. The lock; addl $0,0(%%esp) assembly language
instruction adds zero to the memory location on top of the stack; the instruction is use-
less by itself, but the lock prefix makes the instruction a memory barrier for the CPU.

The wmb() macro is actually simpler because it expands into barrier(). This is
because existing Intel microprocessors never reorder write memory accesses, so there
is no need to insert a serializing assembly language instruction in the code. The
macro, however, forbids the compiler from shuffling the instructions.

Notice that in multiprocessor systems, all atomic operations described in the earlier
section “Atomic Operations” act as memory barriers because they use the lock byte.

Spin Locks
A widely used synchronization technique is locking. When a kernel control path
must access a shared data structure or enter a critical region, it needs to acquire a
“lock” for it. A resource protected by a locking mechanism is quite similar to a
resource confined in a room whose door is locked when someone is inside. If a ker-
nel control path wishes to access the resource, it tries to “open the door” by acquir-
ing the lock. It succeeds only if the resource is free. Then, as long as it wants to use
the resource, the door remains locked. When the kernel control path releases the
lock, the door is unlocked and another kernel control path may enter the room.

Table 5-6. Memory barriers in Linux

Macro Description

mb() Memory barrier for MP and UP

rmb() Read memory barrier for MP and UP

wmb() Write memory barrier for MP and UP

smp_mb() Memory barrier for MP only

smp_rmb() Read memory barrier for MP only

smp_wmb() Write memory barrier for MP only

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 5: Kernel Synchronization

Figure 5-1 illustrates the use of locks. Five kernel control paths (P0, P1, P2, P3, and
P4) are trying to access two critical regions (C1 and C2). Kernel control path P0 is
inside C1, while P2 and P4 are waiting to enter it. At the same time, P1 is inside C2,
while P3 is waiting to enter it. Notice that P0 and P1 could run concurrently. The
lock for critical region C3 is open because no kernel control path needs to enter it.

Spin locks are a special kind of lock designed to work in a multiprocessor environ-
ment. If the kernel control path finds the spin lock “open,” it acquires the lock and
continues its execution. Conversely, if the kernel control path finds the lock “closed”
by a kernel control path running on another CPU, it “spins” around, repeatedly exe-
cuting a tight instruction loop, until the lock is released.

The instruction loop of spin locks represents a “busy wait.” The waiting kernel con-
trol path keeps running on the CPU, even if it has nothing to do besides waste time.
Nevertheless, spin locks are usually convenient, because many kernel resources are
locked for a fraction of a millisecond only; therefore, it would be far more time-con-
suming to release the CPU and reacquire it later.

As a general rule, kernel preemption is disabled in every critical region protected by
spin locks. In the case of a uniprocessor system, the locks themselves are useless, and
the spin lock primitives just disable or enable the kernel preemption. Please notice
that kernel preemption is still enabled during the busy wait phase, thus a process
waiting for a spin lock to be released could be replaced by a higher priority process.

In Linux, each spin lock is represented by a spinlock_t structure consisting of two
fields:

slock
Encodes the spin lock state: the value 1 corresponds to the unlocked state, while
every negative value and 0 denote the locked state

Figure 5-1. Protecting critical regions with several locks

Pn
- Kernel control path

Cn
- Critical region

P2 P4

P3

C3

P0 C1

P1 C2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 201

break_lock
Flag signaling that a process is busy waiting for the lock (present only if the ker-
nel supports both SMP and kernel preemption)

Six macros shown in Table 5-7 are used to initialize, test, and set spin locks. All these
macros are based on atomic operations; this ensures that the spin lock will be
updated properly even when multiple processes running on different CPUs try to
modify the lock at the same time.*

The spin_lock macro with kernel preemption

Let’s discuss in detail the spin_lock macro, which is used to acquire a spin lock. The
following description refers to a preemptive kernel for an SMP system. The macro
takes the address slp of the spin lock as its parameter and executes the following
actions:

1. Invokes preempt_disable() to disable kernel preemption.

2. Invokes the _raw_spin_trylock() function, which does an atomic test-and-set
operation on the spin lock’s slock field; this function executes first some instruc-
tions equivalent to the following assembly language fragment:

movb $0, %al
xchgb %al, slp->slock

The xchg assembly language instruction exchanges atomically the content of the
8-bit %al register (storing zero) with the content of the memory location pointed
to by slp->slock. The function then returns the value 1 if the old value stored in
the spin lock (in %al after the xchg instruction) was positive, the value 0 other-
wise.

3. If the old value of the spin lock was positive, the macro terminates: the kernel
control path has acquired the spin lock.

* Spin locks, ironically enough, are global and therefore must themselves be protected against concurrent
accesses.

Table 5-7. Spin lock macros

Macro Description

spin_lock_init() Set the spin lock to 1 (unlocked)

spin_lock() Cycle until spin lock becomes 1 (unlocked), then set it to 0 (locked)

spin_unlock() Set the spin lock to 1 (unlocked)

spin_unlock_wait() Wait until the spin lock becomes 1 (unlocked)

spin_is_locked() Return 0 if the spin lock is set to 1 (unlocked); 1 otherwise

spin_trylock() Set the spin lock to 0 (locked), and return 1 if the previous value of the lock was 1; 0 oth-
erwise

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 5: Kernel Synchronization

4. Otherwise, the kernel control path failed in acquiring the spin lock, thus the
macro must cycle until the spin lock is released by a kernel control path running
on some other CPU. Invokes preempt_enable() to undo the increase of the pre-
emption counter done in step 1. If kernel preemption was enabled before execut-
ing the spin_lock macro, another process can now replace this process while it
waits for the spin lock.

5. If the break_lock field is equal to zero, sets it to one. By checking this field, the
process owning the lock and running on another CPU can learn whether there
are other processes waiting for the lock. If a process holds a spin lock for a long
time, it may decide to release it prematurely to allow another process waiting for
the same spin lock to progress.

6. Executes the wait cycle:
while (spin_is_locked(slp) && slp->break_lock)
 cpu_relax();

The cpu_relax() macro reduces to a pause assembly language instruction. This
instruction has been introduced in the Pentium 4 model to optimize the execu-
tion of spin lock loops. By introducing a short delay, it speeds up the execution
of code following the lock and reduces power consumption. The pause instruc-
tion is backward compatible with earlier models of 80 × 86 microprocessors
because it corresponds to the instruction rep;nop, that is, to a no-operation.

7. Jumps back to step 1 to try once more to get the spin lock.

The spin_lock macro without kernel preemption

If the kernel preemption option has not been selected when the kernel was com-
piled, the spin_lock macro is quite different from the one described above. In this
case, the macro yields a assembly language fragment that is essentially equivalent to
the following tight busy wait:*

1: lock; decb slp->slock
 jns 3f
2: pause
 cmpb $0,slp->slock
 jle 2b
 jmp 1b
3:

The decb assembly language instruction decreases the spin lock value; the instruc-
tion is atomic because it is prefixed by the lock byte. A test is then performed on the
sign flag. If it is clear, it means that the spin lock was set to 1 (unlocked), so normal

* The actual implementation of the tight busy wait loop is slightly more complicated. The code at label 2,
which is executed only if the spin lock is busy, is included in an auxiliary section so that in the most frequent
case (when the spin lock is already free) the hardware cache is not filled with code that won’t be executed.
In our discussion, we omit these optimization details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 203

execution continues at label 3 (the f suffix denotes the fact that the label is a “for-
ward” one; it appears in a later line of the program). Otherwise, the tight loop at
label 2 (the b suffix denotes a “backward” label) is executed until the spin lock
assumes a positive value. Then execution restarts from label 1, since it is unsafe to
proceed without checking whether another processor has grabbed the lock.

The spin_unlock macro

The spin_unlock macro releases a previously acquired spin lock; it essentially exe-
cutes the assembly language instruction:

movb $1, slp->slock

and then invokes preempt_enable() (if kernel preemption is not supported,
preempt_enable() does nothing). Notice that the lock byte is not used because
write-only accesses in memory are always atomically executed by the current
80×86 microprocessors.

Read/Write Spin Locks
Read/write spin locks have been introduced to increase the amount of concurrency
inside the kernel. They allow several kernel control paths to simultaneously read the
same data structure, as long as no kernel control path modifies it. If a kernel control
path wishes to write to the structure, it must acquire the write version of the read/write
lock, which grants exclusive access to the resource. Of course, allowing concurrent
reads on data structures improves system performance.

Figure 5-2 illustrates two critical regions (C1 and C2) protected by read/write locks.
Kernel control paths R0 and R1 are reading the data structures in C1 at the same
time, while W0 is waiting to acquire the lock for writing. Kernel control path W1 is
writing the data structures in C2, while both R2 and W2 are waiting to acquire the
lock for reading and writing, respectively.

Figure 5-2. Read/write spin locks

R n - Reader kernel control path

Wn
- Writer kernel control path

Cn
- Critical region

W0

R 2 W2

R 1 C 1

W1 C 2

R 0R

W

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 5: Kernel Synchronization

Each read/write spin lock is a rwlock_t structure; its lock field is a 32-bit field that
encodes two distinct pieces of information:

• A 24-bit counter denoting the number of kernel control paths currently reading
the protected data structure. The two’s complement value of this counter is
stored in bits 0–23 of the field.

• An unlock flag that is set when no kernel control path is reading or writing, and
clear otherwise. This unlock flag is stored in bit 24 of the field.

Notice that the lock field stores the number 0x01000000 if the spin lock is idle (unlock
flag set and no readers), the number 0x00000000 if it has been acquired for writing
(unlock flag clear and no readers), and any number in the sequence 0x00ffffff,
0x00fffffe, and so on, if it has been acquired for reading by one, two, or more pro-
cesses (unlock flag clear and the two’s complement on 24 bits of the number of
readers). As the spinlock_t structure, the rwlock_t structure also includes a break_
lock field.

The rwlock_init macro initializes the lock field of a read/write spin lock to
0x01000000 (unlocked) and the break_lock field to zero.

Getting and releasing a lock for reading

The read_lock macro, applied to the address rwlp of a read/write spin lock, is similar
to the spin_lock macro described in the previous section. If the kernel preemption
option has been selected when the kernel was compiled, the macro performs the very
same actions as those of spin_lock(), with just one exception: to effectively acquire
the read/write spin lock in step 2, the macro executes the _raw_read_trylock() func-
tion:

int _raw_read_trylock(rwlock_t *lock)
{
 atomic_t *count = (atomic_t *)lock->lock;
 atomic_dec(count);
 if (atomic_read(count) >= 0)
 return 1;
 atomic_inc(count);
 return 0;
}

The lock field—the read/write lock counter—is accessed by means of atomic opera-
tions. Notice, however, that the whole function does not act atomically on the
counter: for instance, the counter might change after having tested its value with the
if statement and before returning 1. Nevertheless, the function works properly: in
fact, the function returns 1 only if the counter was not zero or negative before the
decrement, because the counter is equal to 0x01000000 for no owner, 0x00ffffff for
one reader, and 0x00000000 for one writer.

If the kernel preemption option has not been selected when the kernel was com-
piled, the read_lock macro yields the following assembly language code:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 205

 movl $rwlp->lock,%eax
 lock; subl $1,(%eax)
 jns 1f
 call __read_lock_failed
1:

where __read_lock_failed() is the following assembly language function:

__read_lock_failed:
 lock; incl (%eax)
1: pause
 cmpl $1,(%eax)
 js 1b
 lock; decl (%eax)
 js __read_lock_failed
 ret

The read_lock macro atomically decreases the spin lock value by 1, thus increasing
the number of readers. The spin lock is acquired if the decrement operation yields a
nonnegative value; otherwise, the __read_lock_failed() function is invoked. The
function atomically increases the lock field to undo the decrement operation per-
formed by the read_lock macro, and then loops until the field becomes positive
(greater than or equal to 1). Next, __read_lock_failed() tries to get the spin lock
again (another kernel control path could acquire the spin lock for writing right after
the cmpl instruction).

Releasing the read lock is quite simple, because the read_unlock macro must simply
increase the counter in the lock field with the assembly language instruction:

lock; incl rwlp->lock

to decrease the number of readers, and then invoke preempt_enable() to reenable
kernel preemption.

Getting and releasing a lock for writing

The write_lock macro is implemented in the same way as spin_lock() and read_
lock(). For instance, if kernel preemption is supported, the function disables kernel
preemption and tries to grab the lock right away by invoking _raw_write_trylock().
If this function returns 0, the lock was already taken, thus the macro reenables ker-
nel preemption and starts a busy wait loop, as explained in the description of spin_
lock() in the previous section.

The _raw_write_trylock() function is shown below:

int _raw_write_trylock(rwlock_t *lock)
{
 atomic_t *count = (atomic_t *)lock->lock;
 if (atomic_sub_and_test(0x01000000, count))
 return 1;
 atomic_add(0x01000000, count);
 return 0;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 5: Kernel Synchronization

The _raw_write_trylock() function subtracts 0x01000000 from the read/write spin
lock value, thus clearing the unlock flag (bit 24). If the subtraction operation yields
zero (no readers), the lock is acquired and the function returns 1; otherwise, the
function atomically adds 0x01000000 to the spin lock value to undo the subtraction
operation.

Once again, releasing the write lock is much simpler because the write_unlock
macro must simply set the unlock flag in the lock field with the assembly language
instruction:

lock; addl $0x01000000,rwlp

and then invoke preempt_enable().

Seqlocks
When using read/write spin locks, requests issued by kernel control paths to per-
form a read_lock or a write_lock operation have the same priority: readers must wait
until the writer has finished and, similarly, a writer must wait until all readers have
finished.

Seqlocks introduced in Linux 2.6 are similar to read/write spin locks, except that they
give a much higher priority to writers: in fact a writer is allowed to proceed even
when readers are active. The good part of this strategy is that a writer never waits
(unless another writer is active); the bad part is that a reader may sometimes be
forced to read the same data several times until it gets a valid copy.

Each seqlock is a seqlock_t structure consisting of two fields: a lock field of type
spinlock_t and an integer sequence field. This second field plays the role of a
sequence counter. Each reader must read this sequence counter twice, before and
after reading the data, and check whether the two values coincide. In the opposite
case, a new writer has become active and has increased the sequence counter, thus
implicitly telling the reader that the data just read is not valid.

A seqlock_t variable is initialized to “unlocked” either by assigning to it the value
SEQLOCK_UNLOCKED, or by executing the seqlock_init macro. Writers acquire and
release a seqlock by invoking write_seqlock() and write_sequnlock(). The first func-
tion acquires the spin lock in the seqlock_t data structure, then increases the
sequence counter by one; the second function increases the sequence counter once
more, then releases the spin lock. This ensures that when the writer is in the middle
of writing, the counter is odd, and that when no writer is altering data, the counter is
even. Readers implement a critical region as follows:

unsigned int seq;
do {
 seq = read_seqbegin(&seqlock);
 /* ... CRITICAL REGION ... */
} while (read_seqretry(&seqlock, seq));

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 207

read_seqbegin() returns the current sequence number of the seqlock; read_
seqretry() returns 1 if either the value of the seq local variable is odd (a writer was
updating the data structure when the read_seqbegin() function has been invoked),
or if the value of seq does not match the current value of the seqlock’s sequence
counter (a writer started working while the reader was still executing the code in the
critical region).

Notice that when a reader enters a critical region, it does not need to disable kernel
preemption; on the other hand, the writer automatically disables kernel preemption
when entering the critical region, because it acquires the spin lock.

Not every kind of data structure can be protected by a seqlock. As a general rule, the
following conditions must hold:

• The data structure to be protected does not include pointers that are modified by
the writers and dereferenced by the readers (otherwise, a writer could change the
pointer under the nose of the readers)

• The code in the critical regions of the readers does not have side effects (other-
wise, multiple reads would have different effects from a single read)

Furthermore, the critical regions of the readers should be short and writers should
seldom acquire the seqlock, otherwise repeated read accesses would cause a severe
overhead. A typical usage of seqlocks in Linux 2.6 consists of protecting some data
structures related to the system time handling (see Chapter 6).

Read-Copy Update (RCU)
Read-copy update (RCU) is yet another synchronization technique designed to protect
data structures that are mostly accessed for reading by several CPUs. RCU allows many
readers and many writers to proceed concurrently (an improvement over seqlocks,
which allow only one writer to proceed). Moreover, RCU is lock-free, that is, it uses no
lock or counter shared by all CPUs; this is a great advantage over read/write spin locks
and seqlocks, which have a high overhead due to cache line-snooping and invalidation.

How does RCU obtain the surprising result of synchronizing several CPUs without
shared data structures? The key idea consists of limiting the scope of RCU as follows:

1. Only data structures that are dynamically allocated and referenced by means of
pointers can be protected by RCU.

2. No kernel control path can sleep inside a critical region protected by RCU.

When a kernel control path wants to read an RCU-protected data structure, it exe-
cutes the rcu_read_lock() macro, which is equivalent to preempt_disable(). Next,
the reader dereferences the pointer to the data structure and starts reading it. As
stated above, the reader cannot sleep until it finishes reading the data structure; the
end of the critical region is marked by the rcu_read_unlock() macro, which is equiva-
lent to preempt_enable().

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 5: Kernel Synchronization

Because the reader does very little to prevent race conditions, we could expect that
the writer has to work a bit more. In fact, when a writer wants to update the data
structure, it dereferences the pointer and makes a copy of the whole data structure.
Next, the writer modifies the copy. Once finished, the writer changes the pointer to
the data structure so as to make it point to the updated copy. Because changing the
value of the pointer is an atomic operation, each reader or writer sees either the old
copy or the new one: no corruption in the data structure may occur. However, a
memory barrier is required to ensure that the updated pointer is seen by the other
CPUs only after the data structure has been modified. Such a memory barrier is
implicitly introduced if a spin lock is coupled with RCU to forbid the concurrent
execution of writers.

The real problem with the RCU technique, however, is that the old copy of the data
structure cannot be freed right away when the writer updates the pointer. In fact, the
readers that were accessing the data structure when the writer started its update
could still be reading the old copy. The old copy can be freed only after all (poten-
tial) readers on the CPUs have executed the rcu_read_unlock() macro. The kernel
requires every potential reader to execute that macro before:

• The CPU performs a process switch (see restriction 2 earlier).

• The CPU starts executing in User Mode.

• The CPU executes the idle loop (see the section “Kernel Threads” in Chapter 3).

In each of these cases, we say that the CPU has gone through a quiescent state.

The call_rcu() function is invoked by the writer to get rid of the old copy of the
data structure. It receives as its parameters the address of an rcu_head descriptor
(usually embedded inside the data structure to be freed) and the address of a call-
back function to be invoked when all CPUs have gone through a quiescent state.
Once executed, the callback function usually frees the old copy of the data structure.

The call_rcu() function stores in the rcu_head descriptor the address of the callback
and its parameter, then inserts the descriptor in a per-CPU list of callbacks. Periodi-
cally, once every tick (see the section “Updating Local CPU Statistics” in Chapter 6),
the kernel checks whether the local CPU has gone through a quiescent state. When
all CPUs have gone through a quiescent state, a local tasklet—whose descriptor is
stored in the rcu_tasklet per-CPU variable—executes all callbacks in the list.

RCU is a new addition in Linux 2.6; it is used in the networking layer and in the Vir-
tual Filesystem.

Semaphores
We have already introduced semaphores in the section “Synchronization and Criti-
cal Regions” in Chapter 1. Essentially, they implement a locking primitive that
allows waiters to sleep until the desired resource becomes free.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 209

Actually, Linux offers two kinds of semaphores:

• Kernel semaphores, which are used by kernel control paths

• System V IPC semaphores, which are used by User Mode processes

In this section, we focus on kernel semaphores, while IPC semaphores are described
in Chapter 19.

A kernel semaphore is similar to a spin lock, in that it doesn’t allow a kernel control
path to proceed unless the lock is open. However, whenever a kernel control path
tries to acquire a busy resource protected by a kernel semaphore, the corresponding
process is suspended. It becomes runnable again when the resource is released.
Therefore, kernel semaphores can be acquired only by functions that are allowed to
sleep; interrupt handlers and deferrable functions cannot use them.

A kernel semaphore is an object of type struct semaphore, containing the fields
shown in the following list.

count
Stores an atomic_t value. If it is greater than 0, the resource is free—that is, it is
currently available. If count is equal to 0, the semaphore is busy but no other
process is waiting for the protected resource. Finally, if count is negative, the
resource is unavailable and at least one process is waiting for it.

wait
Stores the address of a wait queue list that includes all sleeping processes that are
currently waiting for the resource. Of course, if count is greater than or equal to
0, the wait queue is empty.

sleepers
Stores a flag that indicates whether some processes are sleeping on the sema-
phore. We’ll see this field in operation soon.

The init_MUTEX() and init_MUTEX_LOCKED() functions may be used to initialize a
semaphore for exclusive access: they set the count field to 1 (free resource with exclu-
sive access) and 0 (busy resource with exclusive access currently granted to the pro-
cess that initializes the semaphore), respectively. The DECLARE_MUTEX and DECLARE_
MUTEX_LOCKED macros do the same, but they also statically allocate the
struct semaphore variable. Note that a semaphore could also be initialized with an
arbitrary positive value n for count. In this case, at most n processes are allowed to
concurrently access the resource.

Getting and releasing semaphores

Let’s start by discussing how to release a semaphore, which is much simpler than get-
ting one. When a process wishes to release a kernel semaphore lock, it invokes the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 5: Kernel Synchronization

up() function. This function is essentially equivalent to the following assembly lan-
guage fragment:

 movl $sem->count,%ecx
 lock; incl (%ecx)
 jg 1f
 lea %ecx,%eax
 pushl %edx
 pushl %ecx
 call __up
 popl %ecx
 popl %edx
1:

where _ _up() is the following C function:

__attribute__((regparm(3))) void __up(struct semaphore *sem)
{
 wake_up(&sem->wait);
}

The up() function increases the count field of the *sem semaphore, and then it checks
whether its value is greater than 0. The increment of count and the setting of the flag
tested by the following jump instruction must be atomically executed, or else
another kernel control path could concurrently access the field value, with disas-
trous results. If count is greater than 0, there was no process sleeping in the wait
queue, so nothing has to be done. Otherwise, the _ _up() function is invoked so that
one sleeping process is woken up. Notice that _ _up() receives its parameter from the
eax register (see the description of the _ _switch_to() function in the section “Per-
forming the Process Switch” in Chapter 3).

Conversely, when a process wishes to acquire a kernel semaphore lock, it invokes the
down() function. The implementation of down() is quite involved, but it is essentially
equivalent to the following:

down:
 movl $sem->count,%ecx
 lock; decl (%ecx);
 jns 1f
 lea %ecx, %eax
 pushl %edx
 pushl %ecx
 call __down
 popl %ecx
 popl %edx
1:

where _ _down() is the following C function:

__attribute__((regparm(3))) void __down(struct semaphore * sem)
{
 DECLARE_WAITQUEUE(wait, current);
 unsigned long flags;
 current->state = TASK_UNINTERRUPTIBLE;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 211

 spin_lock_irqsave(&sem->wait.lock, flags);
 add_wait_queue_exclusive_locked(&sem->wait, &wait);
 sem->sleepers++;
 for (;;) {
 if (!atomic_add_negative(sem->sleepers-1, &sem->count)) {
 sem->sleepers = 0;
 break;
 }
 sem->sleepers = 1;
 spin_unlock_irqrestore(&sem->wait.lock, flags);
 schedule();
 spin_lock_irqsave(&sem->wait.lock, flags);
 current->state = TASK_UNINTERRUPTIBLE;
 }
 remove_wait_queue_locked(&sem->wait, &wait);
 wake_up_locked(&sem->wait);
 spin_unlock_irqrestore(&sem->wait.lock, flags);
 current->state = TASK_RUNNING;
}

The down() function decreases the count field of the *sem semaphore, and then
checks whether its value is negative. Again, the decrement and the test must be
atomically executed. If count is greater than or equal to 0, the current process
acquires the resource and the execution continues normally. Otherwise, count is neg-
ative, and the current process must be suspended. The contents of some registers are
saved on the stack, and then _ _down() is invoked.

Essentially, the _ _down() function changes the state of the current process from
TASK_RUNNING to TASK_UNINTERRUPTIBLE, and it puts the process in the semaphore wait
queue. Before accessing the fields of the semaphore structure, the function also gets
the sem->wait.lock spin lock that protects the semaphore wait queue (see “How Pro-
cesses Are Organized” in Chapter 3) and disables local interrupts. Usually, wait
queue functions get and release the wait queue spin lock as necessary when inserting
and deleting an element. The _ _down() function, however, uses the wait queue spin
lock also to protect the other fields of the semaphore data structure, so that no pro-
cess running on another CPU is able to read or modify them. To that end, _ _down()
uses the “_locked” versions of the wait queue functions, which assume that the spin
lock has been already acquired before their invocations.

The main task of the _ _down() function is to suspend the current process until the
semaphore is released. However, the way in which this is done is quite involved. To
easily understand the code, keep in mind that the sleepers field of the semaphore is
usually set to 0 if no process is sleeping in the wait queue of the semaphore, and it is
set to 1 otherwise. Let’s try to explain the code by considering a few typical cases.

MUTEX semaphore open (count equal to 1, sleepers equal to 0)
The down macro just sets the count field to 0 and jumps to the next instruction of
the main program; therefore, the _ _down() function is not executed at all.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 5: Kernel Synchronization

MUTEX semaphore closed, no sleeping processes (count equal to 0, sleepers equal to 0)
The down macro decreases count and invokes the _ _down() function with the
count field set to –1 and the sleepers field set to 0. In each iteration of the loop,
the function checks whether the count field is negative. (Observe that the count
field is not changed by atomic_add_negative() because sleepers is equal to 0
when the function is invoked.)

• If the count field is negative, the function invokes schedule() to suspend the
current process. The count field is still set to –1, and the sleepers field to 1.
The process picks up its run subsequently inside this loop and issues the test
again.

• If the count field is not negative, the function sets sleepers to 0 and exits from
the loop. It tries to wake up another process in the semaphore wait queue
(but in our scenario, the queue is now empty) and terminates holding the
semaphore. On exit, both the count field and the sleepers field are set to 0, as
required when the semaphore is closed but no process is waiting for it.

MUTEX semaphore closed, other sleeping processes (count equal to –1, sleepers equal
to 1)

The down macro decreases count and invokes the _ _down() function with count
set to –2 and sleepers set to 1. The function temporarily sets sleepers to 2, and
then undoes the decrement performed by the down macro by adding the value
sleepers–1 to count. At the same time, the function checks whether count is still
negative (the semaphore could have been released by the holding process right
before _ _down() entered the critical region).

• If the count field is negative, the function resets sleepers to 1 and invokes
schedule() to suspend the current process. The count field is still set to –1,
and the sleepers field to 1.

• If the count field is not negative, the function sets sleepers to 0, tries to
wake up another process in the semaphore wait queue, and exits holding the
semaphore. On exit, the count field is set to 0 and the sleepers field to 0.
The values of both fields look wrong, because there are other sleeping pro-
cesses. However, consider that another process in the wait queue has been
woken up. This process does another iteration of the loop; the atomic_add_
negative() function subtracts 1 from count, restoring it to –1; moreover,
before returning to sleep, the woken-up process resets sleepers to 1.

So, the code properly works in all cases. Consider that the wake_up() function in _ _
down() wakes up at most one process, because the sleeping processes in the wait
queue are exclusive (see the section “How Processes Are Organized” in Chapter 3).

Only exception handlers, and particularly system call service routines, can use the
down() function. Interrupt handlers or deferrable functions must not invoke down(),
because this function suspends the process when the semaphore is busy. For this rea-
son, Linux provides the down_trylock() function, which may be safely used by one

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 213

of the previously mentioned asynchronous functions. It is identical to down() except
when the resource is busy. In this case, the function returns immediately instead of
putting the process to sleep.

A slightly different function called down_interruptible() is also defined. It is widely
used by device drivers, because it allows processes that receive a signal while being
blocked on a semaphore to give up the “down” operation. If the sleeping process is
woken up by a signal before getting the needed resource, the function increases the
count field of the semaphore and returns the value –EINTR. On the other hand, if down_
interruptible() runs to normal completion and gets the resource, it returns 0. The
device driver may thus abort the I/O operation when the return value is –EINTR.

Finally, because processes usually find semaphores in an open state, the semaphore
functions are optimized for this case. In particular, the up() function does not exe-
cute jump instructions if the semaphore wait queue is empty; similarly, the down()
function does not execute jump instructions if the semaphore is open. Much of the
complexity of the semaphore implementation is precisely due to the effort of avoid-
ing costly instructions in the main branch of the execution flow.

Read/Write Semaphores
Read/write semaphores are similar to the read/write spin locks described earlier in
the section “Read/Write Spin Locks,” except that waiting processes are suspended
instead of spinning until the semaphore becomes open again.

Many kernel control paths may concurrently acquire a read/write semaphore for
reading; however, every writer kernel control path must have exclusive access to the
protected resource. Therefore, the semaphore can be acquired for writing only if no
other kernel control path is holding it for either read or write access. Read/write
semaphores improve the amount of concurrency inside the kernel and improve over-
all system performance.

The kernel handles all processes waiting for a read/write semaphore in strict FIFO
order. Each reader or writer that finds the semaphore closed is inserted in the last
position of a semaphore’s wait queue list. When the semaphore is released, the pro-
cess in the first position of the wait queue list are checked. The first process is always
awoken. If it is a writer, the other processes in the wait queue continue to sleep. If it
is a reader, all readers at the start of the queue, up to the first writer, are also woken
up and get the lock. However, readers that have been queued after a writer continue
to sleep.

Each read/write semaphore is described by a rw_semaphore structure that includes the
following fields:

count
Stores two 16-bit counters. The counter in the most significant word encodes in
two’s complement form the sum of the number of nonwaiting writers (either 0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 5: Kernel Synchronization

or 1) and the number of waiting kernel control paths. The counter in the less sig-
nificant word encodes the total number of nonwaiting readers and writers.

wait_list
Points to a list of waiting processes. Each element in this list is a rwsem_waiter
structure, including a pointer to the descriptor of the sleeping process and a flag
indicating whether the process wants the semaphore for reading or for writing.

wait_lock
A spin lock used to protect the wait queue list and the rw_semaphore structure
itself.

The init_rwsem() function initializes an rw_semaphore structure by setting the count
field to 0, the wait_lock spin lock to unlocked, and wait_list to the empty list.

The down_read() and down_write() functions acquire the read/write semaphore for
reading and writing, respectively. Similarly, the up_read() and up_write() functions
release a read/write semaphore previously acquired for reading and for writing. The
down_read_trylock() and down_write_trylock() functions are similar to down_read()
and down_write(), respectively, but they do not block the process if the semaphore is
busy. Finally, the downgrade_write() function atomically transforms a write lock into
a read lock. The implementation of these five functions is long, but easy to follow
because it resembles the implementation of normal semaphores; therefore, we avoid
describing them.

Completions
Linux 2.6 also makes use of another synchronization primitive similar to sema-
phores: completions. They have been introduced to solve a subtle race condition that
occurs in multiprocessor systems when process A allocates a temporary semaphore
variable, initializes it as closed MUTEX, passes its address to process B, and then
invokes down() on it. Process A plans to destroy the semaphore as soon as it awak-
ens. Later on, process B running on a different CPU invokes up() on the semaphore.
However, in the current implementation up() and down() can execute concurrently
on the same semaphore. Thus, process A can be woken up and destroy the tempo-
rary semaphore while process B is still executing the up() function. As a result, up()
might attempt to access a data structure that no longer exists.

Of course, it is possible to change the implementation of down() and up() to forbid con-
current executions on the same semaphore. However, this change would require addi-
tional instructions, which is a bad thing to do for functions that are so heavily used.

The completion is a synchronization primitive that is specifically designed to solve
this problem. The completion data structure includes a wait queue head and a flag:

struct completion {
 unsigned int done;
 wait_queue_head_t wait;
};

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Primitives | 215

The function corresponding to up() is called complete(). It receives as an argument the
address of a completion data structure, invokes spin_lock_irqsave() on the spin lock
of the completion’s wait queue, increases the done field, wakes up the exclusive pro-
cess sleeping in the wait wait queue, and finally invokes spin_unlock_irqrestore().

The function corresponding to down() is called wait_for_completion(). It receives as
an argument the address of a completion data structure and checks the value of the
done flag. If it is greater than zero, wait_for_completion() terminates, because
complete() has already been executed on another CPU. Otherwise, the function adds
current to the tail of the wait queue as an exclusive process and puts current to sleep
in the TASK_UNINTERRUPTIBLE state. Once woken up, the function removes current
from the wait queue. Then, the function checks the value of the done flag: if it is
equal to zero the function terminates, otherwise, the current process is suspended
again. As in the case of the complete() function, wait_for_completion() makes use of
the spin lock in the completion’s wait queue.

The real difference between completions and semaphores is how the spin lock
included in the wait queue is used. In completions, the spin lock is used to ensure
that complete() and wait_for_completion() cannot execute concurrently. In sema-
phores, the spin lock is used to avoid letting concurrent down()’s functions mess up
the semaphore data structure.

Local Interrupt Disabling
Interrupt disabling is one of the key mechanisms used to ensure that a sequence of
kernel statements is treated as a critical section. It allows a kernel control path to
continue executing even when hardware devices issue IRQ signals, thus providing an
effective way to protect data structures that are also accessed by interrupt handlers.
By itself, however, local interrupt disabling does not protect against concurrent
accesses to data structures by interrupt handlers running on other CPUs, so in multi-
processor systems, local interrupt disabling is often coupled with spin locks (see the
later section “Synchronizing Accesses to Kernel Data Structures”).

The local_irq_disable() macro, which makes use of the cli assembly language
instruction, disables interrupts on the local CPU. The local_irq_enable() macro,
which makes use of the of the sti assembly language instruction, enables them. As
stated in the section “IRQs and Interrupts” in Chapter 4, the cli and sti assembly
language instructions, respectively, clear and set the IF flag of the eflags control reg-
ister. The irqs_disabled() macro yields the value one if the IF flag of the eflags reg-
ister is clear, the value one if the flag is set.

When the kernel enters a critical section, it disables interrupts by clearing the IF flag
of the eflags register. But at the end of the critical section, often the kernel can’t sim-
ply set the flag again. Interrupts can execute in nested fashion, so the kernel does not
necessarily know what the IF flag was before the current control path executed. In
these cases, the control path must save the old setting of the flag and restore that set-
ting at the end.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 5: Kernel Synchronization

Saving and restoring the eflags content is achieved by means of the local_irq_save
and local_irq_restore macros, respectively. The local_irq_save macro copies the
content of the eflags register into a local variable; the IF flag is then cleared by a cli
assembly language instruction. At the end of the critical region, the macro local_
irq_restore restores the original content of eflags; therefore, interrupts are enabled
only if they were enabled before this control path issued the cli assembly language
instruction.

Disabling and Enabling Deferrable Functions
In the section “Softirqs” in Chapter 4, we explained that deferrable functions can be
executed at unpredictable times (essentially, on termination of hardware interrupt
handlers). Therefore, data structures accessed by deferrable functions must be pro-
tected against race conditions.

A trivial way to forbid deferrable functions execution on a CPU is to disable inter-
rupts on that CPU. Because no interrupt handler can be activated, softirq actions
cannot be started asynchronously.

As we’ll see in the next section, however, the kernel sometimes needs to disable
deferrable functions without disabling interrupts. Local deferrable functions can be
enabled or disabled on the local CPU by acting on the softirq counter stored in the
preempt_count field of the current’s thread_info descriptor.

Recall that the do_softirq() function never executes the softirqs if the softirq
counter is positive. Moreover, tasklets are implemented on top of softirqs, so setting
this counter to a positive value disables the execution of all deferrable functions on a
given CPU, not just softirqs.

The local_bh_disable macro adds one to the softirq counter of the local CPU, while
the local_bh_enable() function subtracts one from it. The kernel can thus use sev-
eral nested invocations of local_bh_disable; deferrable functions will be enabled
again only by the local_bh_enable macro matching the first local_bh_disable invoca-
tion.

After having decreased the softirq counter, local_bh_enable() performs two impor-
tant operations that help to ensure timely execution of long-waiting threads:

1. Checks the hardirq counter and the softirq counter in the preempt_count field of
the local CPU; if both of them are zero and there are pending softirqs to be exe-
cuted, invokes do_softirq() to activate them (see the section “Softirqs” in
Chapter 4).

2. Checks whether the TIF_NEED_RESCHED flag of the local CPU is set; if so, a pro-
cess switch request is pending, thus invokes the preempt_schedule() function
(see the section “Kernel Preemption” earlier in this chapter).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Accesses to Kernel Data Structures | 217

Synchronizing Accesses to Kernel Data Structures
A shared data structure can be protected against race conditions by using some of
the synchronization primitives shown in the previous section. Of course, system per-
formance may vary considerably, depending on the kind of synchronization primi-
tive selected. Usually, the following rule of thumb is adopted by kernel developers:
always keep the concurrency level as high as possible in the system.

In turn, the concurrency level in the system depends on two main factors:

• The number of I/O devices that operate concurrently

• The number of CPUs that do productive work

To maximize I/O throughput, interrupts should be disabled for very short periods of
time. As described in the section “IRQs and Interrupts” in Chapter 4, when inter-
rupts are disabled, IRQs issued by I/O devices are temporarily ignored by the PIC,
and no new activity can start on such devices.

To use CPUs efficiently, synchronization primitives based on spin locks should be
avoided whenever possible. When a CPU is executing a tight instruction loop wait-
ing for the spin lock to open, it is wasting precious machine cycles. Even worse, as
we have already said, spin locks have negative effects on the overall performance of
the system because of their impact on the hardware caches.

Let’s illustrate a couple of cases in which synchronization can be achieved while still
maintaining a high concurrency level:

• A shared data structure consisting of a single integer value can be updated by
declaring it as an atomic_t type and by using atomic operations. An atomic oper-
ation is faster than spin locks and interrupt disabling, and it slows down only
kernel control paths that concurrently access the data structure.

• Inserting an element into a shared linked list is never atomic, because it consists
of at least two pointer assignments. Nevertheless, the kernel can sometimes per-
form this insertion operation without using locks or disabling interrupts. As an
example of why this works, we’ll consider the case where a system call service
routine (see “System Call Handler and Service Routines” in Chapter 10) inserts
new elements in a singly linked list, while an interrupt handler or deferrable
function asynchronously looks up the list.

In the C language, insertion is implemented by means of the following pointer
assignments:
 new->next = list_element->next;
 list_element->next = new;

In assembly language, insertion reduces to two consecutive atomic instructions.
The first instruction sets up the next pointer of the new element, but it does not
modify the list. Thus, if the interrupt handler sees the list between the execution
of the first and second instructions, it sees the list without the new element. If

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 5: Kernel Synchronization

the handler sees the list after the execution of the second instruction, it sees the
list with the new element. The important point is that in either case, the list is
consistent and in an uncorrupted state. However, this integrity is assured only if
the interrupt handler does not modify the list. If it does, the next pointer that
was just set within the new element might become invalid.

However, developers must ensure that the order of the two assignment opera-
tions cannot be subverted by the compiler or the CPU’s control unit; otherwise,
if the system call service routine is interrupted by the interrupt handler between
the two assignments, the handler finds a corrupted list. Therefore, a write mem-
ory barrier primitive is required:

new->next = list_element->next;
wmb();
list_element->next = new;

Choosing Among Spin Locks, Semaphores, and Interrupt Disabling
Unfortunately, access patterns to most kernel data structures are a lot more complex
than the simple examples just shown, and kernel developers are forced to use sema-
phores, spin locks, interrupts, and softirq disabling. Generally speaking, choosing
the synchronization primitives depends on what kinds of kernel control paths access
the data structure, as shown in Table 5-8. Remember that whenever a kernel control
path acquires a spin lock (as well as a read/write lock, a seqlock, or a RCU “read
lock”), disables the local interrupts, or disables the local softirqs, kernel preemption
is automatically disabled.

Protecting a data structure accessed by exceptions

When a data structure is accessed only by exception handlers, race conditions are
usually easy to understand and prevent. The most common exceptions that give rise
to synchronization problems are the system call service routines (see the section “Sys-
tem Call Handler and Service Routines” in Chapter 10) in which the CPU operates in
Kernel Mode to offer a service to a User Mode program. Thus, a data structure

Table 5-8. Protection required by data structures accessed by kernel control paths

Kernel control paths accessing the data structure UP protection MP further protection

Exceptions Semaphore None

Interrupts Local interrupt disabling Spin lock

Deferrable functions None None or spin lock (see Table 5-9)

Exceptions + Interrupts Local interrupt disabling Spin lock

Exceptions + Deferrable functions Local softirq disabling Spin lock

Interrupts + Deferrable functions Local interrupt disabling Spin lock

Exceptions + Interrupts + Deferrable functions Local interrupt disabling Spin lock

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Accesses to Kernel Data Structures | 219

accessed only by an exception usually represents a resource that can be assigned to
one or more processes.

Race conditions are avoided through semaphores, because these primitives allow the
process to sleep until the resource becomes available. Notice that semaphores work
equally well both in uniprocessor and multiprocessor systems.

Kernel preemption does not create problems either. If a process that owns a sema-
phore is preempted, a new process running on the same CPU could try to get the
semaphore. When this occurs, the new process is put to sleep, and eventually the old
process will release the semaphore. The only case in which kernel preemption must
be explicitly disabled is when accessing per-CPU variables, as explained in the sec-
tion “Per-CPU Variables” earlier in this chapter.

Protecting a data structure accessed by interrupts

Suppose that a data structure is accessed by only the “top half” of an interrupt han-
dler. We learned in the section “Interrupt Handling” in Chapter 4 that each inter-
rupt handler is serialized with respect to itself—that is, it cannot execute more than
once concurrently. Thus, accessing the data structure does not require synchroniza-
tion primitives.

Things are different, however, if the data structure is accessed by several interrupt
handlers. A handler may interrupt another handler, and different interrupt handlers
may run concurrently in multiprocessor systems. Without synchronization, the
shared data structure might easily become corrupted.

In uniprocessor systems, race conditions must be avoided by disabling interrupts in
all critical regions of the interrupt handler. Nothing less will do because no other
synchronization primitives accomplish the job. A semaphore can block the process,
so it cannot be used in an interrupt handler. A spin lock, on the other hand, can
freeze the system: if the handler accessing the data structure is interrupted, it cannot
release the lock; therefore, the new interrupt handler keeps waiting on the tight loop
of the spin lock.

Multiprocessor systems, as usual, are even more demanding. Race conditions cannot
be avoided by simply disabling local interrupts. In fact, even if interrupts are dis-
abled on a CPU, interrupt handlers can still be executed on the other CPUs. The
most convenient method to prevent the race conditions is to disable local interrupts
(so that other interrupt handlers running on the same CPU won’t interfere) and to
acquire a spin lock or a read/write spin lock that protects the data structure. Notice
that these additional spin locks cannot freeze the system because even if an interrupt
handler finds the lock closed, eventually the interrupt handler on the other CPU that
owns the lock will release it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 5: Kernel Synchronization

The Linux kernel uses several macros that couple the enabling and disabling of local
interrupts with spin lock handling. Table 5-9 describes all of them. In uniprocessor
systems, these macros just enable or disable local interrupts and kernel preemption.

Protecting a data structure accessed by deferrable functions

What kind of protection is required for a data structure accessed only by deferrable
functions? Well, it mostly depends on the kind of deferrable function. In the section
“Softirqs and Tasklets” in Chapter 4, we explained that softirqs and tasklets essen-
tially differ in their degree of concurrency.

Table 5-9. Interrupt-aware spin lock macros

Macro Description

spin_lock_irq(l) local_irq_disable(); spin_lock(l)

spin_unlock_irq(l) spin_unlock(l); local_irq_enable()

spin_lock_bh(l) local_bh_disable(); spin_lock(l)

spin_unlock_bh(l) spin_unlock(l); local_bh_enable()

spin_lock_irqsave(l,f) local_irq_save(f); spin_lock(l)

spin_unlock_irqrestore(l,f) spin_unlock(l); local_irq_restore(f)

read_lock_irq(l) local_irq_disable(); read_lock(l)

read_unlock_irq(l) read_unlock(l); local_irq_enable()

read_lock_bh(l) local_bh_disable(); read_lock(l)

read_unlock_bh(l) read_unlock(l); local_bh_enable()

write_lock_irq(l) local_irq_disable(); write_lock(l)

write_unlock_irq(l) write_unlock(l); local_irq_enable()

write_lock_bh(l) local_bh_disable(); write_lock(l)

write_unlock_bh(l) write_unlock(l); local_bh_enable()

read_lock_irqsave(l,f) local_irq_save(f); read_lock(l)

read_unlock_irqrestore(l,f) read_unlock(l); local_irq_restore(f)

write_lock_irqsave(l,f) local_irq_save(f); write_lock(l)

write_unlock_irqrestore(l,f) write_unlock(l); local_irq_restore(f)

read_seqbegin_irqsave(l,f) local_irq_save(f); read_seqbegin(l)

read_seqretry_irqrestore(l,v,f) read_seqretry(l,v); local_irq_restore(f)

write_seqlock_irqsave(l,f) local_irq_save(f); write_seqlock(l)

write_sequnlock_irqrestore(l,f) write_sequnlock(l); local_irq_restore(f)

write_seqlock_irq(l) local_irq_disable(); write_seqlock(l)

write_sequnlock_irq(l) write_sequnlock(l); local_irq_enable()

write_seqlock_bh(l) local_bh_disable(); write_seqlock(l);

write_sequnlock_bh(l) write_sequnlock(l); local_bh_enable()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Accesses to Kernel Data Structures | 221

First of all, no race condition may exist in uniprocessor systems. This is because exe-
cution of deferrable functions is always serialized on a CPU—that is, a deferrable
function cannot be interrupted by another deferrable function. Therefore, no syn-
chronization primitive is ever required.

Conversely, in multiprocessor systems, race conditions do exist because several
deferrable functions may run concurrently. Table 5-10 lists all possible cases.

A data structure accessed by a softirq must always be protected, usually by means of
a spin lock, because the same softirq may run concurrently on two or more CPUs.
Conversely, a data structure accessed by just one kind of tasklet need not be pro-
tected, because tasklets of the same kind cannot run concurrently. However, if the
data structure is accessed by several kinds of tasklets, then it must be protected.

Protecting a data structure accessed by exceptions and interrupts

Let’s consider now a data structure that is accessed both by exceptions (for instance,
system call service routines) and interrupt handlers.

On uniprocessor systems, race condition prevention is quite simple, because inter-
rupt handlers are not reentrant and cannot be interrupted by exceptions. As long as
the kernel accesses the data structure with local interrupts disabled, the kernel can-
not be interrupted when accessing the data structure. However, if the data structure
is accessed by just one kind of interrupt handler, the interrupt handler can freely
access the data structure without disabling local interrupts.

On multiprocessor systems, we have to take care of concurrent executions of excep-
tions and interrupts on other CPUs. Local interrupt disabling must be coupled with a
spin lock, which forces the concurrent kernel control paths to wait until the handler
accessing the data structure finishes its work.

Sometimes it might be preferable to replace the spin lock with a semaphore. Because
interrupt handlers cannot be suspended, they must acquire the semaphore using a
tight loop and the down_trylock() function; for them, the semaphore acts essentially
as a spin lock. System call service routines, on the other hand, may suspend the call-
ing processes when the semaphore is busy. For most system calls, this is the expected
behavior. In this case, semaphores are preferable to spin locks, because they lead to a
higher degree of concurrency of the system.

Table 5-10. Protection required by data structures accessed by deferrable functions in SMP

Deferrable functions accessing the data structure Protection

Softirqs Spin lock

One tasklet None

Many tasklets Spin lock

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 5: Kernel Synchronization

Protecting a data structure accessed by exceptions and deferrable functions

A data structure accessed both by exception handlers and deferrable functions can be
treated like a data structure accessed by exception and interrupt handlers. In fact,
deferrable functions are essentially activated by interrupt occurrences, and no excep-
tion can be raised while a deferrable function is running. Coupling local interrupt
disabling with a spin lock is therefore sufficient.

Actually, this is much more than sufficient: the exception handler can simply disable
deferrable functions instead of local interrupts by using the local_bh_disable()
macro (see the section “Softirqs” in Chapter 4). Disabling only the deferrable func-
tions is preferable to disabling interrupts, because interrupts continue to be serviced
by the CPU. Execution of deferrable functions on each CPU is serialized, so no race
condition exists.

As usual, in multiprocessor systems, spin locks are required to ensure that the data
structure is accessed at any time by just one kernel control.

Protecting a data structure accessed by interrupts and deferrable functions

This case is similar to that of a data structure accessed by interrupt and exception
handlers. An interrupt might be raised while a deferrable function is running, but no
deferrable function can stop an interrupt handler. Therefore, race conditions must be
avoided by disabling local interrupts during the deferrable function. However, an
interrupt handler can freely touch the data structure accessed by the deferrable func-
tion without disabling interrupts, provided that no other interrupt handler accesses
that data structure.

Again, in multiprocessor systems, a spin lock is always required to forbid concurrent
accesses to the data structure on several CPUs.

Protecting a data structure accessed by exceptions, interrupts,
and deferrable functions

Similarly to previous cases, disabling local interrupts and acquiring a spin lock is
almost always necessary to avoid race conditions. Notice that there is no need to
explicitly disable deferrable functions, because they are essentially activated when
terminating the execution of interrupt handlers; disabling local interrupts is there-
fore sufficient.

Examples of Race Condition Prevention
Kernel developers are expected to identify and solve the synchronization problems
raised by interleaving kernel control paths. However, avoiding race conditions is a
hard task because it requires a clear understanding of how the various components of
the kernel interact. To give a feeling of what’s really inside the kernel code, let’s men-
tion a few typical usages of the synchronization primitives defined in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Examples of Race Condition Prevention | 223

Reference Counters
Reference counters are widely used inside the kernel to avoid race conditions due to
the concurrent allocation and releasing of a resource. A reference counter is just an
atomic_t counter associated with a specific resource such as a memory page, a mod-
ule, or a file. The counter is atomically increased when a kernel control path starts
using the resource, and it is decreased when a kernel control path finishes using the
resource. When the reference counter becomes zero, the resource is not being used,
and it can be released if necessary.

The Big Kernel Lock
In earlier Linux kernel versions, a big kernel lock (also known as global kernel lock, or
BKL) was widely used. In Linux 2.0, this lock was a relatively crude spin lock, ensur-
ing that only one processor at a time could run in Kernel Mode. The 2.2 and 2.4 ker-
nels were considerably more flexible and no longer relied on a single spin lock;
rather, a large number of kernel data structures were protected by many different
spin locks. In Linux kernel version 2.6, the big kernel lock is used to protect old code
(mostly functions related to the VFS and to several filesystems).

Starting from kernel version 2.6.11, the big kernel lock is implemented by a sema-
phore named kernel_sem (in earlier 2.6 versions, the big kernel lock was imple-
mented by means of a spin lock). The big kernel lock is slightly more sophisticated
than a simple semaphore, however.

Every process descriptor includes a lock_depth field, which allows the same process
to acquire the big kernel lock several times. Therefore, two consecutive requests for
it will not hang the processor (as for normal locks). If the process has not acquired
the lock, the field has the value –1; otherwise, the field value plus 1 specifies how
many times the lock has been taken. The lock_depth field is crucial for allowing
interrupt handlers, exception handlers, and deferrable functions to take the big ker-
nel lock: without it, every asynchronous function that tries to get the big kernel lock
could generate a deadlock if the current process already owns the lock.

The lock_kernel() and unlock_kernel() functions are used to get and release the big
kernel lock. The former function is equivalent to:

depth = current->lock_depth + 1;
if (depth == 0)
 down(&kernel_sem);
current->lock_depth = depth;

while the latter is equivalent to:

if (--current->lock_depth < 0)
 up(&kernel_sem);

Notice that the if statements of the lock_kernel() and unlock_kernel() functions
need not be executed atomically because lock_depth is not a global variable—each

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 5: Kernel Synchronization

CPU addresses a field of its own current process descriptor. Local interrupts inside
the if statements do not induce race conditions either. Even if the new kernel con-
trol path invokes lock_kernel(), it must release the big kernel lock before
terminating.

Surprisingly enough, a process holding the big kernel lock is allowed to invoke
schedule(), thus relinquishing the CPU. The schedule() function, however, checks
the lock_depth field of the process being replaced and, if its value is zero or positive,
automatically releases the kernel_sem semaphore (see the section “The schedule()
Function” in Chapter 7). Thus, no process that explicitly invokes schedule() can
keep the big kernel lock across the process switch. The schedule() function, how-
ever, will reacquire the big kernel lock for the process when it will be selected again
for execution.

Things are different, however, if a process that holds the big kernel lock is pre-
empted by another process. Up to kernel version 2.6.10 this case could not occur,
because acquiring a spin lock automatically disables kernel preemption. The current
implementation of the big kernel lock, however, is based on a semaphore, and
acquiring it does not automatically disable kernel preemption. Actually, allowing
kernel preemption inside critical regions protected by the big kernel lock has been
the main reason for changing its implementation. This, in turn, has beneficial effects
on the response time of the system.

When a process holding the big kernel lock is preempted, schedule() must not
release the semaphore because the process executing the code in the critical region
has not voluntarily triggered a process switch, thus if the big kernel lock would be
released, another process might take it and corrupt the data structures accessed by
the preempted process.

To avoid the preempted process losing the big kernel lock, the preempt_schedule_
irq() function temporarily sets the lock_depth field of the process to -1 (see the sec-
tion “Returning from Interrupts and Exceptions” in Chapter 4). Looking at the value
of this field, schedule() assumes that the process being replaced does not hold the
kernel_sem semaphore and thus does not release it. As a result, the kernel_sem sema-
phore continues to be owned by the preempted process. Once this process is selected
again by the scheduler, the preempt_schedule_irq() function restores the original
value of the lock_depth field and lets the process resume execution in the critical sec-
tion protected by the big kernel lock.

Memory Descriptor Read/Write Semaphore
Each memory descriptor of type mm_struct includes its own semaphore in the mmap_
sem field (see the section “The Memory Descriptor” in Chapter 9). The semaphore
protects the descriptor against race conditions that could arise because a memory
descriptor can be shared among several lightweight processes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Examples of Race Condition Prevention | 225

For instance, let’s suppose that the kernel must create or extend a memory region for
some process; to do this, it invokes the do_mmap() function, which allocates a new
vm_area_struct data structure. In doing so, the current process could be suspended if
no free memory is available, and another process sharing the same memory descrip-
tor could run. Without the semaphore, every operation of the second process that
requires access to the memory descriptor (for instance, a Page Fault due to a Copy on
Write) could lead to severe data corruption.

The semaphore is implemented as a read/write semaphore, because some kernel
functions, such as the Page Fault exception handler (see the section “Page Fault
Exception Handler” in Chapter 9), need only to scan the memory descriptors.

Slab Cache List Semaphore
The list of slab cache descriptors (see the section “Cache Descriptor” in Chapter 8) is
protected by the cache_chain_sem semaphore, which grants an exclusive right to
access and modify the list.

A race condition is possible when kmem_cache_create() adds a new element in the
list, while kmem_cache_shrink() and kmem_cache_reap() sequentially scan the list.
However, these functions are never invoked while handling an interrupt, and they can
never block while accessing the list. The semaphore plays an active role both in multi-
processor systems and in uniprocessor systems with kernel preemption supported.

Inode Semaphore
As we’ll see in “Inode Objects” in Chapter 12, Linux stores the information on a disk
file in a memory object called an inode. The corresponding data structure includes its
own semaphore in the i_sem field.

A huge number of race conditions can occur during filesystem handling. Indeed,
each file on disk is a resource held in common for all users, because all processes
may (potentially) access the file content, change its name or location, destroy or
duplicate it, and so on. For example, let’s suppose that a process lists the files con-
tained in some directory. Each disk operation is potentially blocking, and therefore
even in uniprocessor systems, other processes could access the same directory and
modify its content while the first process is in the middle of the listing operation. Or,
again, two different processes could modify the same directory at the same time. All
these race conditions are avoided by protecting the directory file with the inode
semaphore.

Whenever a program uses two or more semaphores, the potential for deadlock is
present, because two different paths could end up waiting for each other to release a
semaphore. Generally speaking, Linux has few problems with deadlocks on sema-
phore requests, because each kernel control path usually needs to acquire just one
semaphore at a time. However, in some cases, the kernel must get two or more locks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 5: Kernel Synchronization

Inode semaphores are prone to this scenario; for instance, this occurs in the service
routine in the rename() system call. In this case, two different inodes are involved in
the operation, so both semaphores must be taken. To avoid such deadlocks, sema-
phore requests are performed in predefined address order.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

227

Chapter 6\ CHAPTER 6

Timing Measurements

Countless computerized activities are driven by timing measurements, often behind
the user’s back. For instance, if the screen is automatically switched off after you have
stopped using the computer’s console, it is due to a timer that allows the kernel to
keep track of how much time has elapsed since you pushed a key or moved the
mouse. If you receive a warning from the system asking you to remove a set of
unused files, it is the outcome of a program that identifies all user files that have not
been accessed for a long time. To do these things, programs must be able to retrieve a
timestamp identifying its last access time from each file. Such a timestamp must be
automatically written by the kernel. More significantly, timing drives process
switches along with even more visible kernel activities such as checking for time-outs.

We can distinguish two main kinds of timing measurement that must be performed
by the Linux kernel:

• Keeping the current time and date so they can be returned to user programs
through the time(), ftime(), and gettimeofday() APIs (see the section “The
time() and gettimeofday() System Calls” later in this chapter) and used by the
kernel itself as timestamps for files and network packets

• Maintaining timers—mechanisms that are able to notify the kernel (see the later
section “Software Timers and Delay Functions”) or a user program (see the later
sections “The setitimer() and alarm() System Calls” and “System Calls for
POSIX Timers”) that a certain interval of time has elapsed

Timing measurements are performed by several hardware circuits based on fixed-
frequency oscillators and counters. This chapter consists of four different parts. The
first two sections describe the hardware devices that underly timing and give an over-
all picture of Linux timekeeping architecture. The following sections describe the
main time-related duties of the kernel: implementing CPU time sharing, updating
system time and resource usage statistics, and maintaining software timers. The last
section discusses the system calls related to timing measurements and the corre-
sponding service routines.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 6: Timing Measurements

Clock and Timer Circuits
On the 80×86 architecture, the kernel must explicitly interact with several kinds of
clocks and timer circuits. The clock circuits are used both to keep track of the cur-
rent time of day and to make precise time measurements. The timer circuits are pro-
grammed by the kernel, so that they issue interrupts at a fixed, predefined frequency;
such periodic interrupts are crucial for implementing the software timers used by the
kernel and the user programs. We’ll now briefly describe the clock and hardware cir-
cuits that can be found in IBM-compatible PCs.

Real Time Clock (RTC)
All PCs include a clock called Real Time Clock (RTC), which is independent of the
CPU and all other chips.

The RTC continues to tick even when the PC is switched off, because it is energized
by a small battery. The CMOS RAM and RTC are integrated in a single chip (the
Motorola 146818 or an equivalent).

The RTC is capable of issuing periodic interrupts on IRQ8 at frequencies ranging
between 2 Hz and 8,192 Hz. It can also be programmed to activate the IRQ8 line
when the RTC reaches a specific value, thus working as an alarm clock.

Linux uses the RTC only to derive the time and date; however, it allows processes to
program the RTC by acting on the /dev/rtc device file (see Chapter 13). The kernel
accesses the RTC through the 0x70 and 0x71 I/O ports. The system administrator can
read and write the RTC by executing the clock Unix system program that acts
directly on these two I/O ports.

Time Stamp Counter (TSC)
All 80×86 microprocessors include a CLK input pin, which receives the clock signal
of an external oscillator. Starting with the Pentium, 80×86 microprocessors sport a
counter that is increased at each clock signal. The counter is accessible through the
64-bit Time Stamp Counter (TSC) register, which can be read by means of the rdtsc
assembly language instruction. When using this register, the kernel has to take into
consideration the frequency of the clock signal: if, for instance, the clock ticks at
1 GHz, the Time Stamp Counter is increased once every nanosecond.

Linux may take advantage of this register to get much more accurate time measure-
ments than those delivered by the Programmable Interval Timer. To do this, Linux
must determine the clock signal frequency while initializing the system. In fact,
because this frequency is not declared when compiling the kernel, the same kernel
image may run on CPUs whose clocks may tick at any frequency.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Clock and Timer Circuits | 229

The task of figuring out the actual frequency of a CPU is accomplished during the
system’s boot. The calibrate_tsc() function computes the frequency by counting
the number of clock signals that occur in a time interval of approximately 5 millisec-
onds. This time constant is produced by properly setting up one of the channels of
the Programmable Interval Timer (see the next section).*

Programmable Interval Timer (PIT)
Besides the Real Time Clock and the Time Stamp Counter, IBM-compatible PCs
include another type of time-measuring device called Programmable Interval Timer
(PIT). The role of a PIT is similar to the alarm clock of a microwave oven: it makes
the user aware that the cooking time interval has elapsed. Instead of ringing a bell,
this device issues a special interrupt called timer interrupt, which notifies the kernel
that one more time interval has elapsed.† Another difference from the alarm clock is
that the PIT goes on issuing interrupts forever at some fixed frequency established by
the kernel. Each IBM-compatible PC includes at least one PIT, which is usually
implemented by an 8254 CMOS chip using the 0x40–0x43 I/O ports.

As we’ll see in detail in the next paragraphs, Linux programs the PIT of IBM-compat-
ible PCs to issue timer interrupts on the IRQ0 at a (roughly) 1000-Hz frequency—
that is, once every 1 millisecond. This time interval is called a tick, and its length in
nanoseconds is stored in the tick_nsec variable. On a PC, tick_nsec is initialized to
999,848 nanoseconds (yielding a clock signal frequency of about 1000.15 Hz), but its
value may be automatically adjusted by the kernel if the computer is synchronized
with an external clock (see the later section “The adjtimex() System Call”). The ticks
beat time for all activities in the system; in some sense, they are like the ticks
sounded by a metronome while a musician is rehearsing.

Generally speaking, shorter ticks result in higher resolution timers, which help with
smoother multimedia playback and faster response time when performing synchro-
nous I/O multiplexing (poll() and select() system calls). This is a trade-off how-
ever: shorter ticks require the CPU to spend a larger fraction of its time in Kernel
Mode—that is, a smaller fraction of time in User Mode. As a consequence, user pro-
grams run slower.

The frequency of timer interrupts depends on the hardware architecture. The slower
machines have a tick of roughly 10 milliseconds (100 timer interrupts per second),
while the faster ones have a tick of roughly 1 millisecond (1000 or 1024 timer inter-
rupts per second).

* To avoid losing significant digits in the integer divisions, calibrate_tsc() returns the duration, in microsec-
onds, of a clock tick multiplied by 232.

† The PIT is also used to drive an audio amplifier connected to the computer’s internal speaker.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 6: Timing Measurements

A few macros in the Linux code yield some constants that determine the frequency of
timer interrupts. These are discussed in the following list.

• HZ yields the approximate number of timer interrupts per second—that is, their
frequency. This value is set to 1000 for IBM PCs.

• CLOCK_TICK_RATE yields the value 1,193,182, which is the 8254 chip’s internal
oscillator frequency.

• LATCH yields the ratio between CLOCK_TICK_RATE and HZ, rounded to the nearest
integer. It is used to program the PIT.

The PIT is initialized by setup_pit_timer() as follows:

spin_lock_irqsave(&i8253_lock, flags);
outb_p(0x34,0x43);
udelay(10);
outb_p(LATCH & 0xff, 0x40);
udelay(10);
outb(LATCH >> 8, 0x40);
spin_unlock_irqrestore(&i8253_lock, flags);

The outb() C function is equivalent to the outb assembly language instruction: it copies
the first operand into the I/O port specified as the second operand. The outb_p() func-
tion is similar to outb(), except that it introduces a pause by executing a no-op instruc-
tion to keep the hardware from getting confused. The udelay() macro introduces a
further small delay (see the later section “Delay Functions”). The first outb_p() invoca-
tion is a command to the PIT to issue interrupts at a new rate. The next two outb_p()
and outb() invocations supply the new interrupt rate to the device. The 16-bit LATCH
constant is sent to the 8-bit 0x40 I/O port of the device as two consecutive bytes. As a
result, the PIT issues timer interrupts at a (roughly) 1000-Hz frequency (that is, once
every 1 ms).

CPU Local Timer
The local APIC present in recent 80 × 86 microprocessors (see the section “Inter-
rupts and Exceptions” in Chapter 4) provides yet another time-measuring device: the
CPU local timer.

The CPU local timer is a device similar to the Programmable Interval Timer just
described that can issue one-shot or periodic interrupts. There are, however, a few
differences:

• The APIC’s timer counter is 32 bits long, while the PIT’s timer counter is 16 bits
long; therefore, the local timer can be programmed to issue interrupts at very
low frequencies (the counter stores the number of ticks that must elapse before
the interrupt is issued).

• The local APIC timer sends an interrupt only to its processor, while the PIT
raises a global interrupt, which may be handled by any CPU in the system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Clock and Timer Circuits | 231

• The APIC’s timer is based on the bus clock signal (or the APIC bus signal, in
older machines). It can be programmed in such a way to decrease the timer
counter every 1, 2, 4, 8, 16, 32, 64, or 128 bus clock signals. Conversely, the PIT,
which makes use of its own clock signals, can be programmed in a more flexible
way.

High Precision Event Timer (HPET)
The High Precision Event Timer (HPET) is a new timer chip developed jointly by
Intel and Microsoft. Although HPETs are not yet very common in end-user
machines, Linux 2.6 already supports them, so we’ll spend a few words describing
their characteristics.

The HPET provides a number of hardware timers that can be exploited by the ker-
nel. Basically, the chip includes up to eight 32-bit or 64-bit independent counters.
Each counter is driven by its own clock signal, whose frequency must be at least
10 MHz; therefore, the counter is increased at least once in 100 nanoseconds. Any
counter is associated with at most 32 timers, each of which is composed by a com-
parator and a match register. The comparator is a circuit that checks the value in the
counter against the value in the match register, and raises a hardware interrupt if a
match is found. Some of the timers can be enabled to generate a periodic interrupt.

The HPET chip can be programmed through registers mapped into memory space
(much like the I/O APIC). The BIOS establishes the mapping during the bootstrap-
ping phase and reports to the operating system kernel its initial memory address. The
HPET registers allow the kernel to read and write the values of the counters and of
the match registers, to program one-shot interrupts, and to enable or disable peri-
odic interrupts on the timers that support them.

The next generation of motherboards will likely support both the HPET and the
8254 PIT; in some future time, however, the HPET is expected to completely replace
the PIT.

ACPI Power Management Timer
The ACPI Power Management Timer (or ACPI PMT) is yet another clock device
included in almost all ACPI-based motherboards. Its clock signal has a fixed fre-
quency of roughly 3.58 MHz. The device is actually a simple counter increased at
each clock tick; to read the current value of the counter, the kernel accesses an I/O
port whose address is determined by the BIOS during the initialization phase (see
Appendix A).

The ACPI Power Management Timer is preferable to the TSC if the operating sys-
tem or the BIOS may dynamically lower the frequency or voltage of the CPU to save
battery power. When this happens, the frequency of the TSC changes—thus causing
time warps and others unpleasant effects—while the frequency of the ACPI PMT

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 6: Timing Measurements

does not. On the other hand, the high-frequency of the TSC counter is quite handy
for measuring very small time intervals.

However, if an HPET device is present, it should always be preferred to the other cir-
cuits because of its richer architecture. Table 6-2 later in this chapter illustrates how
Linux takes advantage of the available timing circuits.

Now that we understand what the hardware timers are, we may discuss how the
Linux kernel exploits them to conduct all activities of the system.

The Linux Timekeeping Architecture
Linux must carry on several time-related activities. For instance, the kernel
periodically:

• Updates the time elapsed since system startup.

• Updates the time and date.

• Determines, for every CPU, how long the current process has been running, and
preempts it if it has exceeded the time allocated to it. The allocation of time slots
(also called “quanta”) is discussed in Chapter 7.

• Updates resource usage statistics.

• Checks whether the interval of time associated with each software timer (see the
later section “Software Timers and Delay Functions”) has elapsed.

Linux’s timekeeping architecture is the set of kernel data structures and functions
related to the flow of time. Actually, 80 × 86-based multiprocessor machines have a
timekeeping architecture that is slightly different from the timekeeping architecture
of uniprocessor machines:

• In a uniprocessor system, all time-keeping activities are triggered by interrupts
raised by the global timer (either the Programmable Interval Timer or the High
Precision Event Timer).

• In a multiprocessor system, all general activities (such as handling of software
timers) are triggered by the interrupts raised by the global timer, while CPU-spe-
cific activities (such as monitoring the execution time of the currently running
process) are triggered by the interrupts raised by the local APIC timer.

Unfortunately, the distinction between the two cases is somewhat blurred. For
instance, some early SMP systems based on Intel 80486 processors didn’t have local
APICs. Even nowadays, there are SMP motherboards so buggy that local timer inter-
rupts are not usable at all. In these cases, the SMP kernel must resort to the UP time-
keeping architecture. On the other hand, recent uniprocessor systems feature one
local APIC, so the UP kernel often makes use of the SMP timekeeping architecture.
However, to simplify our description, we won’t discuss these hybrid cases and will
stick to the two “pure” timekeeping architectures.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Linux Timekeeping Architecture | 233

Linux’s timekeeping architecture depends also on the availability of the Time Stamp
Counter (TSC), of the ACPI Power Management Timer, and of the High Precision
Event Timer (HPET). The kernel uses two basic timekeeping functions: one to keep
the current time up-to-date and another to count the number of nanoseconds that
have elapsed within the current second. There are different ways to get the last value.
Some methods are more precise and are available if the CPU has a Time Stamp
Counter or a HPET; a less-precise method is used in the opposite case (see the later
section “The time() and gettimeofday() System Calls”).

Data Structures of the Timekeeping Architecture
The timekeeping architecture of Linux 2.6 makes use of a large number of data
structures. As usual, we will describe the most important variables by referring to
the 80 × 86 architecture.

The timer object

In order to handle the possible timer sources in a uniform way, the kernel makes use
of a “timer object,” which is a descriptor of type timer_opts consisting of the timer
name and of four standard methods shown in Table 6-1.

The most important methods of the timer object are mark_offset and get_offset.
The mark_offset method is invoked by the timer interrupt handler, and records in a
suitable data structure the exact time at which the tick occurred. Using the saved
value, the get_offset method computes the time in microseconds elapsed since the
last timer interrupt (tick). Thanks to these two methods, Linux timekeeping architec-
ture achieves a sub-tick resolution—that is, the kernel is able to determine the cur-
rent time with a precision much higher than the tick duration. This operation is
called time interpolation.

The cur_timer variable stores the address of the timer object corresponding to the
“best” timer source available in the system. Initially, cur_timer points to timer_none,
which is the object corresponding to a dummy timer source used when the kernel is
being initialized. During kernel initialization, the select_timer() function sets cur_
timer to the address of the appropriate timer object. Table 6-2 shows the most com-
mon timer objects used in the 80×86 architecture, in order of preference. As you see,

Table 6-1. The fields of the timer_opts data structure

Field name Description

name A string identifying the timer source

mark_offset Records the exact time of the last tick; it is invoked by the timer interrupt handler

get_offset Returns the time elapsed since the last tick

monotonic_clock Returns the number of nanoseconds since the kernel initialization

delay Waits for a given number of “loops” (see the later section “Delay Functions”)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 6: Timing Measurements

select_timer() selects the HPET, if available; otherwise, it selects the ACPI Power
Management Timer, if available, or the TSC. As the last resort, select_timer()
selects the always-present PIT. The “Time interpolation” column lists the timer
sources used by the mark_offset and get_offset methods of the timer object; the
“Delay” column lists the timer sources used by the delay method.

Notice that local APIC timers do not have a corresponding timer object. The reason
is that local APIC timers are used only to generate periodic interrupts and are never
used to achieve sub-tick resolution.

The jiffies variable

The jiffies variable is a counter that stores the number of elapsed ticks since the
system was started. It is increased by one when a timer interrupt occurs—that is, on
every tick. In the 80 × 86 architecture, jiffies is a 32-bit variable, therefore it wraps
around in approximately 50 days—a relatively short time interval for a Linux server.
However, the kernel handles cleanly the overflow of jiffies thanks to the time_
after, time_after_eq, time_before, and time_before_eq macros: they yield the cor-
rect value even if a wraparound occurred.

You might suppose that jiffies is initialized to zero at system startup. Actually, this
is not the case: jiffies is initialized to 0xfffb6c20, which corresponds to the 32-bit
signed value −300,000; therefore, the counter will overflow five minutes after the sys-
tem boot. This is done on purpose, so that buggy kernel code that does not check for
the overflow of jiffies shows up very soon in the developing phase and does not
pass unnoticed in stable kernels.

In a few cases, however, the kernel needs the real number of system ticks elapsed
since the system boot, regardless of the overflows of jiffies. Therefore, in the 80 × 86
architecture the jiffies variable is equated by the linker to the 32 less significant bits
of a 64-bit counter called jiffies_64. With a tick of 1 millisecond, the jiffies_64
variable wraps around in several hundreds of millions of years, thus we can safely
assume that it never overflows.

You might wonder why jiffies has not been directly declared as a 64-bit unsigned
long long integer on the 80 × 86 architecture. The answer is that accesses to 64-bit vari-

Table 6-2. Typical timer objects of the 80x86 architecture, in order of preference

Timer object name Description Time interpolation Delay

timer_hpet High Precision Event Timer (HPET) HPET HPET

timer_pmtmr ACPI Power Management Timer (ACPI PMT) ACPI PMT TSC

timer_tsc Time Stamp Counter (TSC) TSC TSC

timer_pit Programmable Interval Timer (PIT) PIT Tight loop

timer_none Generic dummy timer source
(used during kernel initialization)

(none) Tight loop

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Linux Timekeeping Architecture | 235

ables in 32-bit architectures cannot be done atomically. Therefore, every read opera-
tion on the whole 64 bits requires some synchronization technique to ensure that the
counter is not updated while the two 32-bit half-counters are read; as a consequence,
every 64-bit read operation is significantly slower than a 32-bit read operation.

The get_jiffies_64() function reads the value of jiffies_64 and returns its value:

unsigned long long get_jiffies_64(void)
{
 unsigned long seq;
 unsigned long long ret;
 do {
 seq = read_seqbegin(&xtime_lock);
 ret = jiffies_64;
 } while (read_seqretry(&xime_lock, seq));
 return ret;
}

The 64-bit read operation is protected by the xtime_lock seqlock (see the section
“Seqlocks” in Chapter 5): the function keeps reading the jiffies_64 variable until it
knows for sure that it has not been concurrently updated by another kernel control
path.

Conversely, the critical region increasing the jiffies_64 variable must be protected
by means of write_seqlock(&xtime_lock) and write_sequnlock(&xtime_lock). Notice
that the ++jiffies_64 instruction also increases the 32-bit jiffies variable, because
the latter corresponds to the lower half of jiffies_64.

The xtime variable

The xtime variable stores the current time and date; it is a structure of type timespec
having two fields:

tv_sec
Stores the number of seconds that have elapsed since midnight of January 1,
1970 (UTC)

tv_nsec
Stores the number of nanoseconds that have elapsed within the last second (its
value ranges between 0 and 999,999,999)

The xtime variable is usually updated once in a tick—that is, roughly 1000 times per
second. As we’ll see in the later section “System Calls Related to Timing Measure-
ments,” user programs get the current time and date from the xtime variable. The
kernel also often refers to it, for instance, when updating inode timestamps (see the
section “File Descriptor and Inode” in Chapter 1).

The xtime_lock seqlock avoids the race conditions that could occur due to concur-
rent accesses to the xtime variable. Remember that xtime_lock also protects the
jiffies_64 variable; in general, this seqlock is used to define several critical regions
of the timekeeping architecture.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 6: Timing Measurements

Timekeeping Architecture in Uniprocessor Systems
In a uniprocessor system, all time-related activities are triggered by the interrupts
raised by the Programmable Interval Timer on IRQ line 0. As usual, in Linux, some
of these activities are executed as soon as possible right after the interrupt is raised,
while the remaining activities are carried on by deferrable functions (see the later sec-
tion “Dynamic Timers”).

Initialization phase

During kernel initialization, the time_init() function is invoked to set up the time-
keeping architecture. It usually* performs the following operations:

1. Initializes the xtime variable. The number of seconds elapsed since the midnight
of January 1, 1970 is read from the Real Time Clock by means of the get_cmos_
time() function. The tv_nsec field of xtime is set, so that the forthcoming over-
flow of the jiffies variable will coincide with an increment of the tv_sec field—
that is, it will fall on a second boundary.

2. Initializes the wall_to_monotonic variable. This variable is of the same type
timespec as xtime, and it essentially stores the number of seconds and nanosec-
onds to be added to xtime in order to get a monotonic (ever increasing) flow of
time. In fact, both leap seconds and synchronization with external clocks
might suddenly change the tv_sec and tv_nsec fields of xtime so that they are
no longer monotonically increased. As we’ll see in the later section “System
Calls for POSIX Timers,” sometimes the kernel needs a truly monotonic time
source.

3. If the kernel supports HPET, it invokes the hpet_enable() function to determine
whether the ACPI firmware has probed the chip and mapped its registers in the
memory address space. In the affirmative case, hpet_enable() programs the first
timer of the HPET chip so that it raises the IRQ0 interrupt 1000 times per sec-
ond. Otherwise, if the HPET chip is not available, the kernel will use the PIT:
the chip has already been programmed by the init_IRQ() function to raise 1000
timer interrupts per second, as described in the earlier section “Programmable
Interval Timer (PIT).”

4. Invokes select_timer() to select the best timer source available in the system,
and sets the cur_timer variable to the address of the corresponding timer object.

* The time_init() function is executed before mem_init(), which initializes the memory data structures.
Unfortunately, the HPET registers are memory mapped, therefore initialization of the HPET chip has to be
done after the execution of mem_init(). Linux 2.6 adopts a cumbersome solution: if the kernel supports the
HPET chip, the time_init() function limits itself to trigger the activation of the hpet_time_init() function.
The latter function is executed after mem_init() and performs the operations described in this section.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Linux Timekeeping Architecture | 237

5. Invokes setup_irq(0,&irq0) to set up the interrupt gate corresponding to
IRQ0—the line associated with the system timer interrupt source (PIT or
HPET).The irq0 variable is statically defined as:

struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0,
 "timer", NULL, NULL };

From now on, the timer_interrupt() function will be invoked once every tick
with interrupts disabled, because the status field of IRQ0’s main descriptor has
the SA_INTERRUPT flag set.

The timer interrupt handler

The timer_interrupt() function is the interrupt service routine (ISR) of the PIT or of
the HPET; it performs the following steps:

1. Protects the time-related kernel variables by issuing a write_seqlock() on the
xtime_lock seqlock (see the section “Seqlocks” in Chapter 5).

2. Executes the mark_offset method of the cur_timer timer object. As explained in
the earlier section “Data Structures of the Timekeeping Architecture,” there are
four possible cases:

a. cur_timer points to the timer_hpet object: in this case, the HPET chip is the
source of timer interrupts. The mark_offset method checks that no timer
interrupt has been lost since the last tick; in this unlikely case, it updates
jiffies_64 accordingly. Next, the method records the current value of the
periodic HPET counter.

b. cur_timer points to the timer_pmtmr object: in this case, the PIT chip is the
source of timer interrupts, but the kernel uses the APIC Power Management
Timer to measure time with a finer resolution. The mark_offset method
checks that no timer interrupt has been lost since the last tick and updates
jiffies_64 if necessary. Then, it records the current value of the APIC
Power Management Timer counter.

c. cur_timer points to the timer_tsc object: in this case, the PIT chip is the
source of timer interrupts, but the kernel uses the Time Stamp Counter to
measure time with a finer resolution. The mark_offset method performs the
same operations as in the previous case: it checks that no timer interrupt has
been lost since the last tick and updates jiffies_64 if necessary. Then, it
records the current value of the TSC counter.

d. cur_timer points to the timer_pit object: in this case, the PIT chip is the
source of timer interrupts, and there is no other timer circuit. The mark_
offset method does nothing.

3. Invokes the do_timer_interrupt() function, which in turn performs the follow-
ing actions:

a. Increases by one the value of jiffies_64. Notice that this can be done safely,
because the kernel control path still holds the xtime_lock seqlock for writing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 6: Timing Measurements

b. Invokes the update_times() function to update the system date and time and
to compute the current system load; these activities are discussed later in the
sections “Updating the Time and Date” and “Updating System Statistics.”

c. Invokes the update_process_times() function to perform several time-related
accounting operations for the local CPU (see the section “Updating Local
CPU Statistics” later in this chapter).

d. Invokes the profile_tick() function (see the section “Profiling the Kernel
Code” later in this chapter).

e. If the system clock is synchronized with an external clock (an adjtimex()
system call has been previously issued), invokes the set_rtc_mmss() func-
tion once every 660 seconds (every 11 minutes) to adjust the Real Time
Clock. This feature helps systems on a network synchronize their clocks (see
the later section “The adjtimex() System Call”).

4. Releases the xtime_lock seqlock by invoking write_sequnlock().

5. Returns the value 1 to notify that the interrupt has been effectively handled (see
the section “I/O Interrupt Handling” in Chapter 4).

Timekeeping Architecture in Multiprocessor Systems
Multiprocessor systems can rely on two different sources of timer interrupts: those
raised by the Programmable Interval Timer or the High Precision Event Timer, and
those raised by the CPU local timers.

In Linux 2.6, global timer interrupts—raised by the PIT or the HPET—signal activi-
ties not related to a specific CPU, such as handling of software timers and keeping
the system time up-to-date. Conversely, a CPU local timer interrupt signals time-
keeping activities related to the local CPU, such as monitoring how long the current
process has been running and updating the resource usage statistics.

Initialization phase

The global timer interrupt handler is initialized by the time_init() function, which
has already been described in the earlier section “Timekeeping Architecture in Uni-
processor Systems.”

The Linux kernel reserves the interrupt vector 239 (0xef) for local timer interrupts (see
Table 4-2 in Chapter 4). During kernel initialization, the apic_intr_init() function
sets up the IDT’s interrupt gate corresponding to vector 239 with the address of the
low-level interrupt handler apic_timer_interrupt(). Moreover, each APIC has to be
told how often to generate a local time interrupt. The calibrate_APIC_clock() func-
tion computes how many bus clock signals are received by the local APIC of the boot-
ing CPU during a tick (1 ms). This exact value is then used to program the local APICs

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Linux Timekeeping Architecture | 239

in such a way to generate one local timer interrupt every tick. This is done by the
setup_APIC_timer() function, which is executed once for every CPU in the system.

All local APIC timers are synchronized because they are based on the common bus
clock signal. This means that the value computed by calibrate_APIC_clock() for the
boot CPU is also good for the other CPUs in the system.

The global timer interrupt handler

The SMP version of the timer_interrupt() handler differs from the UP version in a
few points:

• The do_timer_interrupt() function, invoked by timer_interrupt(), writes into a
port of the I/O APIC chip to acknowledge the timer IRQ.

• The update_process_times() function is not invoked, because this function per-
forms actions related to a specific CPU.

• The profile_tick() function is not invoked, because this function also performs
actions related to a specific CPU.

The local timer interrupt handler

This handler performs the timekeeping activities related to a specific CPU in the sys-
tem, namely profiling the kernel code and checking how long the current process has
been running on a given CPU.

The apic_timer_interrupt() assembly language function is equivalent to the follow-
ing code:

apic_timer_interrupt:
 pushl $(239-256)
 SAVE_ALL
 movl %esp, %eax
 call smp_apic_timer_interrupt
 jmp ret_from_intr

As you can see, the low-level handler is very similar to the other low-level interrupt
handlers already described in Chapter 4. The high-level interrupt handler called smp_
apic_timer_interrupt() executes the following steps:

1. Gets the CPU logical number (say, n).

2. Increases the apic_timer_irqs field of the nth entry of the irq_stat array (see the
section “Checking the NMI Watchdogs” later in this chapter).

3. Acknowledges the interrupt on the local APIC.

4. Calls the irq_enter() function (see the section “The do_IRQ() function” in
Chapter 4).

5. Invokes the smp_local_timer_interrupt() function.

6. Calls the irq_exit() function.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 6: Timing Measurements

The smp_local_timer_interrupt() function executes the per-CPU timekeeping activi-
ties. Actually, it performs the following main steps:

1. Invokes the profile_tick() function (see the section “Profiling the Kernel Code”
later in this chapter).

2. Invokes the update_process_times() function to check how long the current pro-
cess has been running and to update some local CPU statistics (see the section
“Updating Local CPU Statistics” later in this chapter).

The system administrator can change the sample frequency of the kernel code pro-
filer by writing into the /proc/profile file.To carry out the change, the kernel modifies
the frequency at which local timer interrupts are generated. However, the smp_local_
timer_interrupt() function keeps invoking the update_process_times() function
exactly once every tick.

Updating the Time and Date
User programs get the current time and date from the xtime variable. The kernel
must periodically update this variable, so that its value is always reasonably accurate.

The update_times() function, which is invoked by the global timer interrupt han-
dler, updates the value of the xtime variable as follows:

void update_times(void)
{
 unsigned long ticks;
 ticks = jiffies - wall_jiffies;
 if (ticks) {
 wall_jiffies += ticks;
 update_wall_time(ticks);
 }
 calc_load(ticks);
}

We recall from the previous description of the timer interrupt handler that when the
code of this function is executed, the xtime_lock seqlock has already been acquired
for writing.

The wall_jiffies variable stores the time of the last update of the xtime variable.
Observe that the value of wall_jiffies can be smaller than jiffies-1, since a few
timer interrupts can be lost, for instance when interrupts remain disabled for a long
period of time; in other words, the kernel does not necessarily update the xtime vari-
able at every tick. However, no tick is definitively lost, and in the long run, xtime
stores the correct system time. The check for lost timer interrupts is done in the
mark_offset method of cur_timer; see the earlier section “Timekeeping Architecture
in Uniprocessor Systems.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Updating System Statistics | 241

The update_wall_time() function invokes the update_wall_time_one_tick() function
ticks consecutive times; normally, each invocation adds 1,000,000 to the xtime.tv_
nsec field. If the value of xtime.tv_nsec becomes greater than 999,999,999, the
update_wall_time() function also updates the tv_sec field of xtime. If an adjtimex()
system call has been issued, for reasons explained in the section “The adjtimex() Sys-
tem Call” later in this chapter, the function might tune the value 1,000,000 slightly
so the clock speeds up or slows down a little.

The calc_load() function is described in the section “Keeping Track of System Load”
later in this chapter.

Updating System Statistics
The kernel, among the other time-related duties, must periodically collect various
data used for:

• Checking the CPU resource limit of the running processes

• Updating statistics about the local CPU workload

• Computing the average system load

• Profiling the kernel code

Updating Local CPU Statistics
We have mentioned that the update_process_times() function is invoked—either by
the global timer interrupt handler on uniprocessor systems or by the local timer
interrupt handler in multiprocessor systems—to update some kernel statistics. This
function performs the following steps:

1. Checks how long the current process has been running. Depending on whether the
current process was running in User Mode or in Kernel Mode when the timer inter-
rupt occurred, invokes either account_user_time() or account_system_time().
Each of these functions performs essentially the following steps:

a. Updates either the utime field (ticks spent in User Mode) or the stime field
(ticks spent in Kernel Mode) of the current process descriptor. Two addi-
tional fields called cutime and cstime are provided in the process descriptor
to count the number of CPU ticks spent by the process children in User
Mode and Kernel Mode, respectively. For reasons of efficiency, these fields
are not updated by update_process_times(), but rather when the parent pro-
cess queries the state of one of its children (see the section “Destroying Pro-
cesses” in Chapter 3).

b. Checks whether the total CPU time limit has been reached; if so, sends
SIGXCPU and SIGKILL signals to current. The section “Process Resource Lim-
its” in Chapter 3 describes how the limit is controlled by the signal->
rlim[RLIMIT_CPU].rlim_cur field of each process descriptor.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 6: Timing Measurements

c. Invokes account_it_virt() and account_it_prof() to check the process tim-
ers (see the section “The setitimer() and alarm() System Calls” later in this
chapter).

d. Updates some kernel statistics stored in the kstat per-CPU variable.

2. Invokes raise_softirq() to activate the TIMER_SOFTIRQ tasklet on the local CPU
(see the section “Software Timers and Delay Functions” later in this chapter).

3. If some old version of an RCU-protected data structure has to be reclaimed,
checks whether the local CPU has gone through a quiescent state and invokes
tasklet_schedule() to activate the rcu_tasklet tasklet of the local CPU (see the
section “Read-Copy Update (RCU)” in Chapter 5).

4. Invokes the scheduler_tick() function, which decreases the time slice counter of
the current process, and checks whether its quantum is exhausted. We’ll discuss
in depth these operations in the section “The scheduler_tick() Function” in
Chapter 7.

Keeping Track of System Load
Every Unix kernel keeps track of how much CPU activity is being carried on by the
system. These statistics are used by various administration utilities such as top. A
user who enters the uptime command sees the statistics as the “load average” relative
to the last minute, the last 5 minutes, and the last 15 minutes. On a uniprocessor sys-
tem, a value of 0 means that there are no active processes (besides the swapper
process 0) to run, while a value of 1 means that the CPU is 100 percent busy with a
single process, and values greater than 1 mean that the CPU is shared among several
active processes.*

At every tick, update_times() invokes the calc_load() function, which counts the
number of processes in the TASK_RUNNING or TASK_UNINTERRUPTIBLE state and uses this
number to update the average system load.

Profiling the Kernel Code
Linux includes a minimalist code profiler called readprofile used by Linux develop-
ers to discover where the kernel spends its time in Kernel Mode. The profiler identi-
fies the hot spots of the kernel—the most frequently executed fragments of kernel
code. Identifying the kernel hot spots is very important, because they may point out
kernel functions that should be further optimized.

* Linux includes in the load average all processes that are in the TASK_RUNNING and TASK_UNINTERRUPTIBLE states.
However, under normal conditions, there are few TASK_UNINTERRUPTIBLE processes, so a high load usually
means that the CPU is busy.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Updating System Statistics | 243

The profiler is based on a simple Monte Carlo algorithm: at every timer interrupt
occurrence, the kernel determines whether the interrupt occurred in Kernel Mode; if
so, the kernel fetches the value of the eip register before the interruption from the
stack and uses it to discover what the kernel was doing before the interrupt. In the
long run, the samples accumulate on the hot spots.

The profile_tick() function collects the data for the code profiler. It is invoked
either by the do_timer_interrupt() function in uniprocessor systems (by the global
timer interrupt handler) or by the smp_local_timer_interrupt() function in multi-
processor systems (by the local timer interrupt handler).

To enable the code profiler, the Linux kernel must be booted by passing as a parame-
ter the string profile=N, where 2N denotes the size of the code fragments to be pro-
filed. The collected data can be read from the /proc/profile file. The counters are reset
by writing in the same file; in multiprocessor systems, writing into the file can also
change the sample frequency (see the earlier section “Timekeeping Architecture in
Multiprocessor Systems”). However, kernel developers do not usually access /proc/
profile directly; instead, they use the readprofile system command.

The Linux 2.6 kernel includes yet another profiler called oprofile. Besides being more
flexible and customizable than readprofile, oprofile can be used to discover hot spots
in kernel code, User Mode applications, and system libraries. When oprofile is being
used, profile_tick() invokes the timer_notify() function to collect the data used by
this new profiler.

Checking the NMI Watchdogs
In multiprocessor systems, Linux offers yet another feature to kernel developers: a
watchdog system, which might be quite useful to detect kernel bugs that cause a sys-
tem freeze. To activate such a watchdog, the kernel must be booted with the nmi_
watchdog parameter.

The watchdog is based on a clever hardware feature of local and I/O APICs: they can
generate periodic NMI interrupts on every CPU. Because NMI interrupts are not
masked by the cli assembly language instruction, the watchdog can detect dead-
locks even when interrupts are disabled.

As a consequence, once every tick, all CPUs, regardless of what they are doing, start
executing the NMI interrupt handler; in turn, the handler invokes do_nmi(). This
function gets the logical number n of the CPU, and then checks the apic_timer_irqs
field of the nth entry of irq_stat (see Table 4-8 in Chapter 4). If the CPU is working
properly, the value must be different from the value read at the previous NMI inter-
rupt. When the CPU is running properly, the nth entry of the apic_timer_irqs field is
increased by the local timer interrupt handler (see the earlier section “The local timer
interrupt handler”); if the counter is not increased, the local timer interrupt handler
has not been executed in a whole tick. Not a good thing, you know.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 6: Timing Measurements

When the NMI interrupt handler detects a CPU freeze, it rings all the bells: it logs
scary messages in the system logfiles, dumps the contents of the CPU registers and of
the kernel stack (kernel oops), and finally kills the current process. This gives kernel
developers a chance to discover what’s gone wrong.

Software Timers and Delay Functions
A timer is a software facility that allows functions to be invoked at some future
moment, after a given time interval has elapsed; a time-out denotes a moment at
which the time interval associated with a timer has elapsed.

Timers are widely used both by the kernel and by processes. Most device drivers use
timers to detect anomalous conditions—floppy disk drivers, for instance, use timers
to switch off the device motor after the floppy has not been accessed for a while, and
parallel printer drivers use them to detect erroneous printer conditions.

Timers are also used quite often by programmers to force the execution of specific
functions at some future time (see the later section “The setitimer() and alarm() Sys-
tem Calls”).

Implementing a timer is relatively easy. Each timer contains a field that indicates how
far in the future the timer should expire. This field is initially calculated by adding
the right number of ticks to the current value of jiffies. The field does not change.
Every time the kernel checks a timer, it compares the expiration field to the value of
jiffies at the current moment, and the timer expires when jiffies is greater than or
equal to the stored value.

Linux considers two types of timers called dynamic timers and interval timers. The
first type is used by the kernel, while interval timers may be created by processes in
User Mode.

One word of caution about Linux timers: since checking for timer functions is
always done by deferrable functions that may be executed a long time after they have
been activated, the kernel cannot ensure that timer functions will start right at their
expiration times. It can only ensure that they are executed either at the proper time
or after with a delay of up to a few hundreds of milliseconds. For this reason, timers
are not appropriate for real-time applications in which expiration times must be
strictly enforced.

Besides software timers, the kernel also makes use of delay functions, which execute a
tight instruction loop until a given time interval elapses. We will discuss them in the
later section “Delay Functions.”

Dynamic Timers
Dynamic timers may be dynamically created and destroyed. No limit is placed on the
number of currently active dynamic timers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Software Timers and Delay Functions | 245

A dynamic timer is stored in the following timer_list structure:

struct timer_list {
 struct list_head entry;
 unsigned long expires;
 spinlock_t lock;
 unsigned long magic;
 void (*function)(unsigned long);
 unsigned long data;
 tvec_base_t *base;
};

The function field contains the address of the function to be executed when the
timer expires. The data field specifies a parameter to be passed to this timer func-
tion. Thanks to the data field, it is possible to define a single general-purpose func-
tion that handles the time-outs of several device drivers; the data field could store the
device ID or other meaningful data that could be used by the function to differenti-
ate the device.

The expires field specifies when the timer expires; the time is expressed as the num-
ber of ticks that have elapsed since the system started up. All timers that have an
expires value smaller than or equal to the value of jiffies are considered to be
expired or decayed.

The entry field is used to insert the software timer into one of the doubly linked cir-
cular lists that group together the timers according to the value of their expires field.
The algorithm that uses these lists is described later in this chapter.

To create and activate a dynamic timer, the kernel must:

1. Create, if necessary, a new timer_list object—for example, t. This can be done
in several ways by:

• Defining a static global variable in the code.

• Defining a local variable inside a function; in this case, the object is stored
on the Kernel Mode stack.

• Including the object in a dynamically allocated descriptor.

2. Initialize the object by invoking the init_timer(&t) function. This essentially
sets the t.base pointer field to NULL and sets the t.lock spin lock to “open.”

3. Load the function field with the address of the function to be activated when the
timer decays. If required, load the data field with a parameter value to be passed
to the function.

4. If the dynamic timer is not already inserted in a list, assign a proper value to the
expires field and invoke the add_timer(&t) function to insert the t element in the
proper list.

5. Otherwise, if the dynamic timer is already inserted in a list, update the expires
field by invoking the mod_timer() function, which also takes care of moving the
object into the proper list (discussed next).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 6: Timing Measurements

Once the timer has decayed, the kernel automatically removes the t element from its
list. Sometimes, however, a process should explicitly remove a timer from its list
using the del_timer(), del_timer_sync(), or del_singleshot_timer_sync() func-
tions. Indeed, a sleeping process may be woken up before the time-out is over; in this
case, the process may choose to destroy the timer. Invoking del_timer() on a timer
already removed from a list does no harm, so removing the timer within the timer
function is considered a good practice.

In Linux 2.6, a dynamic timer is bound to the CPU that activated it—that is, the
timer function will always run on the same CPU that first executed the add_timer()
or later the mod_timer() function. The del_timer() and companion functions, how-
ever, can deactivate every dynamic timer, even if it is not bound to the local CPU.

Dynamic timers and race conditions

Being asynchronously activated, dynamic timers are prone to race conditions. For
instance, consider a dynamic timer whose function acts on a discardable resource (e.g.,
a kernel module or a file data structure). Releasing the resource without stopping the
timer may lead to data corruption if the timer function got activated when the resource
no longer exists. Thus, a rule of thumb is to stop the timer before releasing the
resource:

...
del_timer(&t);
X_Release_Resources();
...

In multiprocessor systems, however, this code is not safe because the timer function
might already be running on another CPU when del_timer() is invoked. As a result,
resources may be released while the timer function is still acting on them. To avoid
this kind of race condition, the kernel offers the del_timer_sync() function. It
removes the timer from the list, and then it checks whether the timer function is exe-
cuted on another CPU; in such a case, del_timer_sync() waits until the timer func-
tion terminates.

The del_timer_sync() function is rather complex and slow, because it has to care-
fully take into consideration the case in which the timer function reactivates itself. If
the kernel developer knows that the timer function never reactivates the timer, she
can use the simpler and faster del_singleshot_timer_sync() function to deactivate a
timer and wait until the timer function terminates.

Other types of race conditions exist, of course. For instance, the right way to modify
the expires field of an already activated timer consists of using mod_timer(), rather
than deleting the timer and re-creating it thereafter. In the latter approach, two kernel
control paths that want to modify the expires field of the same timer may mix each
other up badly. The implementation of the timer functions is made SMP-safe by
means of the lock spin lock included in every timer_list object: every time the ker-
nel must access a dynamic timer, it disables the interrupts and acquires this spin lock.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Software Timers and Delay Functions | 247

Data structures for dynamic timers

Choosing the proper data structure to implement dynamic timers is not easy. String-
ing together all timers in a single list would degrade system performance, because
scanning a long list of timers at every tick is costly. On the other hand, maintaining a
sorted list would not be much more efficient, because the insertion and deletion
operations would also be costly.

The adopted solution is based on a clever data structure that partitions the expires
values into blocks of ticks and allows dynamic timers to percolate efficiently from
lists with larger expires values to lists with smaller ones. Moreover, in multiproces-
sor systems the set of active dynamic timers is split among the various CPUs.

The main data structure for dynamic timers is a per-CPU variable (see the section
“Per-CPU Variables” in Chapter 5) named tvec_bases: it includes NR_CPUS elements,
one for each CPU in the system. Each element is a tvec_base_t structure, which
includes all data needed to handle the dynamic timers bound to the corresponding
CPU:

typedef struct tvec_t_base_s {
 spinlock_t lock;
 unsigned long timer_jiffies;
 struct timer_list *running_timer;
 tvec_root_t tv1;
 tvec_t tv2;
 tvec_t tv3;
 tvec_t tv4;
 tvec_t tv5;
} tvec_base_t;

The tv1 field is a structure of type tvec_root_t, which includes a vec array of 256
list_head elements—that is, lists of dynamic timers. It contains all dynamic timers,
if any, that will decay within the next 255 ticks.

The tv2, tv3, and tv4 fields are structures of type tvec_t consisting of a vec array of
64 list_head elements. These lists contain all dynamic timers that will decay within
the next 214–1, 220–1, and 226–1 ticks, respectively.

The tv5 field is identical to the previous ones, except that the last entry of the vec
array is a list that includes dynamic timers with extremely large expires fields. It
never needs to be replenished from another array. Figure 6-1 illustrates in a sche-
matic way the five groups of lists.

The timer_jiffies field represents the earliest expiration time of the dynamic timers
yet to be checked: if it coincides with the value of jiffies, no backlog of deferrable
functions has accumulated; if it is smaller than jiffies, then lists of dynamic timers
that refer to previous ticks must be dealt with. The field is set to jiffies at system
startup and is increased only by the run_timer_softirq() function described in the
next section. Notice that the timer_jiffies field might drop a long way behind
jiffies when the deferrable functions that handle dynamic timers are not executed

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 6: Timing Measurements

for a long time—for instance because these functions have been disabled or because
a large number of interrupt handlers have been executed.

In multiprocessor systems, the running_timer field points to the timer_list structure
of the dynamic timer that is currently handled by the local CPU.

Dynamic timer handling

Despite the clever data structures, handling software timers is a time-consuming
activity that should not be performed by the timer interrupt handler. In Linux 2.6
this activity is carried on by a deferrable function, namely the TIMER_SOFTIRQ softirq.

The run_timer_softirq() function is the deferrable function associated with the
TIMER_SOFTIRQ softirq. It essentially performs the following actions:

1. Stores in the base local variable the address of the tvec_base_t data structure
associated with the local CPU.

2. Acquires the base->lock spin lock and disables local interrupts.

3. Starts a while loop, which ends when base->timer_jiffies becomes greater than
the value of jiffies. In every single execution of the cycle, performs the follow-
ing substeps:

a. Computes the index of the list in base->tv1 that holds the next timers to be
handled:

index = base->timer_jiffies & 255;

Figure 6-1. The groups of lists associated with dynamic timers

tvec_bases

tv1 tv2 tv3 tv4 tv5

(0–255) (<214-1) (<220-1) (<226-1) (<232-1)
Dynamic Timer Lists

tvec_root_t tvec_ttvec_t tvec_t tvec_t

tvec_base_t

CPU 0 CPU 1 CPU 2 CPU 3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Software Timers and Delay Functions | 249

b. If index is zero, all lists in base->tv1 have been checked, so they are empty:
the function therefore percolates the dynamic timers by invoking cascade():

if (!index &&
 (!cascade(base, &base->tv2, (base->timer_jiffies>> 8)&63)) &&
 (!cascade(base, &base->tv3, (base->timer_jiffies>>14)&63)) &&
 (!cascade(base, &base->tv4, (base->timer_jiffies>>20)&63)))
 cascade(base, &base->tv5, (base->timer_jiffies>>26)&63);

Consider the first invocation of the cascade() function: it receives as argu-
ments the address in base, the address of base->tv2, and the index of the list
in base->tv2 including the timers that will decay in the next 256 ticks. This
index is determined by looking at the proper bits of the base->timer_jiffies
value. cascade() moves all dynamic timers in the base->tv2 list into the
proper lists of base->tv1; then, it returns a positive value, unless all base->
tv2 lists are now empty. If so, cascade() is invoked once more to replenish
base->tv2 with the timers included in a list of base->tv3, and so on.

c. Increases by one base->timer_jiffies.

d. For each dynamic timer in the base->tv1.vec[index] list, executes the corre-
sponding timer function. In particular, for each timer_list element t in the
list essentially performs the following steps:

1. Removes t from the base->tv1’s list.

2. In multiprocessor systems, sets base->running_timer to &t.

3. Sets t.base to NULL.

4. Releases the base->lock spin lock, and enables local interrupts.

5. Executes the timer function t.function passing as argument t.data.

6. Acquires the base->lock spin lock, and disables local interrupts.

7. Continues with the next timer in the list, if any.

e. All timers in the list have been handled. Continues with the next iteration of
the outermost while cycle.

4. The outermost while cycle is terminated, which means that all decayed timers
have been handled. In multiprocessor systems, sets base->running_timer to NULL.

5. Releases the base->lock spin lock and enables local interrupts.

Because the values of jiffies and timer_jiffies usually coincide, the outermost
while cycle is often executed only once. In general, the outermost loop is executed
jiffies - base->timer_jiffies + 1 consecutive times. Moreover, if a timer interrupt
occurs while run_timer_softirq() is being executed, dynamic timers that decay at
this tick occurrence are also considered, because the jiffies variable is asynchro-
nously increased by the global timer interrupt handler (see the earlier section “The
timer interrupt handler”).

Notice that run_timer_softirq() disables interrupts and acquires the base->lock spin
lock just before entering the outermost loop; interrupts are enabled and the spin lock

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 6: Timing Measurements

is released right before invoking each dynamic timer function, until its termination.
This ensures that the dynamic timer data structures are not corrupted by interleaved
kernel control paths.

To sum up, this rather complex algorithm ensures excellent performance. To see
why, assume for the sake of simplicity that the TIMER_SOFTIRQ softirq is executed right
after the corresponding timer interrupt occurs. Then, in 255 timer interrupt occur-
rences out of 256 (in 99.6% of the cases), the run_timer_softirq() function just runs
the functions of the decayed timers, if any. To replenish base->tv1.vec periodically,
it is sufficient 63 times out of 64 to partition one list of base->tv2 into the 256 lists of
base->tv1. The base->tv2.vec array, in turn, must be replenished in 0.006 percent of
the cases (that is, once every 16.4 seconds). Similarly, base->tv3.vec is replenished
every 17 minutes and 28 seconds, and base->tv4.vec is replenished every 18 hours
and 38 minutes. base->tv5.vec doesn’t need to be replenished.

An Application of Dynamic Timers: the nanosleep() System Call
To show how the outcomes of all the previous activities are actually used in the ker-
nel, we’ll show an example of the creation and use of a process time-out.

Let’s consider the service routine of the nanosleep() system call, that is, sys_
nanosleep(), which receives as its parameter a pointer to a timespec structure and
suspends the invoking process until the specified time interval elapses. The service
routine first invokes copy_from_user() to copy the values contained in the User Mode
timespec structure into the local variable t. Assuming that the timespec structure
defines a non-null delay, the function then executes the following code:

current->state = TASK_INTERRUPTIBLE;
remaining = schedule_timeout(timespec_to_jiffies(&t)+1);

The timespec_to_jiffies() function converts in ticks the time interval stored in the
timespec structure. To be on the safe side, sys_nanosleep() adds one tick to the value
computed by timespec_to_jiffies().

The kernel implements process time-outs by using dynamic timers. They appear in
the schedule_timeout() function, which essentially executes the following
statements:

struct timer_list timer;
unsigned long expire = timeout + jiffies;
init_timer(&timer);
timer.expires = expire;
timer.data = (unsigned long) current;
timer.function = process_timeout;
add_timer(&timer);
schedule(); /* process suspended until timer expires */
del_singleshot_timer_sync(&timer);
timeout = expire - jiffies;
return (timeout < 0 ? 0 : timeout);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Software Timers and Delay Functions | 251

When schedule() is invoked, another process is selected for execution; when the
former process resumes its execution, the function removes the dynamic timer. In
the last statement, the function either returns 0, if the time-out is expired, or the
number of ticks left to the time-out expiration if the process was awakened for some
other reason.

When the time-out expires, the timer’s function is executed:

void process_timeout(unsigned long __data)
{
 wake_up_process((task_t *)__data);
}

The process_timeout() receives as its parameter the process descriptor pointer
stored in the data field of the timer object. As a result, the suspended process is
awakened.

Once awakened, the process continues the execution of the sys_nanosleep() system
call. If the value returned by schedule_timeout() specifies that the process time-out is
expired (value zero), the system call terminates. Otherwise, the system call is auto-
matically restarted, as explained in the section “Reexecution of System Calls” in
Chapter 11.

Delay Functions
Software timers are useless when the kernel must wait for a short time interval—let’s
say, less than a few milliseconds. For instance, often a device driver has to wait for a
predefined number of microseconds until the hardware completes some operation.
Because a dynamic timer has a significant setup overhead and a rather large mini-
mum wait time (1 millisecond), the device driver cannot conveniently use it.

In these cases, the kernel makes use of the udelay() and ndelay() functions: the
former receives as its parameter a time interval in microseconds and returns after the
specified delay has elapsed; the latter is similar, but the argument specifies the delay
in nanoseconds.

Essentially, the two functions are defined as follows:

void udelay(unsigned long usecs)
{
 unsigned long loops;
 loops = (usecs*HZ*current_cpu_data.loops_per_jiffy)/1000000;
 cur_timer->delay(loops);
}

void ndelay(unsigned long nsecs)
{
 unsigned long loops;
 loops = (nsecs*HZ*current_cpu_data.loops_per_jiffy)/1000000000;
 cur_timer->delay(loops);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 6: Timing Measurements

Both functions rely on the delay method of the cur_timer timer object (see the ear-
lier section “Data Structures of the Timekeeping Architecture”), which receives as
its parameter a time interval in “loops.” The exact duration of one “loop,” how-
ever, depends on the timer object referred by cur_timer (see Table 6-2 earlier in this
chapter):

• If cur_timer points to the timer_hpet, timer_pmtmr, and timer_tsc objects, one
“loop” corresponds to one CPU cycle—that is, the time interval between two
consecutive CPU clock signals (see the earlier section “Time Stamp Counter
(TSC)”).

• If cur_timer points to the timer_none or timer_pit objects, one “loop” corre-
sponds to the time duration of a single iteration of a tight instruction loop.

During the initialization phase, after cur_timer has been set up by select_timer(),
the kernel executes the calibrate_delay() function, which determines how many
“loops” fit in a tick. This value is then saved in the current_cpu_data.loops_per_
jiffy variable, so that it can be used by udelay() and ndelay() to convert microsec-
onds and nanoseconds, respectively, to “loops.”

Of course, the cur_timer->delay() method makes use of the HPET or TSC hardware
circuitry, if available, to get an accurate measurement of time. Otherwise, if no HPET
or TSC is available, the method executes loops iterations of a tight instruction loop.

System Calls Related to Timing Measurements
Several system calls allow User Mode processes to read and modify the time and date
and to create timers. Let’s briefly review these and discuss how the kernel handles
them.

The time() and gettimeofday() System Calls
Processes in User Mode can get the current time and date by means of several sys-
tem calls:

time()
Returns the number of elapsed seconds since midnight at the start of January 1,
1970 (UTC).

gettimeofday()
Returns, in a data structure named timeval, the number of elapsed seconds since
midnight of January 1, 1970 (UTC) and the number of elapsed microseconds in
the last second (a second data structure named timezone is not currently used).

The time() system call is superseded by gettimeofday(), but it is still included in
Linux for backward compatibility. Another widely used function, ftime(), which is
no longer implemented as a system call, returns the number of elapsed seconds since

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Calls Related to Timing Measurements | 253

midnight of January 1, 1970 (UTC) and the number of elapsed milliseconds in the
last second.

The gettimeofday() system call is implemented by the sys_gettimeofday() function.
To compute the current date and time of the day, this function invokes do_
gettimeofday(), which executes the following actions:

1. Acquires the xtime_lock seqlock for reading.

2. Determines the number of microseconds elapsed since the last timer interrupt by
invoking the get_offset method of the cur_timer timer object:

usec = cur_timer->getoffset();

As explained in the earlier section “Data Structures of the Timekeeping Architec-
ture,” there are four possible cases:

a. If cur_timer points to the timer_hpet object, the method compares the cur-
rent value of the HPET counter with the value of the same counter saved in
the last execution of the timer interrupt handler.

b. If cur_timer points to the timer_pmtmr object, the method compares the cur-
rent value of the ACPI PMT counter with the value of the same counter
saved in the last execution of the timer interrupt handler.

c. If cur_timer points to the timer_tsc object, the method compares the cur-
rent value of the Time Stamp Counter with the value of the TSC saved in the
last execution of the timer interrupt handler.

d. If cur_timer points to the timer_pit object, the method reads the current
value of the PIT counter to compute the number of microseconds elapsed
since the last PIT’s timer interrupt.

3. If some timer interrupt has been lost (see the section “Updating the Time and
Date” earlier in this chapter), the function adds to usec the corresponding delay:
 usec += (jiffies - wall_jiffies) * 1000;

4. Adds to usec the microseconds elapsed in the last second:
 usec += (xtime.tv_nsec / 1000);

5. Copies the contents of xtime into the user-space buffer specified by the system
call parameter tv, adding to the microseconds field the value of usec:
 tv->tv_sec = xtime->tv_sec;
 tv->tv_usec = usec;

6. Invokes read_seqretry() on the xtime_lock seqlock, and jumps back to step 1 if
another kernel control path has concurrently acquired xtime_lock for writing.

7. Checks for an overflow in the microseconds field, adjusting both that field and
the second field if necessary:
 while (tv->tv_usec >= 1000000) {
 tv->tv_usec -= 1000000;
 tv->tv_sec++;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 6: Timing Measurements

Processes in User Mode with root privilege may modify the current date and time by
using either the obsolete stime() or the settimeofday() system call. The sys_
settimeofday() function invokes do_settimeofday(), which executes operations
complementary to those of do_gettimeofday().

Notice that both system calls modify the value of xtime while leaving the RTC regis-
ters unchanged. Therefore, the new time is lost when the system shuts down, unless
the user executes the clock program to change the RTC value.

The adjtimex() System Call
Although clock drift ensures that all systems eventually move away from the correct
time, changing the time abruptly is both an administrative nuisance and risky behav-
ior. Imagine, for instance, programmers trying to build a large program and depend-
ing on file timestamps to make sure that out-of-date object files are recompiled. A
large change in the system’s time could confuse the make program and lead to an
incorrect build. Keeping the clocks tuned is also important when implementing a dis-
tributed filesystem on a network of computers. In this case, it is wise to adjust the
clocks of the interconnected PCs, so that the timestamp values associated with the
inodes of the accessed files are coherent. Thus, systems are often configured to run a
time synchronization protocol such as Network Time Protocol (NTP) on a regular
basis to change the time gradually at each tick. This utility depends on the adjtimex()
system call in Linux.

This system call is present in several Unix variants, although it should not be used in
programs intended to be portable. It receives as its parameter a pointer to a timex
structure, updates kernel parameters from the values in the timex fields, and returns
the same structure with current kernel values. Such kernel values are used by update_
wall_time_one_tick() to slightly adjust the number of microseconds added to xtime.
tv_usec at each tick.

The setitimer() and alarm() System Calls
Linux allows User Mode processes to activate special timers called interval timers.*

The timers cause Unix signals (see Chapter 11) to be sent periodically to the process.
It is also possible to activate an interval timer so that it sends just one signal after a
specified delay. Each interval timer is therefore characterized by:

• The frequency at which the signals must be emitted, or a null value if just one
signal has to be generated

• The time remaining until the next signal is to be generated

* These software constructs have nothing in common with the Programmable Interval Timer chip described
earlier in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Calls Related to Timing Measurements | 255

The earlier warning about accuracy applies to these timers. They are guaranteed to
execute after the requested time has elapsed, but it is impossible to predict exactly
when they will be delivered.

Interval timers are activated by means of the POSIX setitimer() system call. The
first parameter specifies which of the following policies should be adopted:

ITIMER_REAL
The actual elapsed time; the process receives SIGALRM signals.

ITIMER_VIRTUAL
The time spent by the process in User Mode; the process receives SIGVTALRM
signals.

ITIMER_PROF
The time spent by the process both in User and in Kernel Mode; the process
receives SIGPROF signals.

The interval timers can be either single-shot or periodic. The second parameter of
setitimer() points to a structure of type itimerval that specifies the initial duration
of the timer (in seconds and nanoseconds) and the duration to be used when the
timer is automatically reactivated (or zero for single-shot timers).The third parame-
ter of setitimer() is an optional pointer to an itimerval structure that is filled by the
system call with the previous timer parameters.

To implement an interval timer for each of the preceding policies, the process
descriptor includes three pairs of fields:

• it_real_incr and it_real_value

• it_virt_incr and it_virt_value

• it_prof_incr and it_prof_value

The first field of each pair stores the interval in ticks between two signals; the other
field stores the current value of the timer.

The ITIMER_REAL interval timer is implemented by using dynamic timers because the
kernel must send signals to the process even when it is not running on the CPU.
Therefore, each process descriptor includes a dynamic timer object called real_
timer. The setitimer() system call initializes the real_timer fields and then invokes
add_timer() to insert the dynamic timer in the proper list. When the timer expires,
the kernel executes the it_real_fn() timer function. In turn, the it_real_fn() func-
tion sends a SIGALRM signal to the process; then, if it_real_incr is not null, it sets the
expires field again, reactivating the timer.

The ITIMER_VIRTUAL and ITIMER_PROF interval timers do not require dynamic timers,
because they can be updated while the process is running. The account_it_virt()
and account_it_prof() functions are invoked by update_process_times(), which is
called either by the PIT’s timer interrupt handler (UP) or by the local timer interrupt

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 6: Timing Measurements

handlers (SMP). Therefore, the two interval timers are updated once every tick, and
if they are expired, the proper signal is sent to the current process.

The alarm() system call sends a SIGALRM signal to the calling process when a speci-
fied time interval has elapsed. It is very similar to setitimer() when invoked with the
ITIMER_REAL parameter, because it uses the real_timer dynamic timer included in the
process descriptor. Therefore, alarm() and setitimer() with parameter ITIMER_REAL
cannot be used at the same time.

System Calls for POSIX Timers
The POSIX 1003.1b standard introduced a new type of software timers for User
Mode programs—in particular, for multithreaded and real-time applications. These
timers are often referred to as POSIX timers.

Every implementation of the POSIX timers must offer to the User Mode programs a
few POSIX clocks, that is, virtual time sources having predefined resolutions and
properties. Whenever an application wants to make use of a POSIX timer, it creates a
new timer resource specifying one of the existing POSIX clocks as the timing base.
The system calls that allow users to handle POSIX clocks and timers are listed in
Table 6-3.

The Linux 2.6 kernel offers two types of POSIX clocks:

CLOCK_REALTIME
This virtual clock represents the real-time clock of the system—essentially the
value of the xtime variable (see the earlier section “Updating the Time and
Date”). The resolution returned by the clock_getres() system call is 999,848
nanoseconds, which corresponds to roughly 1000 updates of xtime in a second.

CLOCK_MONOTONIC
This virtual clock represents the real-time clock of the system purged of every
time warp due to the synchronization with an external time source. Essentially,

Table 6-3. System calls for POSIX timers and clocks

System call Description

clock_gettime() Gets the current value of a POSIX clock

clock_settime() Sets the current value of a POSIX clock

clock_getres() Gets the resolution of a POSIX clock

timer_create() Creates a new POSIX timer based on a specified POSIX clock

timer_gettime() Gets the current value and increment of a POSIX timer

timer_settime() Sets the current value and increment of a POSIX timer

timer_getoverrun() Gets the number of overruns of a decayed POSIX timer

timer_delete() Destroys a POSIX timer

clock_nanosleep() Puts the process to sleep using a POSIX clock as time source

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Calls Related to Timing Measurements | 257

this virtual clock is represented by the sum of the two variables xtime and wall_
to_monotonic (see the earlier section “Timekeeping Architecture in Uniprocessor
Systems”). The resolution of this POSIX clock, returned by clock_getres(), is
999,848 nanoseconds.

The Linux kernel implements the POSIX timers by means of dynamic timers. Thus,
they are similar to the traditional ITIMER_REAL interval timers we described in the pre-
vious section. POSIX timers, however, are much more flexible and reliable than tra-
ditional interval timers. A couple of significant differences between them are:

• When a traditional interval timer decays, the kernel always sends a SIGALRM sig-
nal to the process that activated the timer. Instead, when a POSIX timer decays,
the kernel can send every kind of signal, either to the whole multithreaded appli-
cation or to a single specified thread. The kernel can also force the execution of a
notifier function in a thread of the application, or it can even do nothing (it is up
to a User Mode library to handle the event).

• If a traditional interval timer decays many times but the User Mode process can-
not receive the SIGALRM signal (for instance because the signal is blocked or the
process is not running), only the first signal is received: all other occurrences of
SIGALRM are lost. The same holds for POSIX timers, but the process can invoke
the timer_getoverrun() system call to get the number of times the timer decayed
since the generation of the first signal.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

258

Chapter 7CHAPTER 7

Process Scheduling

Like every time sharing system, Linux achieves the magical effect of an apparent
simultaneous execution of multiple processes by switching from one process to
another in a very short time frame. Process switching itself was discussed in
Chapter 3; this chapter deals with scheduling, which is concerned with when to
switch and which process to choose.

The chapter consists of three parts. The section “Scheduling Policy” introduces the
choices made by Linux in the abstract to schedule processes. The section “The
Scheduling Algorithm” discusses the data structures used to implement scheduling
and the corresponding algorithm. Finally, the section “System Calls Related to
Scheduling” describes the system calls that affect process scheduling.

To simplify the description, we refer as usual to the 80 × 86 architecture; in particu-
lar, we assume that the system uses the Uniform Memory Access model, and that the
system tick is set to 1 ms.

Scheduling Policy
The scheduling algorithm of traditional Unix operating systems must fulfill several
conflicting objectives: fast process response time, good throughput for background
jobs, avoidance of process starvation, reconciliation of the needs of low- and high-
priority processes, and so on. The set of rules used to determine when and how to
select a new process to run is called scheduling policy.

Linux scheduling is based on the time sharing technique: several processes run in “time
multiplexing” because the CPU time is divided into slices, one for each runnable pro-
cess.* Of course, a single processor can run only one process at any given instant. If a
currently running process is not terminated when its time slice or quantum expires, a

* Recall that stopped and suspended processes cannot be selected by the scheduling algorithm to run on a
CPU.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Scheduling Policy | 259

process switch may take place. Time sharing relies on timer interrupts and is thus
transparent to processes. No additional code needs to be inserted in the programs to
ensure CPU time sharing.

The scheduling policy is also based on ranking processes according to their priority.
Complicated algorithms are sometimes used to derive the current priority of a pro-
cess, but the end result is the same: each process is associated with a value that tells
the scheduler how appropriate it is to let the process run on a CPU.

In Linux, process priority is dynamic. The scheduler keeps track of what processes
are doing and adjusts their priorities periodically; in this way, processes that have
been denied the use of a CPU for a long time interval are boosted by dynamically
increasing their priority. Correspondingly, processes running for a long time are
penalized by decreasing their priority.

When speaking about scheduling, processes are traditionally classified as I/O-bound
or CPU-bound. The former make heavy use of I/O devices and spend much time
waiting for I/O operations to complete; the latter carry on number-crunching appli-
cations that require a lot of CPU time.

An alternative classification distinguishes three classes of processes:

Interactive processes
These interact constantly with their users, and therefore spend a lot of time wait-
ing for keypresses and mouse operations. When input is received, the process
must be woken up quickly, or the user will find the system to be unresponsive.
Typically, the average delay must fall between 50 and 150 milliseconds. The
variance of such delay must also be bounded, or the user will find the system to
be erratic. Typical interactive programs are command shells, text editors, and
graphical applications.

Batch processes
These do not need user interaction, and hence they often run in the back-
ground. Because such processes do not need to be very responsive, they are often
penalized by the scheduler. Typical batch programs are programming language
compilers, database search engines, and scientific computations.

Real-time processes
These have very stringent scheduling requirements. Such processes should never
be blocked by lower-priority processes and should have a short guaranteed
response time with a minimum variance. Typical real-time programs are video
and sound applications, robot controllers, and programs that collect data from
physical sensors.

The two classifications we just offered are somewhat independent. For instance, a
batch process can be either I/O-bound (e.g., a database server) or CPU-bound (e.g.,
an image-rendering program). While real-time programs are explicitly recognized as
such by the scheduling algorithm in Linux, there is no easy way to distinguish

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 7: Process Scheduling

between interactive and batch programs. The Linux 2.6 scheduler implements a
sophisticated heuristic algorithm based on the past behavior of the processes to
decide whether a given process should be considered as interactive or batch. Of
course, the scheduler tends to favor interactive processes over batch ones.

Programmers may change the scheduling priorities by means of the system calls illus-
trated in Table 7-1. More details are given in the section “System Calls Related to
Scheduling.”

Process Preemption
As mentioned in the first chapter, Linux processes are preemptable. When a process
enters the TASK_RUNNING state, the kernel checks whether its dynamic priority is
greater than the priority of the currently running process. If it is, the execution of
current is interrupted and the scheduler is invoked to select another process to run
(usually the process that just became runnable). Of course, a process also may be
preempted when its time quantum expires. When this occurs, the TIF_NEED_RESCHED
flag in the thread_info structure of the current process is set, so the scheduler is
invoked when the timer interrupt handler terminates.

For instance, let’s consider a scenario in which only two programs—a text editor and
a compiler—are being executed. The text editor is an interactive program, so it has a
higher dynamic priority than the compiler. Nevertheless, it is often suspended,
because the user alternates between pauses for think time and data entry; moreover,
the average delay between two keypresses is relatively long. However, as soon as the
user presses a key, an interrupt is raised and the kernel wakes up the text editor pro-
cess. The kernel also determines that the dynamic priority of the editor is higher than

Table 7-1. System calls related to scheduling

System call Description

nice() Change the static priority of a conventional process

getpriority() Get the maximum static priority of a group of conventional processes

setpriority() Set the static priority of a group of conventional processes

sched_getscheduler() Get the scheduling policy of a process

sched_setscheduler() Set the scheduling policy and the real-time priority of a process

sched_getparam() Get the real-time priority of a process

sched_setparam() Set the real-time priority of a process

sched_yield() Relinquish the processor voluntarily without blocking

sched_get_priority_min() Get the minimum real-time priority value for a policy

sched_get_priority_max() Get the maximum real-time priority value for a policy

sched_rr_get_interval() Get the time quantum value for the Round Robin policy

sched_setaffinity() Set the CPU affinity mask of a process

sched_getaffinity() Get the CPU affinity mask of a process

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Scheduling Policy | 261

the priority of current, the currently running process (the compiler), so it sets the
TIF_NEED_RESCHED flag of this process, thus forcing the scheduler to be activated when
the kernel finishes handling the interrupt. The scheduler selects the editor and per-
forms a process switch; as a result, the execution of the editor is resumed very
quickly and the character typed by the user is echoed to the screen. When the char-
acter has been processed, the text editor process suspends itself waiting for another
keypress and the compiler process can resume its execution.

Be aware that a preempted process is not suspended, because it remains in the TASK_
RUNNING state; it simply no longer uses the CPU. Moreover, remember that the
Linux 2.6 kernel is preemptive, which means that a process can be preempted either
when executing in Kernel or in User Mode; we discussed in depth this feature in the
section “Kernel Preemption” in Chapter 5.

How Long Must a Quantum Last?
The quantum duration is critical for system performance: it should be neither too
long nor too short.

If the average quantum duration is too short, the system overhead caused by process
switches becomes excessively high. For instance, suppose that a process switch
requires 5 milliseconds; if the quantum is also set to 5 milliseconds, then at least 50
percent of the CPU cycles will be dedicated to process switching.*

If the average quantum duration is too long, processes no longer appear to be exe-
cuted concurrently. For instance, let’s suppose that the quantum is set to five sec-
onds; each runnable process makes progress for about five seconds, but then it stops
for a very long time (typically, five seconds times the number of runnable processes).

It is often believed that a long quantum duration degrades the response time of inter-
active applications. This is usually false. As described in the section “Process Pre-
emption” earlier in this chapter, interactive processes have a relatively high priority,
so they quickly preempt the batch processes, no matter how long the quantum dura-
tion is.

In some cases, however, a very long quantum duration degrades the responsiveness of
the system. For instance, suppose two users concurrently enter two commands at the
respective shell prompts; one command starts a CPU-bound process, while the other
launches an interactive application. Both shells fork a new process and delegate the
execution of the user’s command to it; moreover, suppose such new processes have
the same initial priority (Linux does not know in advance if a program to be executed
is batch or interactive). Now if the scheduler selects the CPU-bound process to run

* Actually, things could be much worse than this; for example, if the time required for the process switch is
counted in the process quantum, all CPU time is devoted to the process switch and no process can progress
toward its termination.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 7: Process Scheduling

first, the other process could wait for a whole time quantum before starting its execu-
tion. Therefore, if the quantum duration is long, the system could appear to be unre-
sponsive to the user that launched the interactive application.

The choice of the average quantum duration is always a compromise. The rule of
thumb adopted by Linux is choose a duration as long as possible, while keeping
good system response time.

The Scheduling Algorithm
The scheduling algorithm used in earlier versions of Linux was quite simple and
straightforward: at every process switch the kernel scanned the list of runnable pro-
cesses, computed their priorities, and selected the “best” process to run. The main
drawback of that algorithm is that the time spent in choosing the best process
depends on the number of runnable processes; therefore, the algorithm is too
costly—that is, it spends too much time—in high-end systems running thousands of
processes.

The scheduling algorithm of Linux 2.6 is much more sophisticated. By design, it
scales well with the number of runnable processes, because it selects the process to
run in constant time, independently of the number of runnable processes. It also
scales well with the number of processors because each CPU has its own queue of
runnable processes. Furthermore, the new algorithm does a better job of distinguish-
ing interactive processes and batch processes. As a consequence, users of heavily
loaded systems feel that interactive applications are much more responsive in
Linux 2.6 than in earlier versions.

The scheduler always succeeds in finding a process to be executed; in fact, there is
always at least one runnable process: the swapper process, which has PID 0 and exe-
cutes only when the CPU cannot execute other processes. As mentioned in Chapter 3,
every CPU of a multiprocessor system has its own swapper process with PID equal to 0.

Every Linux process is always scheduled according to one of the following schedul-
ing classes:

SCHED_FIFO
A First-In, First-Out real-time process. When the scheduler assigns the CPU to
the process, it leaves the process descriptor in its current position in the run-
queue list. If no other higher-priority real-time process is runnable, the process
continues to use the CPU as long as it wishes, even if other real-time processes
that have the same priority are runnable.

SCHED_RR
A Round Robin real-time process. When the scheduler assigns the CPU to the
process, it puts the process descriptor at the end of the runqueue list. This pol-
icy ensures a fair assignment of CPU time to all SCHED_RR real-time processes that
have the same priority.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Scheduling Algorithm | 263

SCHED_NORMAL
A conventional, time-shared process.

The scheduling algorithm behaves quite differently depending on whether the pro-
cess is conventional or real-time.

Scheduling of Conventional Processes
Every conventional process has its own static priority, which is a value used by the
scheduler to rate the process with respect to the other conventional processes in the
system. The kernel represents the static priority of a conventional process with a
number ranging from 100 (highest priority) to 139 (lowest priority); notice that static
priority decreases as the values increase.

A new process always inherits the static priority of its parent. However, a user can
change the static priority of the processes that he owns by passing some “nice val-
ues” to the nice() and setpriority() system calls (see the section “System Calls
Related to Scheduling” later in this chapter).

Base time quantum

The static priority essentially determines the base time quantum of a process, that is,
the time quantum duration assigned to the process when it has exhausted its previ-
ous time quantum. Static priority and base time quantum are related by the follow-
ing formula:

As you see, the higher the static priority (i.e., the lower its numerical value), the
longer the base time quantum. As a consequence, higher priority processes usually
get longer slices of CPU time with respect to lower priority processes. Table 7-2
shows the static priority, the base time quantum values, and the corresponding nice
values for a conventional process having highest static priority, default static prior-
ity, and lowest static priority. (The table also lists the values of the interactive delta
and of the sleep time threshold, which are explained later in this chapter.)

Table 7-2. Typical priority values for a conventional process

Description Static priority Nice value Base time quantum Interactivedelta
Sleep time
threshold

Highest static priority 100 –20 800 ms –3 299 ms

High static priority 110 -10 600 ms -1 499 ms

Default static priority 120 0 100 ms +2 799 ms

Low static priority 130 +10 50 ms +4 999 ms

Lowest static priority 139 +19 5 ms +6 1199 ms

base time quantum
(in milliseconds)

140 static priority–() 20× if static priority 120<
140 static priority–() 5× if static priority 120≥




= 1()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 7: Process Scheduling

Dynamic priority and average sleep time

Besides a static priority, a conventional process also has a dynamic priority, which is
a value ranging from 100 (highest priority) to 139 (lowest priority). The dynamic pri-
ority is the number actually looked up by the scheduler when selecting the new pro-
cess to run. It is related to the static priority by the following empirical formula:

dynamic priority = max(100, min(static priority − bonus + 5, 139)) (2)

The bonus is a value ranging from 0 to 10; a value less than 5 represents a penalty that
lowers the dynamic priority, while a value greater than 5 is a premium that raises the
dynamic priority. The value of the bonus, in turn, depends on the past history of the
process; more precisely, it is related to the average sleep time of the process.

Roughly, the average sleep time is the average number of nanoseconds that the pro-
cess spent while sleeping. Be warned, however, that this is not an average operation
on the elapsed time. For instance, sleeping in TASK_INTERRUPTIBLE state contributes to
the average sleep time in a different way from sleeping in TASK_UNINTERRUPTIBLE state.
Moreover, the average sleep time decreases while a process is running. Finally, the
average sleep time can never become larger than 1 second.

The correspondence between average sleep times and bonus values is shown in
Table 7-3. (The table lists also the corresponding granularity of the time slice, which
will be discussed later.)

The average sleep time is also used by the scheduler to determine whether a given
process should be considered interactive or batch. More precisely, a process is con-
sidered “interactive” if it satisfies the following formula:

dynamic priority ≤ 3 × static priority / 4 + 28 (3)

Table 7-3. Average sleep times, bonus values, and time slice granularity

Average sleep time Bonus Granularity

Greater than or equal to 0 but smaller than 100 ms 0 5120

Greater than or equal to 100 ms but smaller than 200 ms 1 2560

Greater than or equal to 200 ms but smaller than 300 ms 2 1280

Greater than or equal to 300 ms but smaller than 400 ms 3 640

Greater than or equal to 400 ms but smaller than 500 ms 4 320

Greater than or equal to 500 ms but smaller than 600 ms 5 160

Greater than or equal to 600 ms but smaller than 700 ms 6 80

Greater than or equal to 700 ms but smaller than 800 ms 7 40

Greater than or equal to 800 ms but smaller than 900 ms 8 20

Greater than or equal to 900 ms but smaller than 1000 ms 9 10

1 second 10 10

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Scheduling Algorithm | 265

which is equivalent to the following:

bonus - 5 ≥ static priority / 4 − 28

The expression static priority / 4 − 28 is called the interactive delta; some typical values
of this term are listed in Table 7-2. It should be noted that it is far easier for high pri-
ority than for low priority processes to become interactive. For instance, a process hav-
ing highest static priority (100) is considered interactive when its bonus value exceeds
2, that is, when its average sleep time exceeds 200 ms. Conversely, a process having
lowest static priority (139) is never considered as interactive, because the bonus value
is always smaller than the value 11 required to reach an interactive delta equal to 6. A
process having default static priority (120) becomes interactive as soon as its average
sleep time exceeds 700 ms.

Active and expired processes

Even if conventional processes having higher static priorities get larger slices of the CPU
time, they should not completely lock out the processes having lower static priority. To
avoid process starvation, when a process finishes its time quantum, it can be replaced
by a lower priority process whose time quantum has not yet been exhausted. To imple-
ment this mechanism, the scheduler keeps two disjoint sets of runnable processes:

Active processes
These runnable processes have not yet exhausted their time quantum and are
thus allowed to run.

Expired processes
These runnable processes have exhausted their time quantum and are thus for-
bidden to run until all active processes expire.

However, the general schema is slightly more complicated than this, because the
scheduler tries to boost the performance of interactive processes. An active batch pro-
cess that finishes its time quantum always becomes expired. An active interactive pro-
cess that finishes its time quantum usually remains active: the scheduler refills its time
quantum and leaves it in the set of active processes. However, the scheduler moves an
interactive process that finished its time quantum into the set of expired processes if
the eldest expired process has already waited for a long time, or if an expired process
has higher static priority (lower value) than the interactive process. As a consequence,
the set of active processes will eventually become empty and the expired processes
will have a chance to run.

Scheduling of Real-Time Processes
Every real-time process is associated with a real-time priority, which is a value rang-
ing from 1 (highest priority) to 99 (lowest priority). The scheduler always favors a
higher priority runnable process over a lower priority one; in other words, a real-time

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 7: Process Scheduling

process inhibits the execution of every lower-priority process while it remains runna-
ble. Contrary to conventional processes, real-time processes are always considered
active (see the previous section). The user can change the real-time priority of a pro-
cess by means of the sched_setparam() and sched_setscheduler() system calls (see
the section “System Calls Related to Scheduling” later in this chapter).

If several real-time runnable processes have the same highest priority, the scheduler
chooses the process that occurs first in the corresponding list of the local CPU’s run-
queue (see the section “The lists of TASK_RUNNING processes” in Chapter 3).

A real-time process is replaced by another process only when one of the following
events occurs:

• The process is preempted by another process having higher real-time priority.

• The process performs a blocking operation, and it is put to sleep (in state TASK_
INTERRUPTIBLE or TASK_UNINTERRUPTIBLE).

• The process is stopped (in state TASK_STOPPED or TASK_TRACED), or it is killed (in
state EXIT_ZOMBIE or EXIT_DEAD).

• The process voluntarily relinquishes the CPU by invoking the sched_yield()
system call (see the section “System Calls Related to Scheduling” later in this
chapter).

• The process is Round Robin real-time (SCHED_RR), and it has exhausted its time
quantum.

The nice() and setpriority() system calls, when applied to a Round Robin real-
time process, do not change the real-time priority but rather the duration of the base
time quantum. In fact, the duration of the base time quantum of Round Robin real-
time processes does not depend on the real-time priority, but rather on the static pri-
ority of the process, according to the formula (1) in the earlier section “Scheduling of
Conventional Processes.”

Data Structures Used by the Scheduler
Recall from the section “Identifying a Process” in Chapter 3 that the process list links
all process descriptors, while the runqueue lists link the process descriptors of all
runnable processes—that is, of those in a TASK_RUNNING state—except the swapper
process (idle process).

The runqueue Data Structure
The runqueue data structure is the most important data structure of the Linux 2.6 sched-
uler. Each CPU in the system has its own runqueue; all runqueue structures are stored in
the runqueues per-CPU variable (see the section “Per-CPU Variables” in Chapter 5).
The this_rq() macro yields the address of the runqueue of the local CPU, while the
cpu_rq(n) macro yields the address of the runqueue of the CPU having index n.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Used by the Scheduler | 267

Table 7-4 lists the fields included in the runqueue data structure; we will discuss most
of them in the following sections of the chapter.

The most important fields of the runqueue data structure are those related to the lists
of runnable processes. Every runnable process in the system belongs to one, and just
one, runqueue. As long as a runnable process remains in the same runqueue, it can

Table 7-4. The fields of the runqueue structure

Type Name Description

spinlock_t lock Spin lock protecting the lists of processes

unsigned long nr_running Number of runnable processes in the runqueue lists

unsigned long cpu_load CPU load factor based on the average number of processes
in the runqueue

unsigned long nr_switches Number of process switches performed by the CPU

unsigned long nr_uninterruptible Number of processes that were previously in the run-
queue lists and are now sleeping in TASK_
UNINTERRUPTIBLE state (only the sum of these fields
across all runqueues is meaningful)

unsigned long expired_timestamp Insertion time of the eldest process in the expired lists

unsigned long long timestamp_last_tick Timestamp value of the last timer interrupt

task_t * curr Process descriptor pointer of the currently running pro-
cess (same as current for the local CPU)

task_t * idle Process descriptor pointer of the swapper process for this
CPU

struct mm_struct * prev_mm Used during a process switch to store the address of the
memory descriptor of the process being replaced

prio_array_t * active Pointer to the lists of active processes

prio_array_t * expired Pointer to the lists of expired processes

prio_array_t [2] arrays The two sets of active and expired processes

int best_expired_prio The best static priority (lowest value) among the expired
processes

atomic_t nr_iowait Number of processes that were previously in the run-
queue lists and are now waiting for a disk I/O operation to
complete

struct
sched_domain *

sd Points to the base scheduling domain of this CPU (see the
section “Scheduling Domains” later in this chapter)

int active_balance Flag set if some process shall be migrated from this run-
queue to another (runqueue balancing)

int push_cpu Not used

task_t * migration_thread Process descriptor pointer of the migration kernel thread

struct list_head migration_queue List of processes to be removed from the runqueue

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 7: Process Scheduling

be executed only by the CPU owning that runqueue. However, as we’ll see later, run-
nable processes may migrate from one runqueue to another.

The arrays field of the runqueue is an array consisting of two prio_array_t struc-
tures. Each data structure represents a set of runnable processes, and includes 140
doubly linked list heads (one list for each possible process priority), a priority bit-
map, and a counter of the processes included in the set (see Table 3-2 in the section
Chapter 3).

As shown in Figure 7-1, the active field of the runqueue structure points to one of the
two prio_array_t data structures in arrays: the corresponding set of runnable pro-
cesses includes the active processes. Conversely, the expired field points to the other
prio_array_t data structure in arrays: the corresponding set of runnable processes
includes the expired processes.

Periodically, the role of the two data structures in arrays changes: the active pro-
cesses suddenly become the expired processes, and the expired processes become the
active ones. To achieve this change, the scheduler simply exchanges the contents of
the active and expired fields of the runqueue.

Process Descriptor
Each process descriptor includes several fields related to scheduling; they are listed in
Table 7-5.

Figure 7-1. The runqueue structure and the two sets of runnable processes

Table 7-5. Fields of the process descriptor related to the scheduler

Type Name Description

unsigned long thread_info->flags Stores the TIF_NEED_RESCHED flag, which is set if
the scheduler must be invoked (see the section “Return-
ing from Interrupts and Exceptions” in Chapter 4)

unsigned int thread_info->cpu Logical number of the CPU owning the runqueue to
which the runnable process belongs

P

arrays[0]

arrays[1]

active

expired

P

P

P

P

P

P

priority 0

priority 139

priority 0

priority 139P

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Data Structures Used by the Scheduler | 269

When a new process is created, sched_fork(), invoked by copy_process(), sets the
time_slice field of both current (the parent) and p (the child) processes in the fol-
lowing way:

p->time_slice = (current->time_slice + 1) >> 1;
current->time_slice >>= 1;

In other words, the number of ticks left to the parent is split in two halves: one for
the parent and one for the child. This is done to prevent users from getting an unlim-
ited amount of CPU time by using the following method: the parent process creates a
child process that runs the same code and then kills itself; by properly adjusting the
creation rate, the child process would always get a fresh quantum before the quan-
tum of its parent expires. This programming trick does not work because the kernel
does not reward forks. Similarly, a user cannot hog an unfair share of the processor
by starting several background processes in a shell or by opening a lot of windows on
a graphical desktop. More generally speaking, a process cannot hog resources (unless
it has privileges to give itself a real-time policy) by forking multiple descendents.

If the parent had just one tick left in its time slice, the splitting operation forces
current->time_slice to 0, thus exhausting the quantum of the parent. In this case,
copy_process() sets current->time_slice back to 1, then invokes scheduler_tick()
to decrease the field (see the following section).

unsigned long state The current state of the process (see the section “Pro-
cess State” in Chapter 3)

int prio Dynamic priority of the process

int static_prio Static priority of the process

struct list_head run_list Pointers to the next and previous elements in the run-
queue list to which the process belongs

prio_array_t * array Pointer to the runqueue’s prio_array_t set that
includes the process

unsigned long sleep_avg Average sleep time of the process

unsigned long long timestamp Time of last insertion of the process in the runqueue, or
time of last process switch involving the process

unsigned long long last_ran Time of last process switch that replaced the process

int activated Condition code used when the process is awakened

unsigned long policy The scheduling class of the process (SCHED_NORMAL,
SCHED_RR, or SCHED_FIFO)

cpumask_t cpus_allowed Bit mask of the CPUs that can execute the process

unsigned int time_slice Ticks left in the time quantum of the process

unsigned int first_time_slice Flag set to 1 if the process never exhausted its time
quantum

unsigned long rt_priority Real-time priority of the process

Table 7-5. Fields of the process descriptor related to the scheduler (continued)

Type Name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 7: Process Scheduling

The copy_process() function also initializes a few other fields of the child’s process
descriptor related to scheduling:

p->first_time_slice = 1;
p->timestamp = sched_clock();

The first_time_slice flag is set to 1, because the child has never exhausted its time
quantum (if a process terminates or executes a new program during its first time
slice, the parent process is rewarded with the remaining time slice of the child). The
timestamp field is initialized with a timestamp value produced by sched_clock():
essentially, this function returns the contents of the 64-bit TSC register (see the sec-
tion “Time Stamp Counter (TSC)” in Chapter 6) converted to nanoseconds.

Functions Used by the Scheduler
The scheduler relies on several functions in order to do its work; the most important
are:

scheduler_tick()
Keeps the time_slice counter of current up-to-date

try_to_wake_up()
Awakens a sleeping process

recalc_task_prio()
Updates the dynamic priority of a process

schedule()
Selects a new process to be executed

load_balance()
Keeps the runqueues of a multiprocessor system balanced

The scheduler_tick() Function
We have already explained in the section “Updating Local CPU Statistics” in
Chapter 6 how scheduler_tick() is invoked once every tick to perform some opera-
tions related to scheduling. It executes the following main steps:

1. Stores in the timestamp_last_tick field of the local runqueue the current value of
the TSC converted to nanoseconds; this timestamp is obtained from the sched_
clock() function (see the previous section).

2. Checks whether the current process is the swapper process of the local CPU. If
so, it performs the following substeps:

a. If the local runqueue includes another runnable process besides swapper, it
sets the TIF_NEED_RESCHED flag of the current process to force rescheduling.
As we’ll see in the section “The schedule() Function” later in this chapter, if
the kernel supports the hyper-threading technology (see the section “Run-
queue Balancing in Multiprocessor Systems” later in this chapter), a logical

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Functions Used by the Scheduler | 271

CPU might be idle even if there are runnable processes in its runqueue, as
long as those processes have significantly lower priorities than the priority of
a process already executing on another logical CPU associated with the same
physical CPU.

b. Jumps to step 7 (there is no need to update the time slice counter of the
swapper process).

3. Checks whether current->array points to the active list of the local runqueue. If
not, the process has expired its time quantum, but it has not yet been replaced:
sets the TIF_NEED_RESCHED flag to force rescheduling, and jumps to step 7.

4. Acquires the this_rq()->lock spin lock.

5. Decreases the time slice counter of the current process, and checks whether the
quantum is exhausted. The operations performed by the function are quite dif-
ferent according to the scheduling class of the process; we will discuss them in a
moment.

6. Releases the this_rq()->lock spin lock.

7. Invokes the rebalance_tick() function, which should ensure that the runqueues
of the various CPUs contain approximately the same number of runnable pro-
cesses. We will discuss runqueue balancing in the later section “Runqueue Bal-
ancing in Multiprocessor Systems.”

Updating the time slice of a real-time process

If the current process is a FIFO real-time process, scheduler_tick() has nothing to
do. In this case, in fact, current cannot be preempted by lower or equal priority pro-
cesses, thus it does not make sense to keep its time slice counter up-to-date.

If current is a Round Robin real-time process, scheduler_tick() decreases its time
slice counter and checks whether the quantum is exhausted:

if (current->policy == SCHED_RR && !--current->time_slice) {
 current->time_slice = task_timeslice(current);
 current->first_time_slice = 0;
 set_tsk_need_resched(current);
 list_del(¤t->run_list);
 list_add_tail(¤t->run_list,
 this_rq()->active->queue+current->prio);
}

If the function determines that the time quantum is effectively exhausted, it per-
forms a few operations aimed to ensure that current will be preempted, if necessary,
as soon as possible.

The first operation consists of refilling the time slice counter of the process by invok-
ing task_timeslice(). This function considers the static priority of the process and
returns the corresponding base time quantum, according to the formula (1) shown in
the earlier section “Scheduling of Conventional Processes.” Moreover, the first_
time_slice field of current is cleared: this flag is set by copy_process() in the service

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 7: Process Scheduling

routine of the fork() system call, and should be cleared as soon as the first time
quantum of the process elapses.

Next, scheduler_tick() invokes the set_tsk_need_resched() function to set the TIF_
NEED_RESCHED flag of the process. As described in the section “Returning from Inter-
rupts and Exceptions” in Chapter 4, this flag forces the invocation of the schedule()
function, so that current can be replaced by another real-time process having equal
(or higher) priority, if any.

The last operation of scheduler_tick() consists of moving the process descriptor to
the last position of the runqueue active list corresponding to the priority of current.
Placing current in the last position ensures that it will not be selected again for exe-
cution until every real-time runnable process having the same priority as current will
get a slice of the CPU time. This is the meaning of round-robin scheduling. The
descriptor is moved by first invoking list_del() to remove the process from the run-
queue active list, then by invoking list_add_tail() to insert back the process in the
last position of the same list.

Updating the time slice of a conventional process

If the current process is a conventional process, the scheduler_tick() function per-
forms the following operations:

1. Decreases the time slice counter (current->time_slice).

2. Checks the time slice counter. If the time quantum is exhausted, the function
performs the following operations:

a. Invokes dequeue_task() to remove current from the this_rq()->active set
of runnable processes.

b. Invokes set_tsk_need_resched() to set the TIF_NEED_RESCHED flag.

c. Updates the dynamic priority of current:
current->prio = effective_prio(current);

The effective_prio() function reads the static_prio and sleep_avg fields of
current, and computes the dynamic priority of the process according to the
formula (2) shown in the earlier section “Scheduling of Conventional Pro-
cesses.”

d. Refills the time quantum of the process:
current->time_slice = task_timeslice(current);
current->first_time_slice = 0;

e. If the expired_timestamp field of the local runqueue data structure is equal to
zero (that is, the set of expired processes is empty), writes into the field the
value of the current tick:

if (!this_rq()->expired_timestamp)
 this_rq()->expired_timestamp = jiffies;

f. Inserts the current process either in the active set or in the expired set:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Functions Used by the Scheduler | 273

if (!TASK_INTERACTIVE(current) || EXPIRED_STARVING(this_rq()) {
 enqueue_task(current, this_rq()->expired);
 if (current->static_prio < this_rq()->best_expired_prio)
 this_rq()->best_expired_prio = current->static_prio;
} else
 enqueue_task(current, this_rq()->active);

The TASK_INTERACTIVE macro yields the value one if the process is recog-
nized as interactive using the formula (3) shown in the earlier section
“Scheduling of Conventional Processes.” The EXPIRED_STARVING macro
checks whether the first expired process in the runqueue had to wait for
more than 1000 ticks times the number of runnable processes in the run-
queue plus one; if so, the macro yields the value one. The EXPIRED_STARVING
macro also yields the value one if the static priority value of the current pro-
cess is greater than the static priority value of an already expired process.

3. Otherwise, if the time quantum is not exhausted (current->time_slice is not
zero), checks whether the remaining time slice of the current process is too long:

if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
 (p->array == rq->active)) {
 list_del(¤t->run_list);
 list_add_tail(¤t->run_list,
 this_rq()->active->queue+current->prio);
 set_tsk_need_resched(p);
}

The TIMESLICE_GRANULARITY macro yields the product of the number of CPUs in
the system and a constant proportional to the bonus of the current process (see
Table 7-3 earlier in the chapter). Basically, the time quantum of interactive pro-
cesses with high static priorities is split into several pieces of TIMESLICE_
GRANULARITY size, so that they do not monopolize the CPU.

The try_to_wake_up() Function
The try_to_wake_up() function awakes a sleeping or stopped process by setting its
state to TASK_RUNNING and inserting it into the runqueue of the local CPU. For
instance, the function is invoked to wake up processes included in a wait queue (see
the section “How Processes Are Organized” in Chapter 3) or to resume execution of
processes waiting for a signal (see Chapter 11). The function receives as its parame-
ters:

• The descriptor pointer (p) of the process to be awakened

• A mask of the process states (state) that can be awakened

• A flag (sync) that forbids the awakened process to preempt the process currently
running on the local CPU

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 7: Process Scheduling

The function performs the following operations:

1. Invokes the task_rq_lock() function to disable local interrupts and to acquire
the lock of the runqueue rq owned by the CPU that was last executing the pro-
cess (it could be different from the local CPU). The logical number of that CPU
is stored in the p->thread_info->cpu field.

2. Checks if the state of the process p->state belongs to the mask of states state
passed as argument to the function; if this is not the case, it jumps to step 9 to
terminate the function.

3. If the p->array field is not NULL, the process already belongs to a runqueue; there-
fore, it jumps to step 8.

4. In multiprocessor systems, it checks whether the process to be awakened should
be migrated from the runqueue of the lastly executing CPU to the runqueue of
another CPU. Essentially, the function selects a target runqueue according to
some heuristic rules. For example:

• If some CPU in the system is idle, it selects its runqueue as the target. Prefer-
ence is given to the previously executing CPU and to the local CPU, in this
order.

• If the workload of the previously executing CPU is significantly lower than
the workload of the local CPU, it selects the old runqueue as the target.

• If the process has been executed recently, it selects the old runqueue as the
target (the hardware cache might still be filled with the data of the process).

• If moving the process to the local CPU reduces the unbalance between the
CPUs, the target is the local runqueue (see the section “Runqueue Balanc-
ing in Multiprocessor Systems” later in this chapter).

After this step has been executed, the function has identified a target CPU that
will execute the awakened process and, correspondingly, a target runqueue rq in
which to insert the process.

5. If the process is in the TASK_UNINTERRUPTIBLE state, it decreases the nr_
uninterruptible field of the target runqueue, and sets the p->activated field of
the process descriptor to -1. See the later section “The recalc_task_prio() Func-
tion” for an explanation of the activated field.

6. Invokes the activate_task() function, which in turn performs the following sub-
steps:

a. Invokes sched_clock() to get the current timestamp in nanoseconds. If the
target CPU is not the local CPU, it compensates for the drift of the local
timer interrupts by using the timestamps relative to the last occurrences of
the timer interrupts on the local and target CPUs:

now = (sched_clock() - this_rq()->timestamp_last_tick)
 + rq->timestamp_last_tick;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Functions Used by the Scheduler | 275

b. Invokes recalc_task_prio(), passing to it the process descriptor pointer and
the timestamp computed in the previous step. The recalc_task_prio() func-
tion is described in the next section.

c. Sets the value of the p->activated field according to Table 7-6 later in this
chapter.

d. Sets the p->timestamp field with the timestamp computed in step 6a.

e. Inserts the process descriptor in the active set:
enqueue_task(p, rq->active);
rq->nr_running++;

7. If either the target CPU is not the local CPU or if the sync flag is not set, it checks
whether the new runnable process has a dynamic priority higher than that of the
current process of the rq runqueue (p->prio < rq->curr->prio); if so, invokes
resched_task() to preempt rq->curr. In uniprocessor systems the latter function
just executes set_tsk_need_resched() to set the TIF_NEED_RESCHED flag of the rq->
curr process. In multiprocessor systems resched_task() also checks whether the
old value of whether TIF_NEED_RESCHED flag was zero, the target CPU is different
from the local CPU, and whether the TIF_POLLING_NRFLAG flag of the rq->curr
process is clear (the target CPU is not actively polling the status of the TIF_NEED_
RESCHED flag of the process). If so, resched_task() invokes smp_send_reschedule(
) to raise an IPI and force rescheduling on the target CPU (see the section “Inter-
processor Interrupt Handling” in Chapter 4).

8. Sets the p->state field of the process to TASK_RUNNING.

9. Invokes task_rq_unlock() to unlock the rq runqueue and reenable the local
interrupts.

10. Returns 1 (if the process has been successfully awakened) or 0 (if the process has
not been awakened).

The recalc_task_prio() Function
The recalc_task_prio() function updates the average sleep time and the dynamic
priority of a process. It receives as its parameters a process descriptor pointer p and a
timestamp now computed by the sched_clock() function.

The function executes the following operations:

1. Stores in the sleep_time local variable the result of:

 min (now − p->timestamp, 109)

The p->timestamp field contains the timestamp of the process switch that put the
process to sleep; therefore, sleep_time stores the number of nanoseconds that
the process spent sleeping since its last execution (or the equivalent of 1 second,
if the process slept more).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 7: Process Scheduling

2. If sleep_time is not greater than zero, it jumps to step 8 so as to skip updating
the average sleep time of the process.

3. Checks whether the process is not a kernel thread, whether it is awakening from
the TASK_UNINTERRUPTIBLE state (p->activated field equal to −1; see step 5 in the
previous section), and whether it has been continuously asleep beyond a given
sleep time threshold. If these three conditions are fulfilled, the function sets the
p->sleep_avg field to the equivalent of 900 ticks (an empirical value obtained by
subtracting the duration of the base time quantum of a standard process from
the maximum average sleep time). Then, it jumps to step 8.

The sleep time threshold depends on the static priority of the process; some typi-
cal values are shown in Table 7-2. In short, the goal of this empirical rule is to
ensure that processes that have been asleep for a long time in uninterruptible
mode—usually waiting for disk I/O operations—get a predefined sleep average
value that is large enough to allow them to be quickly serviced, but it is also not
so large to cause starvation for other processes.

4. Executes the CURRENT_BONUS macro to compute the bonus value of the previous
average sleep time of the process (see Table 7-3). If (10–bonus) is greater than
zero, the function multiplies sleep_time by this value. Since sleep_time will be
added to the average sleep time of the process (see step 6 below), the lower the
current average sleep time is, the more rapidly it will rise.

5. If the process is in TASK_UNINTERRUPTIBLE mode and it is not a kernel thread, it
performs the following substeps:

a. Checks whether the average sleep time p->sleep_avg is greater than or equal
to its sleep time threshold (see Table 7-2 earlier in this chapter). If so, it
resets the sleep_time local variable to zero—thus skipping the adjustment of
the average sleep time—and jumps to step 6.

b. If the sum sleep_time+ p->sleep_avg is greater than or equal to the sleep time
threshold, it sets the p->sleep_avg field to the sleep time threshold, and sets
sleep_time to zero.

By somewhat limiting the increment of the average sleep time of the process, the
function does not reward too much batch processes that sleep for a long time.

6. Adds sleep_time to the average sleep time of the process (p->sleep_avg).

7. Checks whether p->sleep_avg exceeds 1000 ticks (in nanoseconds); if so, the
function cuts it down to 1000 ticks (in nanoseconds).

8. Updates the dynamic priority of the process:
p->prio = effective_prio(p);

The effective_prio() function has already been discussed in the section “The
scheduler_tick() Function” earlier in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Functions Used by the Scheduler | 277

The schedule() Function
The schedule() function implements the scheduler. Its objective is to find a process
in the runqueue list and then assign the CPU to it. It is invoked, directly or in a lazy
(deferred) way, by several kernel routines.

Direct invocation

The scheduler is invoked directly when the current process must be blocked right
away because the resource it needs is not available. In this case, the kernel routine
that wants to block it proceeds as follows:

1. Inserts current in the proper wait queue.

2. Changes the state of current either to TASK_INTERRUPTIBLE or to TASK_
UNINTERRUPTIBLE.

3. Invokes schedule().

4. Checks whether the resource is available; if not, goes to step 2.

5. Once the resource is available, removes current from the wait queue.

The kernel routine checks repeatedly whether the resource needed by the process is
available; if not, it yields the CPU to some other process by invoking schedule().
Later, when the scheduler once again grants the CPU to the process, the availability
of the resource is rechecked. These steps are similar to those performed by wait_
event() and similar functions described in the section “How Processes Are Orga-
nized” in Chapter 3.

The scheduler is also directly invoked by many device drivers that execute long itera-
tive tasks. At each iteration cycle, the driver checks the value of the TIF_NEED_RESCHED
flag and, if necessary, invokes schedule() to voluntarily relinquish the CPU.

Lazy invocation

The scheduler can also be invoked in a lazy way by setting the TIF_NEED_RESCHED flag
of current to 1. Because a check on the value of this flag is always made before
resuming the execution of a User Mode process (see the section “Returning from
Interrupts and Exceptions” in Chapter 4), schedule() will definitely be invoked at
some time in the near future.

Typical examples of lazy invocation of the scheduler are:

• When current has used up its quantum of CPU time; this is done by the
scheduler_tick() function.

• When a process is woken up and its priority is higher than that of the current
process; this task is performed by the try_to_wake_up() function.

• When a sched_setscheduler() system call is issued (see the section “System
Calls Related to Scheduling” later in this chapter).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 7: Process Scheduling

Actions performed by schedule() before a process switch

The goal of the schedule() function consists of replacing the currently executing pro-
cess with another one. Thus, the key outcome of the function is to set a local vari-
able called next, so that it points to the descriptor of the process selected to replace
current. If no runnable process in the system has priority greater than the priority of
current, at the end, next coincides with current and no process switch takes place.

The schedule() function starts by disabling kernel preemption and initializing a few
local variables:

need_resched:

preempt_disable();
prev = current;
rq = this_rq();

As you see, the pointer returned by current is saved in prev, and the address of the
runqueue data structure corresponding to the local CPU is saved in rq.

Next, schedule() makes sure that prev doesn’t hold the big kernel lock (see the sec-
tion “The Big Kernel Lock” in Chapter 5):

if (prev->lock_depth >= 0)
 up(&kernel_sem);

Notice that schedule() doesn’t change the value of the lock_depth field; when prev
resumes its execution, it reacquires the kernel_flag spin lock if the value of this field
is not negative. Thus, the big kernel lock is automatically released and reacquired
across a process switch.

The sched_clock() function is invoked to read the TSC and convert its value to
nanoseconds; the timestamp obtained is saved in the now local variable. Then,
schedule() computes the duration of the CPU time slice used by prev:

now = sched_clock();
run_time = now - prev->timestamp;
if (run_time > 1000000000)
 run_time = 1000000000;

The usual cut-off at 1 second (converted to nanoseconds) applies. The run_time
value is used to charge the process for the CPU usage. However, a process having a
high average sleep time is favored:

run_time /= (CURRENT_BONUS(prev) ? : 1);

Remember that CURRENT_BONUS returns a value between 0 and 10 that is proportional
to the average sleep time of the process.

Before starting to look at the runnable processes, schedule() must disable the local
interrupts and acquire the spin lock that protects the runqueue:

spin_lock_irq(&rq->lock);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Functions Used by the Scheduler | 279

As explained in the section “Process Termination” in Chapter 3, prev might be a pro-
cess that is being terminated. To recognize this case, schedule() looks at the PF_DEAD
flag:

if (prev->flags & PF_DEAD)
 prev->state = EXIT_DEAD;

Next, schedule() examines the state of prev. If it is not runnable and it has not been
preempted in Kernel Mode (see the section “Returning from Interrupts and Excep-
tions” in Chapter 4), then it should be removed from the runqueue. However, if it
has nonblocked pending signals and its state is TASK_INTERRUPTIBLE, the function sets
the process state to TASK_RUNNING and leaves it into the runqueue. This action is not
the same as assigning the processor to prev; it just gives prev a chance to be selected
for execution:

if (prev->state != TASK_RUNNING &&
 !(preempt_count() & PREEMPT_ACTIVE)) {
 if (prev->state == TASK_INTERRUPTIBLE && signal_pending(prev))
 prev->state = TASK_RUNNING;
 else {
 if (prev->state == TASK_UNINTERRUPTIBLE)
 rq->nr_uninterruptible++;
 deactivate_task(prev, rq);
 }
}

The deactivate_task() function removes the process from the runqueue:

rq->nr_running--;
dequeue_task(p, p->array);
p->array = NULL;

Now, schedule() checks the number of runnable processes left in the runqueue. If
there are some runnable processes, the function invokes the dependent_sleeper()
function. In most cases, this function immediately returns zero. If, however, the ker-
nel supports the hyper-threading technology (see the section “Runqueue Balancing
in Multiprocessor Systems” later in this chapter), the function checks whether the
process that is going to be selected for execution has significantly lower priority than
a sibling process already running on a logical CPU of the same physical CPU; in this
particular case, schedule() refuses to select the lower privilege process and executes
the swapper process instead.

if (rq->nr_running) {
 if (dependent_sleeper(smp_processor_id(), rq)) {
 next = rq->idle;
 goto switch_tasks;
 }
}

If no runnable process exists, the function invokes idle_balance() to move some run-
nable process from another runqueue to the local runqueue; idle_balance() is simi-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 7: Process Scheduling

lar to load_balance(), which is described in the later section “The load_balance()
Function.”

if (!rq->nr_running) {
 idle_balance(smp_processor_id(), rq);
 if (!rq->nr_running) {
 next = rq->idle;
 rq->expired_timestamp = 0;
 wake_sleeping_dependent(smp_processor_id(), rq);
 if (!rq->nr_running)
 goto switch_tasks;
 }
}

If idle_balance() fails in moving some process in the local runqueue, schedule()
invokes wake_sleeping_dependent() to reschedule runnable processes in idle CPUs
(that is, in every CPU that runs the swapper process). As explained earlier when dis-
cussing the dependent_sleeper() function, this unusual case might happen when the
kernel supports the hyper-threading technology. However, in uniprocessor systems,
or when all attempts to move a runnable process in the local runqueue have failed,
the function picks the swapper process as next and continues with the next phase.

Let’s suppose that the schedule() function has determined that the runqueue
includes some runnable processes; now it has to check that at least one of these run-
nable processes is active. If not, the function exchanges the contents of the active and
expired fields of the runqueue data structure; thus, all expired processes become
active, while the empty set is ready to receive the processes that will expire in the
future.

array = rq->active;
if (!array->nr_active) {
 rq->active = rq->expired;
 rq->expired = array;
 array = rq->active;
 rq->expired_timestamp = 0;
 rq->best_expired_prio = 140;
}

It is time to look up a runnable process in the active prio_array_t data structure (see
the section “Identifying a Process” in Chapter 3). First of all, schedule() searches for
the first nonzero bit in the bitmask of the active set. Remember that a bit in the bit-
mask is set when the corresponding priority list is not empty. Thus, the index of the
first nonzero bit indicates the list containing the best process to run. Then, the first
process descriptor in that list is retrieved:

idx = sched_find_first_bit(array->bitmap);
next = list_entry(array->queue[idx].next, task_t, run_list);

The sched_find_first_bit() function is based on the bsfl assembly language
instruction, which returns the bit index of the least significant bit set to one in a 32-
bit word.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Functions Used by the Scheduler | 281

The next local variable now stores the descriptor pointer of the process that will
replace prev. The schedule() function looks at the next->activated field. This field
encodes the state of the process when it was awakened, as illustrated in Table 7-6.

If next is a conventional process and it is being awakened from the TASK_
INTERRUPTIBLE or TASK_STOPPED state, the scheduler adds to the average sleep time of
the process the nanoseconds elapsed since the process was inserted into the run-
queue. In other words, the sleep time of the process is increased to cover also the
time spent by the process in the runqueue waiting for the CPU:

if (next->prio >= 100 && next->activated > 0) {
 unsigned long long delta = now - next->timestamp;
 if (next->activated == 1)
 delta = (delta * 38) / 128;
 array = next->array;
 dequeue_task(next, array);
 recalc_task_prio(next, next->timestamp + delta);
 enqueue_task(next, array);
}
next->activated = 0;

Observe that the scheduler makes a distinction between a process awakened by an
interrupt handler or deferrable function, and a process awakened by a system call
service routine or a kernel thread. In the former case, the scheduler adds the whole
runqueue waiting time, while in the latter it adds just a fraction of that time. This is
because interactive processes are more likely to be awakened by asynchronous events
(think of the user pressing keys on the keyboard) rather than by synchronous ones.

Actions performed by schedule() to make the process switch

Now the schedule() function has determined the next process to run. In a moment,
the kernel will access the thread_info data structure of next, whose address is stored
close to the top of next’s process descriptor:

switch_tasks:

prefetch(next);

The prefetch macro is a hint to the CPU control unit to bring the contents of the first
fields of next’s process descriptor in the hardware cache. It is here just to improve the

Table 7-6. The meaning of the activated field in the process descriptor

Value Description

 0 The process was in TASK_RUNNING state.

 1 The process was in TASK_INTERRUPTIBLE or TASK_STOPPED state, and it is being awakened by a system call
service routine or a kernel thread.

 2 The process was in TASK_INTERRUPTIBLE or TASK_STOPPED state, and it is being awakened by an interrupt
handler or a deferrable function.

−1 The process was in TASK_UNINTERRUPTIBLE state and it is being awakened.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 7: Process Scheduling

performance of schedule(), because the data are moved in parallel to the execution
of the following instructions, which do not affect next.

Before replacing prev, the scheduler should do some administrative work:

clear_tsk_need_resched(prev);
rcu_qsctr_inc(prev->thread_info->cpu);

The clear_tsk_need_resched() function clears the TIF_NEED_RESCHED flag of prev, just
in case schedule() has been invoked in the lazy way. Then, the function records that
the CPU is going through a quiescent state (see the section “Read-Copy Update
(RCU)” in Chapter 5).

The schedule() function must also decrease the average sleep time of prev, charging
to it the slice of CPU time used by the process:

prev->sleep_avg -= run_time;
if ((long)prev->sleep_avg <= 0)
 prev->sleep_avg = 0;
prev->timestamp = prev->last_ran = now;

The timestamps of the process are then updated.

It is quite possible that prev and next are the same process: this happens if no other
higher or equal priority active process is present in the runqueue. In this case, the
function skips the process switch:

if (prev == next) {
 spin_unlock_irq(&rq->lock);
 goto finish_schedule;
}

At this point, prev and next are different processes, and the process switch is for real:

next->timestamp = now;
rq->nr_switches++;
rq->curr = next;
prev = context_switch(rq, prev, next);

The context_switch() function sets up the address space of next. As we’ll see in
“Memory Descriptor of Kernel Threads” in Chapter 9, the active_mm field of the pro-
cess descriptor points to the memory descriptor that is used by the process, while the
mm field points to the memory descriptor owned by the process. For normal pro-
cesses, the two fields hold the same address; however, a kernel thread does not have
its own address space and its mm field is always set to NULL. The context_switch()
function ensures that if next is a kernel thread, it uses the address space used by prev:

if (!next->mm) {
 next->active_mm = prev->active_mm;
 atomic_inc(&prev->active_mm->mm_count);
 enter_lazy_tlb(prev->active_mm, next);
}

Up to Linux version 2.2, kernel threads had their own address space. That design
choice was suboptimal, because the Page Tables had to be changed whenever the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Functions Used by the Scheduler | 283

scheduler selected a new process, even if it was a kernel thread. Because kernel
threads run in Kernel Mode, they use only the fourth gigabyte of the linear address
space, whose mapping is the same for all processes in the system. Even worse, writ-
ing into the cr3 register invalidates all TLB entries (see “Translation Lookaside Buff-
ers (TLB)” in Chapter 2), which leads to a significant performance penalty. Linux is
nowadays much more efficient because Page Tables aren’t touched at all if next is a
kernel thread. As further optimization, if next is a kernel thread, the schedule() func-
tion sets the process into lazy TLB mode (see the section “Translation Lookaside
Buffers (TLB)” in Chapter 2).

Conversely, if next is a regular process, the context_switch() function replaces the
address space of prev with the one of next:

if (next->mm)
 switch_mm(prev->active_mm, next->mm, next);

If prev is a kernel thread or an exiting process, the context_switch() function saves
the pointer to the memory descriptor used by prev in the runqueue’s prev_mm field,
then resets prev->active_mm:

if (!prev->mm) {
 rq->prev_mm = prev->active_mm;
 prev->active_mm = NULL;
}

Now context_switch() can finally invoke switch_to() to perform the process switch
between prev and next (see the section “Performing the Process Switch” in
Chapter 3):

switch_to(prev, next, prev);
return prev;

Actions performed by schedule() after a process switch

The instructions of the context_switch() and schedule() functions following the
switch_to macro invocation will not be performed right away by the next process,
but at a later time by prev when the scheduler selects it again for execution. How-
ever, at that moment, the prev local variable does not point to our original process
that was to be replaced when we started the description of schedule(), but rather to
the process that was replaced by our original prev when it was scheduled again. (If
you are confused, go back and read the section “Performing the Process Switch” in
Chapter 3.) The first instructions after a process switch are:

barrier();
finish_task_switch(prev);

Right after the invocation of the context_switch() function in schedule(), the
barrier() macro yields an optimization barrier for the code (see the section “Optimi-
zation and Memory Barriers” in Chapter 5). Then, the finish_task_switch() func-
tion is executed:

mm = this_rq()->prev_mm;
this_rq()->prev_mm = NULL;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 7: Process Scheduling

prev_task_flags = prev->flags;
spin_unlock_irq(&this_rq()->lock);
if (mm)
 mmdrop(mm);
if (prev_task_flags & PF_DEAD)
 put_task_struct(prev);

If prev is a kernel thread, the prev_mm field of the runqueue stores the address of the
memory descriptor that was lent to prev. As we’ll see in Chapter 9, mmdrop()
decreases the usage counter of the memory descriptor; if the counter reaches 0 (likely
because prev is a zombie process), the function also frees the descriptor together with
the associated Page Tables and virtual memory regions.

The finish_task_switch() function also releases the spin lock of the runqueue and
enables the local interrupts. Then, it checks whether prev is a zombie task that is being
removed from the system (see the section “Process Termination” in Chapter 3); if so, it
invokes put_task_struct() to free the process descriptor reference counter and drop
all remaining references to the process (see the section “Process Removal” in
Chapter 3).

The very last instructions of the schedule() function are:

finish_schedule:

prev = current;
if (prev->lock_depth >= 0)
 _ _reacquire_kernel_lock();
preempt_enable_no_resched();
if (test_bit(TIF_NEED_RESCHED, ¤t_thread_info()->flags)
 goto need_resched;
return;

As you see, schedule() reacquires the big kernel lock if necessary, reenables kernel
preemption, and checks whether some other process has set the TIF_NEED_RESCHED
flag of the current process. In this case, the whole schedule() function is reexecuted
from the beginning; otherwise, the function terminates.

Runqueue Balancing in Multiprocessor Systems
We have seen in Chapter 4 that Linux sticks to the Symmetric Multiprocessing model
(SMP); this means, essentially, that the kernel should not have any bias toward one
CPU with respect to the others. However, multiprocessor machines come in many
different flavors, and the scheduler behaves differently depending on the hardware
characteristics. In particular, we will consider the following three types of multipro-
cessor machines:

Classic multiprocessor architecture
Until recently, this was the most common architecture for multiprocessor
machines. These machines have a common set of RAM chips shared by all CPUs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Runqueue Balancing in Multiprocessor Systems | 285

Hyper-threading
A hyper-threaded chip is a microprocessor that executes several threads of exe-
cution at once; it includes several copies of the internal registers and quickly
switches between them. This technology, which was invented by Intel, allows
the processor to exploit the machine cycles to execute another thread while the
current thread is stalled for a memory access. A hyper-threaded physical CPU is
seen by Linux as several different logical CPUs.

NUMA
CPUs and RAM chips are grouped in local “nodes” (usually a node includes one
CPU and a few RAM chips). The memory arbiter (a special circuit that serializes
the accesses to RAM performed by the CPUs in the system, see the section
“Memory Addresses” in Chapter 2) is a bottleneck for the performance of the
classic multiprocessor systems. In a NUMA architecture, when a CPU accesses a
“local” RAM chip inside its own node, there is little or no contention, thus the
access is usually fast; on the other hand, accessing a “remote” RAM chip out-
side of its node is much slower. We’ll mention in the section “Non-Uniform
Memory Access (NUMA)” in Chapter 8 how the Linux kernel memory allocator
supports NUMA architectures.

These basic kinds of multiprocessor systems are often combined. For instance, a
motherboard that includes two different hyper-threaded CPUs is seen by the kernel
as four logical CPUs.

As we have seen in the previous section, the schedule() function picks the new pro-
cess to run from the runqueue of the local CPU. Therefore, a given CPU can execute
only the runnable processes that are contained in the corresponding runqueue. On
the other hand, a runnable process is always stored in exactly one runqueue: no run-
nable process ever appears in two or more runqueues. Therefore, until a process
remains runnable, it is usually bound to one CPU.

This design choice is usually beneficial for system performance, because the hard-
ware cache of every CPU is likely to be filled with data owned by the runnable pro-
cesses in the runqueue. In some cases, however, binding a runnable process to a
given CPU might induce a severe performance penalty. For instance, consider a large
number of batch processes that make heavy use of the CPU: if most of them end up
in the same runqueue, one CPU in the system will be overloaded, while the others
will be nearly idle.

Therefore, the kernel periodically checks whether the workloads of the runqueues are
balanced and, if necessary, moves some process from one runqueue to another. How-
ever, to get the best performance from a multiprocessor system, the load balancing
algorithm should take into consideration the topology of the CPUs in the system.
Starting from kernel version 2.6.7, Linux sports a sophisticated runqueue balancing
algorithm based on the notion of “scheduling domains.” Thanks to the scheduling
domains, the algorithm can be easily tuned for all kinds of existing multiprocessor

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 7: Process Scheduling

architectures (and even for recent architectures such as those based on the “multi-
core” microprocessors).

Scheduling Domains
Essentially, a scheduling domain is a set of CPUs whose workloads should be kept
balanced by the kernel. Generally speaking, scheduling domains are hierarchically
organized: the top-most scheduling domain, which usually spans all CPUs in the sys-
tem, includes children scheduling domains, each of which include a subset of the
CPUs. Thanks to the hierarchy of scheduling domains, workload balancing can be
done in a rather efficient way.

Every scheduling domain is partitioned, in turn, in one or more groups, each of which
represents a subset of the CPUs of the scheduling domain. Workload balancing is
always done between groups of a scheduling domain. In other words, a process is
moved from one CPU to another only if the total workload of some group in some
scheduling domain is significantly lower than the workload of another group in the
same scheduling domain.

Figure 7-2 illustrates three examples of scheduling domain hierarchies, correspond-
ing to the three main architectures of multiprocessor machines.

Figure 7-2 (a) represents a hierarchy composed by a single scheduling domain for a
2-CPU classic multiprocessor architecture. The scheduling domain includes only two
groups, each of which includes one CPU.

Figure 7-2 (b) represents a two-level hierarchy for a 2-CPU multiprocessor box with
hyper-threading technology. The top-level scheduling domain spans all four logical
CPUs in the system, and it is composed by two groups. Each group of the top-level

Figure 7-2. Three examples of scheduling domain hierarchies

(b) 2-CPU SMP with HyperThreading(a) 2-CPU SMP (c) 8-CPU NUMA

CPU 0

CPU 1

CPU 0

CPU 2

CPU 1

CPU 3

CPU 0

CPU 2

CPU 1

CPU 3

CPU 4

CPU 6

CPU 5

CPU 7

base domain (lev. 0):
 2 groups,
1 CPU per group

domain of lev. 1:
2 groups,
1 physical CPU per group

base domains (lev. 0):
2 groups,
1 logical CPU per group

domain of lev. 1:
2 groups,
1 node per group

base domains (lev. 0):
4 groups,
1 CPU per group

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Runqueue Balancing in Multiprocessor Systems | 287

domain corresponds to a child scheduling domain and spans a physical CPU. The
bottom-level scheduling domains (also called base scheduling domains) include two
groups, one for each logical CPU.

Finally, Figure 7-2 (c) represents a two-level hierarchy for an 8-CPU NUMA architec-
ture with two nodes and four CPUs per node. The top-level domain is organized in
two groups, each of which corresponds to a different node. Every base scheduling
domain spans the CPUs inside a single node and has four groups, each of which
spans a single CPU.

Every scheduling domain is represented by a sched_domain descriptor, while every
group inside a scheduling domain is represented by a sched_group descriptor. Each
sched_domain descriptor includes a field groups, which points to the first element in a
list of group descriptors. Moreover, the parent field of the sched_domain structure
points to the descriptor of the parent scheduling domain, if any.

The sched_domain descriptors of all physical CPUs in the system are stored in the per-
CPU variable phys_domains. If the kernel does not support the hyper-threading tech-
nology, these domains are at the bottom level of the domain hierarchy, and the sd
fields of the runqueue descriptors point to them—that is, they are the base schedul-
ing domains. Conversely, if the kernel supports the hyper-threading technology, the
bottom-level scheduling domains are stored in the per-CPU variable cpu_domains.

The rebalance_tick() Function
To keep the runqueues in the system balanced, the rebalance_tick() function is
invoked by scheduler_tick() once every tick. It receives as its parameters the index
this_cpu of the local CPU, the address this_rq of the local runqueue, and a flag,
idle, which can assume the following values:

SCHED_IDLE
The CPU is currently idle, that is, current is the swapper process.

NOT_IDLE
The CPU is not currently idle, that is, current is not the swapper process.

The rebalance_tick() function determines first the number of processes in the run-
queue and updates the runqueue’s average workload; to do this, the function
accesses the nr_running and cpu_load fields of the runqueue descriptor.

Then, rebalance_tick() starts a loop over all scheduling domains in the path from the
base domain (referenced by the sd field of the local runqueue descriptor) to the top-
level domain. In each iteration the function determines whether the time has come to
invoke the load_balance() function, thus executing a rebalancing operation on the
scheduling domain. The value of idle and some parameters stored in the sched_
domain descriptor determine the frequency of the invocations of load_balance(). If
idle is equal to SCHED_IDLE, then the runqueue is empty, and rebalance_tick()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 7: Process Scheduling

invokes load_balance() quite often (roughly once every one or two ticks for schedul-
ing domains corresponding to logical and physical CPUs). Conversely, if idle is equal
to NOT_IDLE, rebalance_tick() invokes load_balance() sparingly (roughly once every
10 milliseconds for scheduling domains corresponding to logical CPUs, and once
every 100 milliseconds for scheduling domains corresponding to physical CPUs).

The load_balance() Function
The load_balance() function checks whether a scheduling domain is significantly
unbalanced; more precisely, it checks whether unbalancing can be reduced by mov-
ing some processes from the busiest group to the runqueue of the local CPU. If so,
the function attempts this migration. It receives four parameters:

this_cpu
The index of the local CPU

this_rq
The address of the descriptor of the local runqueue

sd
Points to the descriptor of the scheduling domain to be checked

idle
Either SCHED_IDLE (local CPU is idle) or NOT_IDLE

The function performs the following operations:

1. Acquires the this_rq->lock spin lock.

2. Invokes the find_busiest_group() function to analyze the workloads of the
groups inside the scheduling domain. The function returns the address of the
sched_group descriptor of the busiest group, provided that this group does not
include the local CPU; in this case, the function also returns the number of pro-
cesses to be moved into the local runqueue to restore balancing. On the other
hand, if either the busiest group includes the local CPU or all groups are essen-
tially balanced, the function returns NULL. This procedure is not trivial, because
the function tries to filter the statistical fluctuations in the workloads.

3. If find_busiest_group() did not find a group not including the local CPU that is
significantly busier than the other groups in the scheduling domain, the func-
tion releases the this_rq->lock spin lock, tunes the parameters in the scheduling
domain descriptor so as to delay the next invocation of load_balance() on the
local CPU, and terminates.

4. Invokes the find_busiest_queue() function to find the busiest CPUs in the group
found in step 2. The function returns the descriptor address busiest of the corre-
sponding runqueue.

5. Acquires a second spin lock, namely the busiest->lock spin lock. To prevent
deadlocks, this has to be done carefully: the this_rq->lock is first released, then
the two locks are acquired by increasing CPU indices.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Runqueue Balancing in Multiprocessor Systems | 289

6. Invokes the move_tasks() function to try moving some processes from the
busiest runqueue to the local runqueue this_rq (see the next section).

7. If the move_task() function failed in migrating some process to the local run-
queue, the scheduling domain is still unbalanced. Sets to 1 the busiest->active_
balance flag and wakes up the migration kernel thread whose descriptor is stored
in busiest->migration_thread. The migration kernel thread walks the chain of the
scheduling domain, from the base domain of the busiest runqueue to the top
domain, looking for an idle CPU. If an idle CPU is found, the kernel thread
invokes move_tasks() to move one process into the idle runqueue.

8. Releases the busiest->lock and this_rq->lock spin locks.

9. Terminates.

The move_tasks() Function
The move_tasks() function moves processes from a source runqueue to the local run-
queue. It receives six parameters: this_rq and this_cpu (the local runqueue descrip-
tor and the local CPU index), busiest (the source runqueue descriptor), max_nr_move
(the maximum number of processes to be moved), sd (the address of the scheduling
domain descriptor in which this balancing operation is carried on), and the idle flag
(beside SCHED_IDLE and NOT_IDLE, this flag can also be set to NEWLY_IDLE when the
function is indirectly invoked by idle_balance(); see the section “The schedule()
Function” earlier in this chapter).

The function first analyzes the expired processes of the busiest runqueue, starting
from the higher priority ones. When all expired processes have been scanned, the
function scans the active processes of the busiest runqueue. For each candidate pro-
cess, the function invokes can_migrate_task(), which returns 1 if all the following
conditions hold:

• The process is not being currently executed by the remote CPU.

• The local CPU is included in the cpus_allowed bitmask of the process descriptor.

• At least one of the following holds:

• The local CPU is idle. If the kernel supports the hyper-threading technol-
ogy, all logical CPUs in the local physical chip must be idle.

• The kernel is having trouble in balancing the scheduling domain, because
repeated attempts to move processes have failed.

• The process to be moved is not “cache hot” (it has not recently executed on
the remote CPU, so one can assume that no data of the process is included
in the hardware cache of the remote CPU).

If can_migrate_task() returns the value 1, move_tasks() invokes the pull_task()
function to move the candidate process to the local runqueue. Essentially, pull_
task() executes dequeue_task() to remove the process from the remote runqueue,
then executes enqueue_task() to insert the process in the local runqueue, and finally,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 7: Process Scheduling

if the process just moved has higher dynamic priority than current, invokes resched_
task() to preempt the current process of the local CPU.

System Calls Related to Scheduling
Several system calls have been introduced to allow processes to change their priori-
ties and scheduling policies. As a general rule, users are always allowed to lower the
priorities of their processes. However, if they want to modify the priorities of pro-
cesses belonging to some other user or if they want to increase the priorities of their
own processes, they must have superuser privileges.

The nice() System Call
The nice()* system call allows processes to change their base priority. The integer
value contained in the increment parameter is used to modify the nice field of the
process descriptor. The nice Unix command, which allows users to run programs
with modified scheduling priority, is based on this system call.

The sys_nice() service routine handles the nice() system call. Although the
increment parameter may have any value, absolute values larger than 40 are trimmed
down to 40. Traditionally, negative values correspond to requests for priority incre-
ments and require superuser privileges, while positive ones correspond to requests
for priority decreases. In the case of a negative increment, the function invokes the
capable() function to verify whether the process has a CAP_SYS_NICE capability.
Moreover, the function invokes the security_task_setnice() security hook. We dis-
cuss that function in Chapter 20. If the user turns out to have the privilege required
to change priorities, sys_nice() converts current->static_prio to the range of nice
values, adds the value of increment, and invokes the set_user_nice() function. In
turn, the latter function gets the local runqueue lock, updates the static priority of
current, invokes the resched_task() function to allow other processes to preempt
current, and release the runqueue lock.

The nice() system call is maintained for backward compatibility only; it has been
replaced by the setpriority() system call described next.

The getpriority() and setpriority() System Calls
The nice() system call affects only the process that invokes it. Two other system
calls, denoted as getpriority() and setpriority(), act on the base priorities of all
processes in a given group. getpriority() returns 20 minus the lowest nice field
value among all processes in a given group—that is, the highest priority among those

* Because this system call is usually invoked to lower the priority of a process, users who invoke it for their
processes are “nice” to other users.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Calls Related to Scheduling | 291

processes; setpriority() sets the base priority of all processes in a given group to a
given value.

The kernel implements these system calls by means of the sys_getpriority() and
sys_setpriority() service routines. Both of them act essentially on the same group
of parameters:

which
The value that identifies the group of processes; it can assume one of the
following:

PRIO_PROCESS
Selects the processes according to their process ID (pid field of the process
descriptor).

PRIO_PGRP
Selects the processes according to their group ID (pgrp field of the process
descriptor).

PRIO_USER
Selects the processes according to their user ID (uid field of the process
descriptor).

who
The value of the pid, pgrp, or uid field (depending on the value of which) to be
used for selecting the processes. If who is 0, its value is set to that of the corre-
sponding field of the current process.

niceval
The new base priority value (needed only by sys_setpriority()). It should range
between –20 (highest priority) and +19 (lowest priority).

As stated before, only processes with a CAP_SYS_NICE capability are allowed to
increase their own base priority or to modify that of other processes.

As we will see in Chapter 10, system calls return a negative value only if some error
occurred. For this reason, getpriority() does not return a normal nice value rang-
ing between –20 and +19, but rather a nonnegative value ranging between 1 and 40.

The sched_getaffinity() and sched_setaffinity() System Calls
The sched_getaffinity() and sched_setaffinity() system calls respectively return
and set up the CPU affinity mask of a process—the bit mask of the CPUs that are
allowed to execute the process. This mask is stored in the cpus_allowed field of the
process descriptor.

The sys_sched_getaffinity() system call service routine looks up the process
descriptor by invoking find_task_by_pid(), and then returns the value of the corre-
sponding cpus_allowed field ANDed with the bitmap of the available CPUs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 7: Process Scheduling

The sys_sched_setaffinity() system call is a bit more complicated. Besides looking
for the descriptor of the target process and updating the cpus_allowed field, this func-
tion has to check whether the process is included in a runqueue of a CPU that is no
longer present in the new affinity mask. In the worst case, the process has to be
moved from one runqueue to another one. To avoid problems due to deadlocks and
race conditions, this job is done by the migration kernel threads (there is one thread
per CPU). Whenever a process has to be moved from a runqueue rq1 to another run-
queue rq2, the system call awakes the migration thread of rq1 (rq1->migration_
thread), which in turn removes the process from rq1 and inserts it into rq2.

System Calls Related to Real-Time Processes
We now introduce a group of system calls that allow processes to change their
scheduling discipline and, in particular, to become real-time processes. As usual, a
process must have a CAP_SYS_NICE capability to modify the values of the rt_priority
and policy process descriptor fields of any process, including itself.

The sched_getscheduler() and sched_setscheduler() system calls

The sched_getscheduler() system call queries the scheduling policy currently
applied to the process identified by the pid parameter. If pid equals 0, the policy of
the calling process is retrieved. On success, the system call returns the policy for the
process: SCHED_FIFO, SCHED_RR, or SCHED_NORMAL (the latter is also called SCHED_OTHER).
The corresponding sys_sched_getscheduler() service routine invokes find_process_
by_pid(), which locates the process descriptor corresponding to the given pid and
returns the value of its policy field.

The sched_setscheduler() system call sets both the scheduling policy and the associ-
ated parameters for the process identified by the parameter pid. If pid is equal to 0,
the scheduler parameters of the calling process will be set.

The corresponding sys_sched_setscheduler() system call service routine simply
invokes do_sched_setscheduler(). The latter function checks whether the scheduling
policy specified by the policy parameter and the new priority specified by the param->
sched_priority parameter are valid. It also checks whether the process has CAP_SYS_
NICE capability or whether its owner has superuser rights. If everything is OK, it
removes the process from its runqueue (if it is runnable); updates the static, real-time,
and dynamic priorities of the process; inserts the process back in the runqueue; and
finally invokes, if necessary, the resched_task() function to preempt the current pro-
cess of the runqueue.

The sched_ getparam() and sched_setparam() system calls

The sched_getparam() system call retrieves the scheduling parameters for the pro-
cess identified by pid. If pid is 0, the parameters of the current process are retrieved.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Calls Related to Scheduling | 293

The corresponding sys_sched_getparam() service routine, as one would expect, finds
the process descriptor pointer associated with pid, stores its rt_priority field in a
local variable of type sched_param, and invokes copy_to_user() to copy it into the
process address space at the address specified by the param parameter.

The sched_setparam() system call is similar to sched_setscheduler(). The difference
is that sched_setparam() does not let the caller set the policy field’s value.* The cor-
responding sys_sched_setparam() service routine invokes do_sched_setscheduler(),
with almost the same parameters as sys_sched_setscheduler().

The sched_ yield() system call

The sched_yield() system call allows a process to relinquish the CPU voluntarily
without being suspended; the process remains in a TASK_RUNNING state, but the sched-
uler puts it either in the expired set of the runqueue (if the process is a conventional
one), or at the end of the runqueue list (if the process is a real-time one). The
schedule() function is then invoked. In this way, other processes that have the same
dynamic priority have a chance to run. The call is used mainly by SCHED_FIFO real-
time processes.

The sched_ get_priority_min() and sched_ get_priority_max() system calls

The sched_get_priority_min() and sched_get_priority_max() system calls return,
respectively, the minimum and the maximum real-time static priority value that can
be used with the scheduling policy identified by the policy parameter.

The sys_sched_get_priority_min() service routine returns 1 if current is a real-time
process, 0 otherwise.

The sys_sched_get_priority_max() service routine returns 99 (the highest priority) if
current is a real-time process, 0 otherwise.

The sched_rr_ get_interval() system call

The sched_rr_get_interval() system call writes into a structure stored in the User
Mode address space the Round Robin time quantum for the real-time process identi-
fied by the pid parameter. If pid is zero, the system call writes the time quantum of
the current process.

The corresponding sys_sched_rr_get_interval() service routine invokes, as usual,
find_process_by_pid() to retrieve the process descriptor associated with pid. It then
converts the base time quantum of the selected process into seconds and nanosec-
onds and copies the numbers into the User Mode structure. Conventionally, the time
quantum of a FIFO real-time process is equal to zero.

* This anomaly is caused by a specific requirement of the POSIX standard.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

294

Chapter 8CHAPTER 8

Memory Management

We saw in Chapter 2 how Linux takes advantage of 80 × 86’s segmentation and pag-
ing circuits to translate logical addresses into physical ones. We also mentioned that
some portion of RAM is permanently assigned to the kernel and used to store both
the kernel code and the static kernel data structures.

The remaining part of the RAM is called dynamic memory. It is a valuable resource,
needed not only by the processes but also by the kernel itself. In fact, the perfor-
mance of the entire system depends on how efficiently dynamic memory is man-
aged. Therefore, all current multitasking operating systems try to optimize the use of
dynamic memory, assigning it only when it is needed and freeing it as soon as
possible. Figure 8-1 shows schematically the page frames used as dynamic memory;
see the section “Physical Memory Layout” in Chapter 2 for details.

This chapter, which consists of three main sections, describes how the kernel allo-
cates dynamic memory for its own use. The sections “Page Frame Management” and
“Memory Area Management” illustrate two different techniques for handling physi-
cally contiguous memory areas, while the section “Noncontiguous Memory Area
Management” illustrates a third technique that handles noncontiguous memory
areas. In these sections we’ll cover topics such as memory zones, kernel mappings,
the buddy system, the slab cache, and memory pools.

Page Frame Management
We saw in the section “Paging in Hardware” in Chapter 2 how the Intel Pentium
processor can use two different page frame sizes: 4 KB and 4 MB (or 2 MB if PAE is
enabled—see the section “The Physical Address Extension (PAE) Paging Mecha-
nism” in Chapter 2). Linux adopts the smaller 4 KB page frame size as the standard
memory allocation unit. This makes things simpler for two reasons:

• The Page Fault exceptions issued by the paging circuitry are easily interpreted.
Either the page requested exists but the process is not allowed to address it, or

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 295

the page does not exist. In the second case, the memory allocator must find a
free 4 KB page frame and assign it to the process.

• Although both 4 KB and 4 MB are multiples of all disk block sizes, transfers of
data between main memory and disks are in most cases more efficient when the
smaller size is used.

Page Descriptors
The kernel must keep track of the current status of each page frame. For instance, it
must be able to distinguish the page frames that are used to contain pages that
belong to processes from those that contain kernel code or kernel data structures.
Similarly, it must be able to determine whether a page frame in dynamic memory is
free. A page frame in dynamic memory is free if it does not contain any useful data. It
is not free when the page frame contains data of a User Mode process, data of a soft-
ware cache, dynamically allocated kernel data structures, buffered data of a device
driver, code of a kernel module, and so on.

State information of a page frame is kept in a page descriptor of type page, whose fields
are shown in Table 8-1. All page descriptors are stored in the mem_map array. Because
each descriptor is 32 bytes long, the space required by mem_map is slightly less than 1%
of the whole RAM. The virt_to_page(addr) macro yields the address of the page
descriptor associated with the linear address addr. The pfn_to_page(pfn) macro yields
the address of the page descriptor associated with the page frame having number pfn.

Figure 8-1. Dynamic memory

Table 8-1. The fields of the page descriptor

Type Name Description

unsigned long flags Array of flags (see Table 8-2). Also encodes the zone number to which
the page frame belongs.

atomic_t _count Page frame’s reference counter.

Reserved
(Hardware)

0 0x1000 _end

Dynamic Memory

Reserved
(Kernel)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 8: Memory Management

You don’t have to fully understand the role of all fields in the page descriptor right
now. In the following chapters, we often come back to the fields of the page descrip-
tor. Moreover, several fields have different meaning, according to whether the page
frame is free or what kernel component is using the page frame.

Let’s describe in greater detail two of the fields:

_count
A usage reference counter for the page. If it is set to -1, the corresponding page
frame is free and can be assigned to any process or to the kernel itself. If it is set
to a value greater than or equal to 0, the page frame is assigned to one or more
processes or is used to store some kernel data structures. The page_count() func-
tion returns the value of the _count field increased by one, that is, the number of
users of the page.

flags
Includes up to 32 flags (see Table 8-2) that describe the status of the page frame.
For each PG_xyz flag, the kernel defines some macros that manipulate its value.
Usually, the PageXyz macro returns the value of the flag, while the SetPageXyz
and ClearPageXyz macro set and clear the corresponding bit, respectively.

atomic_t _mapcount Number of Page Table entries that refer to the page frame (-1 if none).

unsigned long private Available to the kernel component that is using the page (for instance, it
is a buffer head pointer in case of buffer page; see “Block Buffers and
Buffer Heads” in Chapter 15). If the page is free, this field is used by the
buddy system (see later in this chapter).

struct
address_space *

mapping Used when the page is inserted into the page cache (see the section
“The Page Cache” in Chapter 15), or when it belongs to an anonymous
region (see the section “Reverse Mapping for Anonymous Pages” in
Chapter 17).

unsigned long index Used by several kernel components with different meanings. For
instance, it identifies the position of the data stored in the page frame
within the page’s disk image or within an anonymous region
(Chapter 15), or it stores a swapped-out page identifier (Chapter 17).

struct list_head lru Contains pointers to the least recently used doubly linked list of pages.

Table 8-2. Flags describing the status of a page frame

Flag name Meaning

PG_locked The page is locked; for instance, it is involved in a disk I/O operation.

PG_error An I/O error occurred while transferring the page.

PG_referenced The page has been recently accessed.

PG_uptodate This flag is set after completing a read operation, unless a disk I/O error happened.

PG_dirty The page has been modified (see the section “Implementing the PFRA” in Chapter 17).

Table 8-1. The fields of the page descriptor (continued)

Type Name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 297

Non-Uniform Memory Access (NUMA)
We are used to thinking of the computer’s memory as a homogeneous, shared
resource. Disregarding the role of the hardware caches, we expect the time required
for a CPU to access a memory location to be essentially the same, regardless of the
location’s physical address and the CPU. Unfortunately, this assumption is not true
in some architectures. For instance, it is not true for some multiprocessor Alpha or
MIPS computers.

Linux 2.6 supports the Non-Uniform Memory Access (NUMA) model, in which the
access times for different memory locations from a given CPU may vary. The physi-
cal memory of the system is partitioned in several nodes. The time needed by a given
CPU to access pages within a single node is the same. However, this time might not
be the same for two different CPUs. For every CPU, the kernel tries to minimize the
number of accesses to costly nodes by carefully selecting where the kernel data struc-
tures that are most often referenced by the CPU are stored.*

PG_lru The page is in the active or inactive page list (see the section “The Least Recently Used (LRU)
Lists” in Chapter 17).

PG_active The page is in the active page list (see the section “The Least Recently Used (LRU) Lists” in
Chapter 17).

PG_slab The page frame is included in a slab (see the section “Memory Area Management” later in
this chapter).

PG_highmem The page frame belongs to the ZONE_HIGHMEM zone (see the following section “Non-Uni-
form Memory Access (NUMA)”).

PG_checked Used by some filesystems such as Ext2 and Ext3 (see Chapter 18).

PG_arch_1 Not used on the 80x86 architecture.

PG_reserved The page frame is reserved for kernel code or is unusable.

PG_private The private field of the page descriptor stores meaningful data.

PG_writeback The page is being written to disk by means of the writepage method (see Chapter 16) .

PG_nosave Used for system suspend/resume.

PG_compound The page frame is handled through the extended paging mechanism (see the section
“Extended Paging” in Chapter 2).

PG_swapcache The page belongs to the swap cache (see the section “The Swap Cache” in Chapter 17).

PG_mappedtodisk All data in the page frame corresponds to blocks allocated on disk.

PG_reclaim The page has been marked to be written to disk in order to reclaim memory.

PG_nosave_free Used for system suspend/resume.

* Furthermore, the Linux kernel makes use of NUMA even for some peculiar uniprocessor systems that have
huge “holes” in the physical address space. The kernel handles these architectures by assigning the contigu-
ous subranges of valid physical addresses to different memory nodes.

Table 8-2. Flags describing the status of a page frame (continued)

Flag name Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 8: Memory Management

The physical memory inside each node can be split into several zones, as we will see
in the next section. Each node has a descriptor of type pg_data_t, whose fields are
shown in Table 8-3. All node descriptors are stored in a singly linked list, whose first
element is pointed to by the pgdat_list variable.

As usual, we are mostly concerned with the 80 × 86 architecture. IBM-compatible
PCs use the Uniform Memory Access model (UMA), thus the NUMA support is not
really required. However, even if NUMA support is not compiled in the kernel,
Linux makes use of a single node that includes all system physical memory. Thus,
the pgdat_list variable points to a list consisting of a single element—the node 0
descriptor—stored in the contig_page_data variable.

On the 80 × 86 architecture, grouping the physical memory in a single node might
appear useless; however, this approach makes the memory handling code more por-
table, because the kernel can assume that the physical memory is partitioned in one
or more nodes in all architectures.*

Table 8-3. The fields of the node descriptor

Type Name Description

struct zone [] node_zones Array of zone descriptors of the node

struct zonelist [] node_zonelists Array of zonelist data structures used by the page
allocator (see the later section “Memory Zones”)

int nr_zones Number of zones in the node

struct page * node_mem_map Array of page descriptors of the node

struct
bootmem_data *

bdata Used in the kernel initialization phase

unsigned long node_start_pfn Index of the first page frame in the node

unsigned long node_present_pages Size of the memory node, excluding holes (in page
frames)

unsigned long node_spanned_pages Size of the node, including holes (in page frames)

int node_id Identifier of the node

pg_data_t * pgdat_next Next item in the memory node list

wait_queue_head_t kswapd_wait Wait queue for the kswapd pageout daemon (see the
section “Periodic Reclaiming” in Chapter 17)

struct
task_struct *

kswapd Pointer to the process descriptor of the kswapd kernel
thread

int kswapd_max_order Logarithmic size of free blocks to be created by kswapd

* We have another example of this kind of design choice: Linux uses four levels of Page Tables even when the
hardware architecture defines just two levels (see the section “Paging in Linux” in Chapter 2).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 299

Memory Zones
In an ideal computer architecture, a page frame is a memory storage unit that can be
used for anything: storing kernel and user data, buffering disk data, and so on. Every
kind of page of data can be stored in a page frame, without limitations.

However, real computer architectures have hardware constraints that may limit the
way page frames can be used. In particular, the Linux kernel must deal with two
hardware constraints of the 80 × 86 architecture:

• The Direct Memory Access (DMA) processors for old ISA buses have a strong
limitation: they are able to address only the first 16 MB of RAM.

• In modern 32-bit computers with lots of RAM, the CPU cannot directly access
all physical memory because the linear address space is too small.

To cope with these two limitations, Linux 2.6 partitions the physical memory of
every memory node into three zones. In the 80 × 86 UMA architecture the zones are:

ZONE_DMA
Contains page frames of memory below 16 MB

ZONE_NORMAL
Contains page frames of memory at and above 16 MB and below 896 MB

ZONE_HIGHMEM
Contains page frames of memory at and above 896 MB

The ZONE_DMA zone includes page frames that can be used by old ISA-based devices by
means of the DMA. (The section “Direct Memory Access (DMA)” in Chapter 13
gives further details on DMA.)

The ZONE_DMA and ZONE_NORMAL zones include the “normal” page frames that can be
directly accessed by the kernel through the linear mapping in the fourth gigabyte of
the linear address space (see the section “Kernel Page Tables” in Chapter 2). Con-
versely, the ZONE_HIGHMEM zone includes page frames that cannot be directly accessed
by the kernel through the linear mapping in the fourth gigabyte of linear address
space (see the section “Kernel Mappings of High-Memory Page Frames” later in this
chapter). The ZONE_HIGHMEM zone is always empty on 64-bit architectures.

Each memory zone has its own descriptor of type zone. Its fields are shown in
Table 8-4.

Table 8-4. The fields of the zone descriptor

Type Name Description

unsigned long free_pages Number of free pages in the zone.

unsigned long pages_min Number of reserved pages of the zone (see the section “The
Pool of Reserved Page Frames” later in this chapter).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 8: Memory Management

unsigned long pages_low Low watermark for page frame reclaiming; also used by the
zone allocator as a threshold value (see the section “The
Zone Allocator” later in this chapter).

unsigned long pages_high High watermark for page frame reclaiming; also used by the
zone allocator as a threshold value.

unsigned long [] lowmem_reserve Specifies how many page frames in each zone must be
reserved for handling low-on-memory critical situations.

struct
per_cpu_pageset[]

pageset Data structure used to implement special caches of single
page frames (see the section “The Per-CPU Page Frame
Cache” later in this chapter).

spinlock_t lock Spin lock protecting the descriptor.

struct
free_area []

free_area Identifies the blocks of free page frames in the zone (see the
section “The Buddy System Algorithm” later in this chapter).

spinlock_t lru_lock Spin lock for the active and inactive lists.

struct list head active_list List of active pages in the zone (see Chapter 17).

struct list head inactive_list List of inactive pages in the zone (see Chapter 17).

unsigned long nr_scan_active Number of active pages to be scanned when reclaiming
memory (see the section “Low On Memory Reclaiming” in
Chapter 17).

unsigned long nr_scan_inactive Number of inactive pages to be scanned when reclaiming
memory.

unsigned long nr_active Number of pages in the zone’s active list.

unsigned long nr_inactive Number of pages in the zone’s inactive list.

unsigned long pages_scanned Counter used when doing page frame reclaiming in the
zone.

int all_unreclaimable Flag set when the zone is full of unreclaimable pages.

int temp_priority Temporary zone’s priority (used when doing page frame
reclaiming).

int prev_priority Zone’s priority ranging between 12 and 0 (used by the page
frame reclaiming algorithm, see the section “Low On Mem-
ory Reclaiming” in Chapter 17).

wait_queue_head_t * wait_table Hash table of wait queues of processes waiting for one of
the pages of the zone.

unsigned long wait_table_size Size of the wait queue hash table.

unsigned long wait_table_bits Power-of-2 order of the size of the wait queue hash table
array.

struct
pglist_data *

zone_pgdat Memory node (see the earlier section “Non-Uniform Mem-
ory Access (NUMA)”).

struct page * zone_mem_map Pointer to first page descriptor of the zone.

unsigned long zone_start_pfn Index of the first page frame of the zone.

unsigned long spanned_pages Total size of zone in pages, including holes.

Table 8-4. The fields of the zone descriptor (continued)

Type Name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 301

Many fields of the zone structure are used for page frame reclaiming and will be
described in Chapter 17.

Each page descriptor has links to the memory node and to the zone inside the node
that includes the corresponding page frame. To save space, these links are not stored
as classical pointers; rather, they are encoded as indices stored in the high bits of the
flags field. In fact, the number of flags that characterize a page frame is limited, thus
it is always possible to reserve the most significant bits of the flags field to encode
the proper memory node and zone number.* The page_zone() function receives as its
parameter the address of a page descriptor; it reads the most significant bits of the
flags field in the page descriptor, then it determines the address of the correspond-
ing zone descriptor by looking in the zone_table array. This array is initialized at
boot time with the addresses of all zone descriptors of all memory nodes.

When the kernel invokes a memory allocation function, it must specify the zones
that contain the requested page frames. The kernel usually specifies which zones it’s
willing to use. For instance, if a page frame must be directly mapped in the fourth
gigabyte of linear addresses but it is not going to be used for ISA DMA transfers, then
the kernel requests a page frame either in ZONE_NORMAL or in ZONE_DMA. Of course, the
page frame should be obtained from ZONE_DMA only if ZONE_NORMAL does not have free
page frames. To specify the preferred zones in a memory allocation request, the ker-
nel uses the zonelist data structure, which is an array of zone descriptor pointers.

The Pool of Reserved Page Frames
Memory allocation requests can be satisfied in two different ways. If enough free
memory is available, the request can be satisfied immediately. Otherwise, some
memory reclaiming must take place, and the kernel control path that made the
request is blocked until additional memory has been freed.

However, some kernel control paths cannot be blocked while requesting memory—
this happens, for instance, when handling an interrupt or when executing code inside
a critical region. In these cases, a kernel control path should issue atomic memory

unsigned long present_pages Total size of zone in pages, excluding holes.

char * name Pointer to the conventional name of the zone: “DMA,” “Nor-
mal,” or “HighMem.”

* The number of bits reserved for the indices depends on whether the kernel supports the NUMA model and
on the size of the flags field. If NUMA is not supported, the flags field has two bits for the zone index and
one bit—always set to zero—for the node index. On NUMA 32-bit architectures, flags has two bits for the
zone index and six bits for the node number. Finally, on NUMA 64-bit architectures, the 64-bit flags field
has 2 bits for the zone index and 10 bits for the node number.

Table 8-4. The fields of the zone descriptor (continued)

Type Name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 8: Memory Management

allocation requests (using the GFP_ATOMIC flag; see the later section “The Zoned Page
Frame Allocator”). An atomic request never blocks: if there are not enough free pages,
the allocation simply fails.

Although there is no way to ensure that an atomic memory allocation request never
fails, the kernel tries hard to minimize the likelihood of this unfortunate event. In
order to do this, the kernel reserves a pool of page frames for atomic memory alloca-
tion requests to be used only on low-on-memory conditions.

The amount of the reserved memory (in kilobytes) is stored in the min_free_kbytes
variable. Its initial value is set during kernel initialization and depends on the
amount of physical memory that is directly mapped in the kernel’s fourth gigabyte of
linear addresses—that is, it depends on the number of page frames included in the
ZONE_DMA and ZONE_NORMAL memory zones:

However, initially min_free_kbytes cannot be lower than 128 and greater than
65,536.*

The ZONE_DMA and ZONE_NORMAL memory zones contribute to the reserved memory
with a number of page frames proportional to their relative sizes. For instance, if the
ZONE_NORMAL zone is eight times bigger than ZONE_DMA, seven-eighths of the page
frames will be taken from ZONE_NORMAL and one-eighth from ZONE_DMA.

The pages_min field of the zone descriptor stores the number of reserved page frames
inside the zone. As we’ll see in Chapter 17, this field plays also a role for the page
frame reclaiming algorithm, together with the pages_low and pages_high fields. The
pages_low field is always set to 5/4 of the value of pages_min, and pages_high is
always set to 3/2 of the value of pages_min.

The Zoned Page Frame Allocator
The kernel subsystem that handles the memory allocation requests for groups of con-
tiguous page frames is called the zoned page frame allocator. Its main components
are shown in Figure 8-2.

The component named “zone allocator” receives the requests for allocation and deal-
location of dynamic memory. In the case of allocation requests, the component
searches a memory zone that includes a group of contiguous page frames that can
satisfy the request (see the later section “The Zone Allocator”). Inside each zone,
page frames are handled by a component named “buddy system” (see the later sec-
tion “The Buddy System Algorithm”). To get better system performance, a small

* The amount of reserved memory can be changed later by the system administrator either by writing in the
/proc/sys/vm/min_free_kbytes file or by issuing a suitable sysctl() system call.

reserved pool size 16 directly mapped memory× (kilobytes)=

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 303

number of page frames are kept in cache to quickly satisfy the allocation requests for
single page frames (see the later section “The Per-CPU Page Frame Cache”).

Requesting and releasing page frames

Page frames can be requested by using six slightly different functions and macros.
Unless otherwise stated, they return the linear address of the first allocated page or
return NULL if the allocation failed.

alloc_pages(gfp_mask, order)
Macro used to request 2order contiguous page frames. It returns the address of
the descriptor of the first allocated page frame or returns NULL if the allocation
failed.

alloc_page(gfp_mask)
Macro used to get a single page frame; it expands to:

alloc_pages(gfp_mask, 0)

It returns the address of the descriptor of the allocated page frame or returns
NULL if the allocation failed.

__get_free_pages(gfp_mask, order)
Function that is similar to alloc_pages(), but it returns the linear address of the
first allocated page.

__get_free_page(gfp_mask)
Macro used to get a single page frame; it expands to:

__get_free_pages(gfp_mask, 0)

Figure 8-2. Components of the zoned page frame allocator

ZONE_DMA Memory Zone ZONE_NORMAL Memory Zone ZONE_HIGHMEM Memory Zone

Per-CPU page
frame cache

Buddy system

Per-CPU page
frame cache

Buddy system

Per-CPU page
frame cache

Buddy system

Zone allocator

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 8: Memory Management

get_zeroed_page(gfp_mask)
Function used to obtain a page frame filled with zeros; it invokes:

alloc_pages(gfp_mask | __GFP_ZERO, 0)

and returns the linear address of the obtained page frame.

__get_dma_pages(gfp_mask, order)
Macro used to get page frames suitable for DMA; it expands to:

__get_free_pages(gfp_mask | __GFP_DMA, order)

The parameter gfp_mask is a group of flags that specify how to look for free page
frames. The flags that can be used in gfp_mask are shown in Table 8-5.

In practice, Linux uses the predefined combinations of flag values shown in
Table 8-6; the group name is what you’ll encounter as the argument of the six page
frame allocation functions.

Table 8-5. Flag used to request page frames

Flag Description

__GFP_DMA The page frame must belong to the ZONE_DMA memory zone. Equivalent to GFP_DMA.

__GFP_HIGHMEM The page frame may belong to the ZONE_HIGHMEM memory zone.

__GFP_WAIT The kernel is allowed to block the current process waiting for free page frames.

__GFP_HIGH The kernel is allowed to access the pool of reserved page frames.

__GFP_IO The kernel is allowed to perform I/O transfers on low memory pages in order to free page frames.

__GFP_FS If clear, the kernel is not allowed to perform filesystem-dependent operations.

__GFP_COLD The requested page frames may be “cold” (see the later section “The Per-CPU Page Frame Cache”).

__GFP_NOWARN A memory allocation failure will not produce a warning message.

__GFP_REPEAT The kernel keeps retrying the memory allocation until it succeeds.

__GFP_NOFAIL Same as __GFP_REPEAT.

__GFP_NORETRY Do not retry a failed memory allocation.

__GFP_NO_GROW The slab allocator does not allow a slab cache to be enlarged (see the later section “The Slab Alloca-
tor”).

__GFP_COMP The page frame belongs to an extended page (see the section “Extended Paging” in Chapter 2).

__GFP_ZERO The page frame returned, if any, must be filled with zeros.

Table 8-6. Groups of flag values used to request page frames

Group name Corresponding flags

GFP_ATOMIC __GFP_HIGH

GFP_NOIO __GFP_WAIT

GFP_NOFS __GFP_WAIT | __GFP_IO

GFP_KERNEL __GFP_WAIT | __GFP_IO | __GFP_FS

GFP_USER __GFP_WAIT | __GFP_IO | __GFP_FS

GFP_HIGHUSER __GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HIGHMEM

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 305

The __GFP_DMA and __GFP_HIGHMEM flags are called zone modifiers; they specify the
zones searched by the kernel while looking for free page frames. The node_zonelists
field of the contig_page_data node descriptor is an array of lists of zone descriptors
representing the fallback zones: for each setting of the zone modifiers, the corre-
sponding list includes the memory zones that could be used to satisfy the memory
allocation request in case the original zone is short on page frames. In the 80 × 86
UMA architecture, the fallback zones are the following:

• If the _ _GFP_DMA flag is set, page frames can be taken only from the ZONE_DMA
memory zone.

• Otherwise, if the _ _GFP_HIGHMEM flag is not set, page frames can be taken only
from the ZONE_NORMAL and the ZONE_DMA memory zones, in order of preference.

• Otherwise (the _ _GFP_HIGHMEM flag is set), page frames can be taken from ZONE_
HIGHMEM, ZONE_NORMAL, and ZONE_DMA memory zones, in order of preference.

Page frames can be released through each of the following four functions and
macros:

__free_pages(page, order)
This function checks the page descriptor pointed to by page; if the page frame is
not reserved (i.e., if the PG_reserved flag is equal to 0), it decreases the count
field of the descriptor. If count becomes 0, it assumes that 2order contiguous
page frames starting from the one corresponding to page are no longer used. In
this case, the function releases the page frames as explained in the later section
“The Zone Allocator.”

free_pages(addr, order)
This function is similar to __free_pages(), but it receives as an argument the lin-
ear address addr of the first page frame to be released.

__free_page(page)
This macro releases the page frame having the descriptor pointed to by page; it
expands to:

__free_pages(page, 0)

free_page(addr)
This macro releases the page frame having the linear address addr; it expands to:

free_pages(addr, 0)

Kernel Mappings of High-Memory Page Frames
The linear address that corresponds to the end of the directly mapped physical mem-
ory, and thus to the beginning of the high memory, is stored in the high_memory vari-
able, which is set to 896 MB. Page frames above the 896 MB boundary are not
generally mapped in the fourth gigabyte of the kernel linear address spaces, so the
kernel is unable to directly access them. This implies that each page allocator func-
tion that returns the linear address of the assigned page frame doesn’t work for high-
memory page frames, that is, for page frames in the ZONE_HIGHMEM memory zone.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 8: Memory Management

For instance, suppose that the kernel invoked __get_free_pages(GFP_HIGHMEM,0) to
allocate a page frame in high memory. If the allocator assigned a page frame in high
memory, __get_free_pages() cannot return its linear address because it doesn’t
exist; thus, the function returns NULL. In turn, the kernel cannot use the page frame;
even worse, the page frame cannot be released because the kernel has lost track of it.

This problem does not exist on 64-bit hardware platforms, because the available lin-
ear address space is much larger than the amount of RAM that can be installed—in
short, the ZONE_HIGHMEM zone of these architectures is always empty. On 32-bit plat-
forms such as the 80 × 86 architecture, however, Linux designers had to find some
way to allow the kernel to exploit all the available RAM, up to the 64 GB supported
by PAE. The approach adopted is the following:

• The allocation of high-memory page frames is done only through the alloc_
pages() function and its alloc_page() shortcut. These functions do not return
the linear address of the first allocated page frame, because if the page frame
belongs to the high memory, such linear address simply does not exist. Instead,
the functions return the linear address of the page descriptor of the first allo-
cated page frame. These linear addresses always exist, because all page descrip-
tors are allocated in low memory once and forever during the kernel
initialization.

• Page frames in high memory that do not have a linear address cannot be
accessed by the kernel. Therefore, part of the last 128 MB of the kernel linear
address space is dedicated to mapping high-memory page frames. Of course, this
kind of mapping is temporary, otherwise only 128 MB of high memory would be
accessible. Instead, by recycling linear addresses the whole high memory can be
accessed, although at different times.

The kernel uses three different mechanisms to map page frames in high memory;
they are called permanent kernel mapping, temporary kernel mapping, and noncontig-
uous memory allocation. In this section, we’ll cover the first two techniques; the third
one is discussed in the section “Noncontiguous Memory Area Management” later in
this chapter.

Establishing a permanent kernel mapping may block the current process; this hap-
pens when no free Page Table entries exist that can be used as “windows” on the
page frames in high memory. Thus, a permanent kernel mapping cannot be estab-
lished in interrupt handlers and deferrable functions. Conversely, establishing a tem-
porary kernel mapping never requires blocking the current process; its drawback,
however, is that very few temporary kernel mappings can be established at the same
time.

A kernel control path that uses a temporary kernel mapping must ensure that no
other kernel control path is using the same mapping. This implies that the kernel
control path can never block, otherwise another kernel control path might use the
same window to map some other high memory page.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 307

Of course, none of these techniques allow addressing the whole RAM simulta-
neously. After all, less than 128 MB of linear address space are left for mapping the
high memory, while PAE supports systems having up to 64 GB of RAM.

Permanent kernel mappings

Permanent kernel mappings allow the kernel to establish long-lasting mappings of
high-memory page frames into the kernel address space. They use a dedicated Page
Table in the master kernel page tables. The pkmap_page_table variable stores the
address of this Page Table, while the LAST_PKMAP macro yields the number of entries.
As usual, the Page Table includes either 512 or 1,024 entries, according to whether
PAE is enabled or disabled (see the section “The Physical Address Extension (PAE)
Paging Mechanism” in Chapter 2); thus, the kernel can access at most 2 or 4 MB of
high memory at once.

The Page Table maps the linear addresses starting from PKMAP_BASE. The pkmap_count
array includes LAST_PKMAP counters, one for each entry of the pkmap_page_table Page
Table. We distinguish three cases:

The counter is 0
The corresponding Page Table entry does not map any high-memory page frame
and is usable.

The counter is 1
The corresponding Page Table entry does not map any high-memory page frame,
but it cannot be used because the corresponding TLB entry has not been flushed
since its last usage.

The counter is n (greater than 1)
The corresponding Page Table entry maps a high-memory page frame, which is
used by exactly n −1 kernel components.

To keep track of the association between high memory page frames and linear
addresses induced by permanent kernel mappings, the kernel makes use of the page_
address_htable hash table. This table contains one page_address_map data structure
for each page frame in high memory that is currently mapped. In turn, this data
structure contains a pointer to the page descriptor and the linear address assigned to
the page frame.

The page_address() function returns the linear address associated with the page
frame, or NULL if the page frame is in high memory and is not mapped. This func-
tion, which receives as its parameter a page descriptor pointer page, distinguishes
two cases:

1. If the page frame is not in high memory (PG_highmem flag clear), the linear address
always exists and is obtained by computing the page frame index, converting it
into a physical address, and finally deriving the linear address corresponding to
the physical address. This is accomplished by the following code:

__va((unsigned long)(page - mem_map) << 12)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 8: Memory Management

2. If the page frame is in high memory (PG_highmem flag set), the function looks into
the page_address_htable hash table. If the page frame is found in the hash table,
page_address() returns its linear address, otherwise it returns NULL.

The kmap() function establishes a permanent kernel mapping. It is essentially equiva-
lent to the following code:

void * kmap(struct page * page)
{
 if (!PageHighMem(page))
 return page_address(page);
 return kmap_high(page);
}

The kmap_high() function is invoked if the page frame really belongs to high mem-
ory. The function is essentially equivalent to the following code:

void * kmap_high(struct page * page)
{
 unsigned long vaddr;
 spin_lock(&kmap_lock);
 vaddr = (unsigned long) page_address(page);
 if (!vaddr)
 vaddr = map_new_virtual(page);
 pkmap_count[(vaddr-PKMAP_BASE) >> PAGE_SHIFT]++;
 spin_unlock(&kmap_lock);
 return (void *) vaddr;
}

The function gets the kmap_lock spin lock to protect the Page Table against concur-
rent accesses in multiprocessor systems. Notice that there is no need to disable the
interrupts, because kmap() cannot be invoked by interrupt handlers and deferrable
functions. Next, the kmap_high() function checks whether the page frame is already
mapped by invoking page_address(). If not, the function invokes map_new_virtual()
to insert the page frame physical address into an entry of pkmap_page_table and to
add an element to the page_address_htable hash table. Then kmap_high() increases
the counter corresponding to the linear address of the page frame to take into
account the new kernel component that invoked this function. Finally, kmap_high()
releases the kmap_lock spin lock and returns the linear address that maps the page
frame.

The map_new_virtual() function essentially executes two nested loops:

 for (;;) {
 int count;
 DECLARE_WAITQUEUE(wait, current);
 for (count = LAST_PKMAP; count > 0; --count) {
 last_pkmap_nr = (last_pkmap_nr + 1) & (LAST_PKMAP - 1);
 if (!last_pkmap_nr) {
 flush_all_zero_pkmaps();
 count = LAST_PKMAP;
 }
 if (!pkmap_count[last_pkmap_nr]) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 309

 unsigned long vaddr = PKMAP_BASE +
 (last_pkmap_nr << PAGE_SHIFT);
 set_pte(&(pkmap_page_table[last_pkmap_nr]),
 mk_pte(page, _ _pgprot(0x63)));
 pkmap_count[last_pkmap_nr] = 1;
 set_page_address(page, (void *) vaddr);
 return vaddr;
 }
 }
 current->state = TASK_UNINTERRUPTIBLE;
 add_wait_queue(&pkmap_map_wait, &wait);
 spin_unlock(&kmap_lock);
 schedule();
 remove_wait_queue(&pkmap_map_wait, &wait);
 spin_lock(&kmap_lock);
 if (page_address(page))
 return (unsigned long) page_address(page);
 }

In the inner loop, the function scans all counters in pkmap_count until it finds a null
value. The large if block runs when an unused entry is found in pkmap_count. That
block determines the linear address corresponding to the entry, creates an entry for it
in the pkmap_page_table Page Table, sets the count to 1 because the entry is now
used, invokes set_page_address() to insert a new element in the page_address_htable
hash table, and returns the linear address.

The function starts where it left off last time, cycling through the pkmap_count array.
It does this by preserving in a variable named last_pkmap_nr the index of the last
used entry in the pkmap_page_table Page Table. Thus, the search starts from where it
was left in the last invocation of the map_new_virtual() function.

When the last counter in pkmap_count is reached, the search restarts from the counter
at index 0. Before continuing, however, map_new_virtual() invokes the flush_all_
zero_pkmaps() function, which starts another scan of the counters, looking for those
that have the value 1. Each counter that has a value of 1 denotes an entry in pkmap_
page_table that is free but cannot be used because the corresponding TLB entry has
not yet been flushed. flush_all_zero_pkmaps() resets their counters to zero, deletes
the corresponding elements from the page_address_htable hash table, and issues
TLB flushes on all entries of pkmap_page_table.

If the inner loop cannot find a null counter in pkmap_count, the map_new_virtual()
function blocks the current process until some other process releases an entry of the
pkmap_page_table Page Table. This is achieved by inserting current in the pkmap_map_
wait wait queue, setting the current state to TASK_UNINTERRUPTIBLE, and invoking
schedule() to relinquish the CPU. Once the process is awakened, the function checks
whether another process has mapped the page by invoking page_address(); if no
other process has mapped the page yet, the inner loop is restarted.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 8: Memory Management

The kunmap() function destroys a permanent kernel mapping established previously
by kmap(). If the page is really in the high memory zone, it invokes the kunmap_high()
function, which is essentially equivalent to the following code:

void kunmap_high(struct page * page)
{
 spin_lock(&kmap_lock);
 if ((--pkmap_count[((unsigned long)page_address(page)
 -PKMAP_BASE)>>PAGE_SHIFT]) == 1)
 if (waitqueue_active(&pkmap_map_wait))
 wake_up(&pkmap_map_wait);
 spin_unlock(&kmap_lock);
}

The expression within the brackets computes the index into the pkmap_count array
from the page’s linear address. The counter is decreased and compared to 1. A suc-
cessful comparison indicates that no process is using the page. The function can
finally wake up processes in the wait queue filled by map_new_virtual(), if any.

Temporary kernel mappings

Temporary kernel mappings are simpler to implement than permanent kernel map-
pings; moreover, they can be used inside interrupt handlers and deferrable func-
tions, because requesting a temporary kernel mapping never blocks the current
process.

Every page frame in high memory can be mapped through a window in the kernel
address space—namely, a Page Table entry that is reserved for this purpose. The
number of windows reserved for temporary kernel mappings is quite small.

Each CPU has its own set of 13 windows, represented by the enum km_type data struc-
ture. Each symbol defined in this data structure—such as KM_BOUNCE_READ, KM_USER0,
or KM_PTE0—identifies the linear address of a window.

The kernel must ensure that the same window is never used by two kernel control
paths at the same time. Thus, each symbol in the km_type structure is dedicated to
one kernel component and is named after the component. The last symbol, KM_TYPE_
NR, does not represent a linear address by itself, but yields the number of different
windows usable by every CPU.

Each symbol in km_type, except the last one, is an index of a fix-mapped linear
address (see the section “Fix-Mapped Linear Addresses” in Chapter 2). The enum
fixed_addresses data structure includes the symbols FIX_KMAP_BEGIN and FIX_KMAP_
END; the latter is assigned to the index FIX_KMAP_BEGIN + (KM_TYPE_NR * NR_CPUS)-1. In
this manner, there are KM_TYPE_NR fix-mapped linear addresses for each CPU in the
system. Furthermore, the kernel initializes the kmap_pte variable with the address of
the Page Table entry corresponding to the fix_to_virt(FIX_KMAP_BEGIN) linear
address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 311

To establish a temporary kernel mapping, the kernel invokes the kmap_atomic() func-
tion, which is essentially equivalent to the following code:

void * kmap_atomic(struct page * page, enum km_type type)
{
 enum fixed_addresses idx;
 unsigned long vaddr;

 current_thread_info()->preempt_count++;
 if (!PageHighMem(page))
 return page_address(page);
 idx = type + KM_TYPE_NR * smp_processor_id();
 vaddr = fix_to_virt(FIX_KMAP_BEGIN + idx);
 set_pte(kmap_pte-idx, mk_pte(page, 0x063));
 __flush_tlb_single(vaddr);
 return (void *) vaddr;
}

The type argument and the CPU identifier retrieved through smp_processor_id()
specify what fix-mapped linear address has to be used to map the request page. The
function returns the linear address of the page frame if it doesn’t belong to high
memory; otherwise, it sets up the Page Table entry corresponding to the fix-mapped
linear address with the page’s physical address and the bits Present, Accessed, Read/
Write, and Dirty. Finally, the function flushes the proper TLB entry and returns the
linear address.

To destroy a temporary kernel mapping, the kernel uses the kunmap_atomic() func-
tion. In the 80 × 86 architecture, this function decreases the preempt_count of the cur-
rent process; thus, if the kernel control path was preemptable right before requiring a
temporary kernel mapping, it will be preemptable again after it has destroyed the
same mapping. Moreover, kunmap_atomic() checks whether the TIF_NEED_RESCHED
flag of current is set and, if so, invokes schedule().

The Buddy System Algorithm
The kernel must establish a robust and efficient strategy for allocating groups of con-
tiguous page frames. In doing so, it must deal with a well-known memory manage-
ment problem called external fragmentation: frequent requests and releases of groups
of contiguous page frames of different sizes may lead to a situation in which several
small blocks of free page frames are “scattered” inside blocks of allocated page
frames. As a result, it may become impossible to allocate a large block of contiguous
page frames, even if there are enough free pages to satisfy the request.

There are essentially two ways to avoid external fragmentation:

• Use the paging circuitry to map groups of noncontiguous free page frames into
intervals of contiguous linear addresses.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 8: Memory Management

• Develop a suitable technique to keep track of the existing blocks of free contigu-
ous page frames, avoiding as much as possible the need to split up a large free
block to satisfy a request for a smaller one.

The second approach is preferred by the kernel for three good reasons:

• In some cases, contiguous page frames are really necessary, because contiguous
linear addresses are not sufficient to satisfy the request. A typical example is a
memory request for buffers to be assigned to a DMA processor (see Chapter 13).
Because most DMAs ignore the paging circuitry and access the address bus
directly while transferring several disk sectors in a single I/O operation, the buff-
ers requested must be located in contiguous page frames.

• Even if contiguous page frame allocation is not strictly necessary, it offers the big
advantage of leaving the kernel paging tables unchanged. What’s wrong with
modifying the Page Tables? As we know from Chapter 2, frequent Page Table
modifications lead to higher average memory access times, because they make
the CPU flush the contents of the translation lookaside buffers.

• Large chunks of contiguous physical memory can be accessed by the kernel
through 4 MB pages. This reduces the translation lookaside buffers misses, thus
significantly speeding up the average memory access time (see the section
“Translation Lookaside Buffers (TLB)” in Chapter 2).

The technique adopted by Linux to solve the external fragmentation problem is
based on the well-known buddy system algorithm. All free page frames are grouped
into 11 lists of blocks that contain groups of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and
1024 contiguous page frames, respectively. The largest request of 1024 page frames
corresponds to a chunk of 4 MB of contiguous RAM. The physical address of the
first page frame of a block is a multiple of the group size—for example, the initial
address of a 16-page-frame block is a multiple of 16 × 212 (212 = 4,096, which is the
regular page size).

We’ll show how the algorithm works through a simple example:

Assume there is a request for a group of 256 contiguous page frames (i.e., one mega-
byte). The algorithm checks first to see whether a free block in the 256-page-frame
list exists. If there is no such block, the algorithm looks for the next larger block—a
free block in the 512-page-frame list. If such a block exists, the kernel allocates 256
of the 512 page frames to satisfy the request and inserts the remaining 256 page
frames into the list of free 256-page-frame blocks. If there is no free 512-page block,
the kernel then looks for the next larger block (i.e., a free 1024-page-frame block). If
such a block exists, it allocates 256 of the 1024 page frames to satisfy the request,
inserts the first 512 of the remaining 768 page frames into the list of free 512-page-
frame blocks, and inserts the last 256 page frames into the list of free 256-page-frame
blocks. If the list of 1024-page-frame blocks is empty, the algorithm gives up and sig-
nals an error condition.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 313

The reverse operation, releasing blocks of page frames, gives rise to the name of this
algorithm. The kernel attempts to merge pairs of free buddy blocks of size b together
into a single block of size 2b. Two blocks are considered buddies if:

• Both blocks have the same size, say b.

• They are located in contiguous physical addresses.

• The physical address of the first page frame of the first block is a multiple of 2 ×
b × 212.

The algorithm is iterative; if it succeeds in merging released blocks, it doubles b and
tries again so as to create even bigger blocks.

Data structures

Linux 2.6 uses a different buddy system for each zone. Thus, in the 80 × 86 architec-
ture, there are 3 buddy systems: the first handles the page frames suitable for ISA
DMA, the second handles the “normal” page frames, and the third handles the high-
memory page frames. Each buddy system relies on the following main data structures:

• The mem_map array introduced previously. Actually, each zone is concerned with a
subset of the mem_map elements. The first element in the subset and its number of
elements are specified, respectively, by the zone_mem_map and size fields of the
zone descriptor.

• An array consisting of eleven elements of type free_area, one element for each
group size. The array is stored in the free_area field of the zone descriptor.

Let us consider the k th element of the free_area array in the zone descriptor, which
identifies all the free blocks of size 2k. The free_list field of this element is the head
of a doubly linked circular list that collects the page descriptors associated with the
free blocks of 2k pages. More precisely, this list includes the page descriptors of the
starting page frame of every block of 2k free page frames; the pointers to the adjacent
elements in the list are stored in the lru field of the page descriptor.*

Besides the head of the list, the kth element of the free_area array includes also the
field nr_free, which specifies the number of free blocks of size 2k pages. Of course, if
there are no blocks of 2k free page frames, nr_free is equal to 0 and the free_list list
is empty (both pointers of free_list point to the free_list field itself).

Finally, the private field of the descriptor of the first page in a block of 2k free pages
stores the order of the block, that is, the number k. Thanks to this field, when a
block of pages is freed, the kernel can determine whether the buddy of the block is
also free and, if so, it can coalesce the two blocks in a single block of 2k+1 pages. It

* As we’ll see later, the lru field of the page descriptor can be used with other meanings when the page is not
free.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 8: Memory Management

should be noted that up to Linux 2.6.10, the kernel used 10 arrays of flags to encode
this information.

Allocating a block

The _ _rmqueue() function is used to find a free block in a zone. The function takes
two arguments: the address of the zone descriptor, and order, which denotes the
logarithm of the size of the requested block of free pages (0 for a one-page block, 1
for a two-page block, and so forth). If the page frames are successfully allocated, the
_ _rmqueue() function returns the address of the page descriptor of the first allo-
cated page frame. Otherwise, the function returns NULL.

The _ _rmqueue() function assumes that the caller has already disabled local inter-
rupts and acquired the zone->lock spin lock, which protects the data structures of
the buddy system. It performs a cyclic search through each list for an available block
(denoted by an entry that doesn’t point to the entry itself), starting with the list for
the requested order and continuing if necessary to larger orders:

struct free_area *area;
unsigned int current_order;

for (current_order=order; current_order<11; ++current_order) {
 area = zone->free_area + current_order;
 if (!list_empty(&area->free_list))
 goto block_found;
}
return NULL;

If the loop terminates, no suitable free block has been found, so _ _rmqueue() returns
a NULL value. Otherwise, a suitable free block has been found; in this case, the
descriptor of its first page frame is removed from the list and the value of free_pages
in the zone descriptor is decreased:

block_found:
 page = list_entry(area->free_list.next, struct page, lru);
 list_del(&page->lru);
 ClearPagePrivate(page);
 page->private = 0;
 area->nr_free--;
 zone->free_pages -= 1UL << order;

If the block found comes from a list of size curr_order greater than the requested size
order, a while cycle is executed. The rationale behind these lines of codes is as fol-
lows: when it becomes necessary to use a block of 2k page frames to satisfy a request
for 2h page frames (h < k), the program allocates the first 2h page frames and itera-
tively reassigns the last 2k – 2h page frames to the free_area lists that have indexes
between h and k:

 size = 1 << curr_order;
 while (curr_order > order) {
 area--;
 curr_order--;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 315

 size >>= 1;
 buddy = page + size;
 /* insert buddy as first element in the list */
 list_add(&buddy->lru, &area->free_list);
 area->nr_free++;
 buddy->private = curr_order;
 SetPagePrivate(buddy);
 }
 return page;

Because the _ _rmqueue() function has found a suitable free block, it returns the
address page of the page descriptor associated with the first allocated page frame.

Freeing a block

The _ _free_pages_bulk() function implements the buddy system strategy for free-
ing page frames. It uses three basic input parameters:*

page
The address of the descriptor of the first page frame included in the block to be
released

zone
The address of the zone descriptor

order
The logarithmic size of the block

The function assumes that the caller has already disabled local interrupts and acquired
the zone->lock spin lock, which protects the data structure of the buddy system. _ _
free_pages_bulk() starts by declaring and initializing a few local variables:

struct page * base = zone->zone_mem_map;
unsigned long buddy_idx, page_idx = page - base;
struct page * buddy, * coalesced;
int order_size = 1 << order;

The page_idx local variable contains the index of the first page frame in the block
with respect to the first page frame of the zone.

The order_size local variable is used to increase the counter of free page frames in
the zone:

zone->free_pages += order_size;

The function now performs a cycle executed at most 10–order times, once for each
possibility for merging a block with its buddy. The function starts with the smallest-
sized block and moves up to the top size:

while (order < 10) {
 buddy_idx = page_idx ^ (1 << order);

* For performance reasons, this inline function also uses another parameter; its value, however, can be deter-
mined by the three basic parameters shown in the text.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 8: Memory Management

 buddy = base + buddy_idx;
 if (!page_is_buddy(buddy, order))
 break;
 list_del(&buddy->lru);
 zone->free_area[order].nr_free--;
 ClearPagePrivate(buddy);
 buddy->private = 0;
 page_idx &= buddy_idx;
 order++;
}

In the body of the loop, the function looks for the index buddy_idx of the block,
which is buddy to the one having the page descriptor index page_idx. It turns out
that this index can be easily computed as:

buddy_idx = page_idx ^ (1 << order);

In fact, an Exclusive OR (XOR) using the (1<<order) mask switches the value of the
order-th bit of page_idx. Therefore, if the bit was previously zero, buddy_idx is equal
to page_idx + order_size; conversely, if the bit was previously one, buddy_idx is
equal to page_idx – order_size.

Once the buddy block index is known, the page descriptor of the buddy block can be
easily obtained as:

buddy = base + buddy_idx;

Now the function invokes page_is_buddy() to check if buddy describes the first page
of a block of order_size free page frames.

int page_is_buddy(struct page *page, int order)
{
 if (PagePrivate(buddy) && page->private == order &&
 !PageReserved(buddy) && page_count(page) ==0)
 return 1;
 return 0;
}

As you see, the buddy’s first page must be free (_count field equal to -1), it must
belong to the dynamic memory (PG_reserved bit clear), its private field must be
meaningful (PG_private bit set), and finally the private field must store the order of
the block being freed.

If all these conditions are met, the buddy block is free and the function removes the
buddy block from the list of free blocks of order order, and performs one more itera-
tion looking for buddy blocks twice as big.

If at least one of the conditions in page_is_buddy() is not met, the function breaks
out of the cycle, because the free block obtained cannot be merged further with other
free blocks. The function inserts it in the proper list and updates the private field of
the first page frame with the order of the block size:

coalesced = base + page_idx;
coalesced->private = order;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 317

SetPagePrivate(coalesced);
list_add(&coalesced->lru, &zone->free_area[order].free_list);
zone->free_area[order].nr_free++;

The Per-CPU Page Frame Cache
As we will see later in this chapter, the kernel often requests and releases single page
frames. To boost system performance, each memory zone defines a per-CPU page
frame cache. Each per-CPU cache includes some pre-allocated page frames to be
used for single memory requests issued by the local CPU.

Actually, there are two caches for each memory zone and for each CPU: a hot cache,
which stores page frames whose contents are likely to be included in the CPU’s hard-
ware cache, and a cold cache.

Taking a page frame from the hot cache is beneficial for system performance if either
the kernel or a User Mode process will write into the page frame right after the alloca-
tion. In fact, every access to a memory cell of the page frame will result in a line of the
hardware cache being “stolen” from another page frame—unless, of course, the hard-
ware cache already includes a line that maps the cell of the “hot” page frame just
accessed.

Conversely, taking a page frame from the cold cache is convenient if the page frame is
going to be filled with a DMA operation. In this case, the CPU is not involved and no
line of the hardware cache will be modified. Taking the page frame from the cold
cache preserves the reserve of hot page frames for the other kinds of memory alloca-
tion requests.

The main data structure implementing the per-CPU page frame cache is an array of
per_cpu_pageset data structures stored in the pageset field of the memory zone
descriptor. The array includes one element for each CPU; this element, in turn, con-
sists of two per_cpu_pages descriptors, one for the hot cache and the other for the
cold cache. The fields of the per_cpu_pages descriptor are listed in Table 8-7.

The kernel monitors the size of the both the hot and cold caches by using two water-
marks: if the number of page frames falls below the low watermark, the kernel
replenishes the proper cache by allocating batch single page frames from the buddy

Table 8-7. The fields of the per_cpu_pages descriptor

Type Name Description

int count Number of pages frame in the cache

int low Low watermark for cache replenishing

int high High watermark for cache depletion

int batch Number of page frames to be added or subtracted from the cache

struct list_head list List of descriptors of the page frames included in the cache

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 8: Memory Management

system; otherwise, if the number of page frames rises above the high watermark, the
kernel releases to the buddy system batch page frames in the cache. The values of
batch, low, and high essentially depend on the number of page frames included in the
memory zone.

Allocating page frames through the per-CPU page frame caches

The buffered_rmqueue() function allocates page frames in a given memory zone. It
makes use of the per-CPU page frame caches to handle single page frame requests.

The parameters are the address of the memory zone descriptor, the order of the
memory allocation request order, and the allocation flags gfp_flags. If the _ _GFP_
COLD flag is set in gfp_flags, the page frame should be taken from the cold cache,
otherwise it should be taken from the hot cache (this flag is meaningful only for sin-
gle page frame requests). The function essentially executes the following operations:

1. If order is not equal to 0, the per-CPU page frame cache cannot be used: the
function jumps to step 4.

2. Checks whether the memory zone’s local per-CPU cache identified by the value
of the _ _GFP_COLD flag has to be replenished (the count field of the per_cpu_pages
descriptor is lower than or equal to the low field). In this case, it executes the fol-
lowing substeps:

a. Allocates batch single page frames from the buddy system by repeatedly
invoking the _ _rmqueue() function.

b. Inserts the descriptors of the allocated page frames in the cache’s list.

c. Updates the value of count by adding the number of page frames actually
allocated.

3. If count is positive, the function gets a page frame from the cache’s list, decreases
count, and jumps to step 5. (Observe that a per-CPU page frame cache could be
empty; this happens when the _ _rmqueue() function invoked in step 2a fails to
allocate any page frames.)

4. Here, the memory request has not yet been satisfied, either because the request
spans several contiguous page frames, or because the selected page frame cache
is empty. Invokes the _ _rmqueue() function to allocate the requested page frames
from the buddy system.

5. If the memory request has been satisfied, the function initializes the page
descriptor of the (first) page frame: clears some flags, sets the private field to
zero, and sets the page frame reference counter to one. Moreover, if the _ _GPF_
ZERO flag in gfp_flags is set, it fills the allocated memory area with zeros.

6. Returns the page descriptor address of the (first) page frame, or NULL if the mem-
ory allocation request failed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 319

Releasing page frames to the per-CPU page frame caches

In order to release a single page frame to a per-CPU page frame cache, the kernel
makes use of the free_hot_page() and free_cold_page() functions. Both of them are
simple wrappers for the free_hot_cold_page() function, which receives as its param-
eters the descriptor address page of the page frame to be released and a cold flag
specifying either the hot cache or the cold cache.

The free_hot_cold_page() function executes the following operations:

1. Gets from the page->flags field the address of the memory zone descriptor
including the page frame (see the earlier section “Non-Uniform Memory Access
(NUMA)”).

2. Gets the address of the per_cpu_pages descriptor of the zone’s cache selected by
the cold flag.

3. Checks whether the cache should be depleted: if count is higher than or equal to
high, invokes the free_pages_bulk() function, passing to it the zone descriptor,
the number of page frames to be released (batch field), the address of the cache’s
list, and the number zero (for 0-order page frames). In turn, the latter function
invokes repeatedly the _ _free_pages_bulk() function to releases the specified
number of page frames—taken from the cache’s list—to the buddy system of the
memory zone.

4. Adds the page frame to be released to the cache’s list, and increases the count
field.

It should be noted that in the current version of the Linux 2.6 kernel, no page frame
is ever released to the cold cache: the kernel always assumes the freed page frame is
hot with respect to the hardware cache. Of course, this does not mean that the cold
cache is empty: the cache is replenished by buffered_rmqueue() when the low water-
mark has been reached.

The Zone Allocator
The zone allocator is the frontend of the kernel page frame allocator. This compo-
nent must locate a memory zone that includes a number of free page frames large
enough to satisfy the memory request. This task is not as simple as it could appear at
a first glance, because the zone allocator must satisfy several goals:

• It should protect the pool of reserved page frames (see the earlier section “The
Pool of Reserved Page Frames”).

• It should trigger the page frame reclaiming algorithm (see Chapter 17) when
memory is scarce and blocking the current process is allowed; once some page
frames have been freed, the zone allocator will retry the allocation.

• It should preserve the small, precious ZONE_DMA memory zone, if possible. For
instance, the zone allocator should be somewhat reluctant to assign page frames

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 8: Memory Management

in the ZONE_DMA memory zone if the request was for ZONE_NORMAL or ZONE_HIGHMEM
page frames.

We have seen in the earlier section “The Zoned Page Frame Allocator” that every
request for a group of contiguous page frames is eventually handled by executing the
alloc_pages macro. This macro, in turn, ends up invoking the _ _alloc_pages() func-
tion, which is the core of the zone allocator. It receives three parameters:

gfp_mask
The flags specified in the memory allocation request (see earlier Table 8-5)

order
The logarithmic size of the group of contiguous page frames to be allocated

zonelist
Pointer to a zonelist data structure describing, in order of preference, the mem-
ory zones suitable for the memory allocation

The _ _alloc_pages() function scans every memory zone included in the zonelist
data structure. The code that does this looks like the following:

for (i = 0; (z=zonelist->zones[i]) != NULL; i++) {
 if (zone_watermark_ok(z, order, ...)) {
 page = buffered_rmqueue(z, order, gfp_mask);
 if (page)
 return page;
 }
}

For each memory zone, the function compares the number of free page frames with a
threshold value that depends on the memory allocation flags, on the type of current
process, and on how many times the zone has already been checked by the function.
In fact, if free memory is scarce, every memory zone is typically scanned several
times, each time with lower threshold on the minimal amount of free memory
required for the allocation. The previous block of code is thus replicated several
times—with minor variations—in the body of the _ _alloc_pages() function. The
buffered_rmqueue() function has been described already in the earlier section “The
Per-CPU Page Frame Cache:” it returns the page descriptor of the first allocated page
frame, or NULL if the memory zone does not include a group of contiguous page
frames of the requested size.

The zone_watermark_ok() auxiliary function receives several parameters, which deter-
mine a threshold min on the number of free page frames in the memory zone. In par-
ticular, the function returns the value 1 if the following two conditions are met:

1. Besides the page frames to be allocated, there are at least min free page frames in
the memory zone, not including the page frames in the low-on-memory reserve
(lowmem_reserve field of the zone descriptor).

2. Besides the page frames to be allocated, there are at least free page
frames in blocks of order at least k, for each k between 1 and the order of the

min 2
k⁄

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Frame Management | 321

allocation. Therefore, if order is greater than zero, there must be at least min/2
free page frames in blocks of size at least 2; if order is greater than one, there
must be at least min/4 free page frames in blocks of size at least 4; and so on.

The value of the threshold min is determined by zone_watermark_ok() as follows:

• The base value is passed as a parameter of the function and can be one of the
pages_min, pages_low, and pages_high zone’s watermarks (see the section “The
Pool of Reserved Page Frames” earlier in this chapter).

• The base value is divided by two if the gfp_high flag passed as parameter is set.
Usually, this flag is equal to one if the _ _GFP_HIGHMEM flag is set in the gfp_mask,
that is, if the page frames can be allocated from high memory.

• The threshold value is further reduced by one-fourth if the can_try_harder flag
passed as parameter is set. This flag is usually equal to one if either the _ _GFP_
WAIT flag is set in gfp_mask, or if the current process is a real-time process and the
memory allocation is done in process context (outside of interrupt handlers and
deferrable functions).

The _ _alloc_pages() function essentially executes the following steps:

1. Performs a first scanning of the memory zones (see the block of code shown ear-
lier). In this first scan, the min threshold value is set to z->pages_low, where z
points to the zone descriptor being analyzed (the can_try_harder and gfp_high
parameters are set to zero).

2. If the function did not terminate in the previous step, there is not much free
memory left: the function awakens the kswapd kernel threads to start reclaiming
page frames asynchronously (see Chapter 17).

3. Performs a second scanning of the memory zones, passing as base threshold the
value z->pages_min. As explained previously, the actual threshold is determined
also by the can_try_harder and gfp_high flags. This step is nearly identical to
step 1, except that the function is using a lower threshold.

4. If the function did not terminate in the previous step, the system is definitely low
on memory. If the kernel control path that issued the memory allocation request
is not an interrupt handler or a deferrable function and it is trying to reclaim
page frames (either the PF_MEMALLOC flag or the PF_MEMDIE flag of current is set),
the function then performs a third scanning of the memory zones, trying to allo-
cate the page frames ignoring the low-on-memory thresholds—that is, without
invoking zone_watermark_ok(). This is the only case where the kernel control
path is allowed to deplete the low-on-memory reserve of pages specified by the
lowmem_reserve field of the zone descriptor. In fact, in this case the kernel con-
trol path that issued the memory request is ultimately trying to free page frames,
thus it should get what it has requested, if at all possible. If no memory zone
includes enough page frames, the function returns NULL to notify the caller of the
failure.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 8: Memory Management

5. Here, the invoking kernel control path is not trying to reclaim memory. If the _ _
GFP_WAIT flag of gfp_mask is not set, the function returns NULL to notify the kernel
control path of the memory allocation failure: in this case, there is no way to satisfy
the request without blocking the current process.

6. Here the current process can be blocked: invokes cond_resched() to check
whether some other process needs the CPU.

7. Sets the PF_MEMALLOC flag of current, to denote the fact that the process is ready
to perform memory reclaiming.

8. Stores in current->reclaim_state a pointer to a reclaim_state structure. This
structure includes just one field, reclaimed_slab, initialized to zero (we’ll see
how this field is used in the section “Interfacing the Slab Allocator with the
Zoned Page Frame Allocator” later in this chapter).

9. Invokes try_to_free_pages() to look for some page frames to be reclaimed (see
the section “Low On Memory Reclaiming” in Chapter 17). The latter function
may block the current process. Once that function returns, _ _alloc_pages()
resets the PF_MEMALLOC flag of current and invokes once more cond_resched().

10. If the previous step has freed some page frames, the function performs yet
another scanning of the memory zones equal to the one performed in step 3. If
the memory allocation request cannot be satisfied, the function determines
whether it should continue scanning the memory zone: if the _ _GFP_NORETRY flag
is clear and either the memory allocation request spans up to eight page frames,
or one of the _ _GFP_REPEAT and _ _GFP_NOFAIL flags is set, the function invokes
blk_congestion_wait() to put the process asleep for awhile (see Chapter 14), and
it jumps back to step 6. Otherwise, the function returns NULL to notify the caller
that the memory allocation failed.

11. If no page frame has been freed in step 9, the kernel is in deep trouble, because
free memory is dangerously low and it was not possible to reclaim any page
frame. Perhaps the time has come to take a crucial decision. If the kernel control
path is allowed to perform the filesystem-dependent operations needed to kill a
process (the _ _GFP_FS flag in gfp_mask is set) and the _ _GFP_NORETRY flag is clear,
performs the following substeps:

a. Scans once again the memory zones with a threshold value equal to z->
pages_high.

b. Invokes out_of_memory() to start freeing some memory by killing a victim
process (see “The Out of Memory Killer” in Chapter 17).

c. Jumps back to step 1.

Because the watermark used in step 11a is much higher than the watermarks
used in the previous scannings, that step is likely to fail. Actually, step 11a suc-
ceeds only if another kernel control path is already killing a process to reclaim its
memory. Thus, step 11a avoids that two innocent processes are killed instead of
one.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Area Management | 323

Releasing a group of page frames

The zone allocator also takes care of releasing page frames; thankfully, releasing
memory is a lot easier than allocating it.

All kernel macros and functions that release page frames—described in the earlier
section “The Zoned Page Frame Allocator”—rely on the _ _free_pages() function. It
receives as its parameters the address of the page descriptor of the first page frame to
be released (page), and the logarithmic size of the group of contiguous page frames to
be released (order). The function executes the following steps:

1. Checks that the first page frame really belongs to dynamic memory (its PG_
reserved flag is cleared); if not, terminates.

2. Decreases the page->_count usage counter; if it is still greater than or equal to
zero, terminates.

3. If order is equal to zero, the function invokes free_hot_page() to release the page
frame to the per-CPU hot cache of the proper memory zone (see the earlier sec-
tion “The Per-CPU Page Frame Cache”).

4. If order is greater than zero, it adds the page frames in a local list and invokes the
free_pages_bulk() function to release them to the buddy system of the proper
memory zone (see step 3 in the description of free_hot_cold_page() in the ear-
lier section “The Per-CPU Page Frame Cache”).

Memory Area Management
This section deals with memory areas—that is, with sequences of memory cells hav-
ing contiguous physical addresses and an arbitrary length.

The buddy system algorithm adopts the page frame as the basic memory area. This is
fine for dealing with relatively large memory requests, but how are we going to deal
with requests for small memory areas, say a few tens or hundreds of bytes?

Clearly, it would be quite wasteful to allocate a full page frame to store a few bytes. A
better approach instead consists of introducing new data structures that describe
how small memory areas are allocated within the same page frame. In doing so, we
introduce a new problem called internal fragmentation. It is caused by a mismatch
between the size of the memory request and the size of the memory area allocated to
satisfy the request.

A classical solution (adopted by early Linux versions) consists of providing memory
areas whose sizes are geometrically distributed; in other words, the size depends on a
power of 2 rather than on the size of the data to be stored. In this way, no matter
what the memory request size is, we can ensure that the internal fragmentation is
always smaller than 50 percent. Following this approach, the kernel creates 13 geo-
metrically distributed lists of free memory areas whose sizes range from 32 to 131,
072 bytes. The buddy system is invoked both to obtain additional page frames

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 8: Memory Management

needed to store new memory areas and, conversely, to release page frames that no
longer contain memory areas. A dynamic list is used to keep track of the free mem-
ory areas contained in each page frame.

The Slab Allocator
Running a memory area allocation algorithm on top of the buddy algorithm is not
particularly efficient. A better algorithm is derived from the slab allocator schema
that was adopted for the first time in the Sun Microsystems Solaris 2.4 operating sys-
tem. It is based on the following premises:

• The type of data to be stored may affect how memory areas are allocated; for
instance, when allocating a page frame to a User Mode process, the kernel
invokes the get_zeroed_page() function, which fills the page with zeros.

The concept of a slab allocator expands upon this idea and views the memory
areas as objects consisting of both a set of data structures and a couple of func-
tions or methods called the constructor and destructor . The former initializes the
memory area while the latter deinitializes it.

To avoid initializing objects repeatedly, the slab allocator does not discard the
objects that have been allocated and then released but instead saves them in
memory. When a new object is then requested, it can be taken from memory
without having to be reinitialized.

• The kernel functions tend to request memory areas of the same type repeatedly.
For instance, whenever the kernel creates a new process, it allocates memory
areas for some fixed size tables such as the process descriptor, the open file
object, and so on (see Chapter 3). When a process terminates, the memory areas
used to contain these tables can be reused. Because processes are created and
destroyed quite frequently, without the slab allocator, the kernel wastes time
allocating and deallocating the page frames containing the same memory areas
repeatedly; the slab allocator allows them to be saved in a cache and reused
quickly.

• Requests for memory areas can be classified according to their frequency.
Requests of a particular size that are expected to occur frequently can be han-
dled most efficiently by creating a set of special-purpose objects that have the
right size, thus avoiding internal fragmentation. Meanwhile, sizes that are rarely
encountered can be handled through an allocation scheme based on objects in a
series of geometrically distributed sizes (such as the power-of-2 sizes used in
early Linux versions), even if this approach leads to internal fragmentation.

• There is another subtle bonus in introducing objects whose sizes are not geomet-
rically distributed: the initial addresses of the data structures are less prone to be
concentrated on physical addresses whose values are a power of 2. This, in turn,
leads to better performance by the processor hardware cache.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Area Management | 325

• Hardware cache performance creates an additional reason for limiting calls to
the buddy system allocator as much as possible. Every call to a buddy system
function “dirties” the hardware cache, thus increasing the average memory
access time. The impact of a kernel function on the hardware cache is called the
function footprint; it is defined as the percentage of cache overwritten by the
function when it terminates. Clearly, large footprints lead to a slower execution
of the code executed right after the kernel function, because the hardware cache
is by now filled with useless information.

The slab allocator groups objects into caches. Each cache is a “store” of objects of the
same type. For instance, when a file is opened, the memory area needed to store the
corresponding “open file” object is taken from a slab allocator cache named filp (for
“file pointer”).

The area of main memory that contains a cache is divided into slabs; each slab con-
sists of one or more contiguous page frames that contain both allocated and free
objects (see Figure 8-3).

As we’ll see in Chapter 17, the kernel periodically scans the caches and releases the
page frames corresponding to empty slabs.

Cache Descriptor
Each cache is described by a structure of type kmem_cache_t (which is equivalent to
the type struct kmem_cache_s), whose fields are listed in Table 8-8. We omitted from
the table several fields used for collecting statistical information and for debugging.

Figure 8-3. The slab allocator components

Table 8-8. The fields of the kmem_cache_t descriptor

Type Name Description

struct
array_cache * []

array Per-CPU array of pointers to local caches of free objects (see the sec-
tion “Local Caches of Free Slab Objects” later in this chapter).

unsigned int batchcount Number of objects to be transferred in bulk to or from the local caches.

unsigned int limit Maximum number of free objects in the local caches. This is tunable.

Cache

Slab

Slab

Object

Object

Object

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 8: Memory Management

The lists field of the kmem_cache_t descriptor, in turn, is a structure whose fields are
listed in Table 8-9.

struct kmem_list3 lists See next table.

unsigned int objsize Size of the objects included in the cache.

unsigned int flags Set of flags that describes permanent properties of the cache.

unsigned int num Number of objects packed into a single slab. (All slabs of the cache
have the same size.)

unsigned int free_limit Upper limit of free objects in the whole slab cache.

spinlock_t spinlock Cache spin lock.

unsigned int gfporder Logarithm of the number of contiguous page frames included in a
single slab.

unsigned int gfpflags Set of flags passed to the buddy system function when allocating
page frames.

size_t colour Number of colors for the slabs (see the section “Slab Coloring” later
in this chapter).

unsigned int colour_off Basic alignment offset in the slabs.

unsigned int colour_next Color to use for the next allocated slab.

kmem_cache_t * slabp_cache Pointer to the general slab cache containing the slab descriptors
(NULL if internal slab descriptors are used; see next section).

unsigned int slab_size The size of a single slab.

unsigned int dflags Set of flags that describe dynamic properties of the cache.

void * ctor Pointer to constructor method associated with the cache.

void * dtor Pointer to destructor method associated with the cache.

const char * name Character array storing the name of the cache.

struct list_head next Pointers for the doubly linked list of cache descriptors.

Table 8-9. The fields of the kmem_list3 structure

Type Name Description

struct list_head slabs_partial Doubly linked circular list of slab descriptors with both free and non-
free objects

struct list_head slabs_full Doubly linked circular list of slab descriptors with no free objects

struct list_head slabs_free Doubly linked circular list of slab descriptors with free objects only

unsigned long free_objects Number of free objects in the cache

int free_touched Used by the slab allocator’s page reclaiming algorithm (see
Chapter 17)

unsigned long next_reap Used by the slab allocator’s page reclaiming algorithm (see
Chapter 17)

Table 8-8. The fields of the kmem_cache_t descriptor (continued)

Type Name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Area Management | 327

Slab Descriptor
Each slab of a cache has its own descriptor of type slab illustrated in Table 8-10.

Slab descriptors can be stored in two possible places:

External slab descriptor
Stored outside the slab, in one of the general caches not suitable for ISA DMA
pointed to by cache_sizes (see the next section).

Internal slab descriptor
Stored inside the slab, at the beginning of the first page frame assigned to the
slab.

The slab allocator chooses the second solution when the size of the objects is smaller
than 512MB or when internal fragmentation leaves enough space for the slab
descriptor and the object descriptors (as described later)—inside the slab. The CFLGS_
OFF_SLAB flag in the flags field of the cache descriptor is set to one if the slab descrip-
tor is stored outside the slab; it is set to zero otherwise.

Figure 8-4 illustrates the major relationships between cache and slab descriptors. Full
slabs, partially full slabs, and free slabs are linked in different lists.

General and Specific Caches
Caches are divided into two types: general and specific. General caches are used only
by the slab allocator for its own purposes, while specific caches are used by the
remaining parts of the kernel.

struct
array_cache *

shared Pointer to a local cache shared by all CPUs (see the later section
“Local Caches of Free Slab Objects”)

Table 8-10. The fields of the slab descriptor

Type Name Description

struct list_head list Pointers for one of the three doubly linked list of slab descriptors
(either the slabs_full, slabs_partial, or slabs_free
list in the kmem_list3 structure of the cache descriptor)

unsigned long colouroff Offset of the first object in the slab (see the section “Slab Coloring”
later in this chapter)

void * s_mem Address of first object (either allocated or free) in the slab

unsigned int inuse Number of objects in the slab that are currently used (not free)

unsigned int free Index of next free object in the slab, or BUFCTL_END if there are no
free objects left (see the section “Object Descriptor” later in this
chapter)

Table 8-9. The fields of the kmem_list3 structure (continued)

Type Name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 8: Memory Management

The general caches are:

• A first cache called kmem_cache whose objects are the cache descriptors of the
remaining caches used by the kernel. The cache_cache variable contains the
descriptor of this special cache.

• Several additional caches contain general purpose memory areas. The range of
the memory area sizes typically includes 13 geometrically distributed sizes. A
table called malloc_sizes (whose elements are of type cache_sizes) points to 26
cache descriptors associated with memory areas of size 32, 64, 128, 256, 512,
1,024, 2,048, 4,096, 8,192, 16,384, 32,768, 65,536, and 131,072 bytes. For each
size, there are two caches: one suitable for ISA DMA allocations and the other
for normal allocations.

The kmem_cache_init() function is invoked during system initialization to set up the
general caches.

Specific caches are created by the kmem_cache_create() function. Depending on the
parameters, the function first determines the best way to handle the new cache (for
instance, whether to include the slab descriptor inside or outside of the slab). It then
allocates a cache descriptor for the new cache from the cache_cache general cache
and inserts the descriptor in the cache_chain list of cache descriptors (the insertion is
done after having acquired the cache_chain_sem semaphore that protects the list from
concurrent accesses).

Figure 8-4. Relationship between cache and slab descriptors

Cache
Descriptor

Slab
Descriptor

Slab
Descriptor

Slab
Descriptor

Cache
Descriptor

Slab
Descriptor

Slab
Descriptor

Cache
Descriptor

Slab
Descriptor

Slab
Descriptor

Slab
Descriptor(cache) slabs_full

(cache) next

(cache) slabs_partial
(cache) slabs_free

Full slab

Partially full slab

Empty slab
(slab) list

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Area Management | 329

It is also possible to destroy a cache and remove it from the cache_chain list by invok-
ing kmem_cache_destroy(). This function is mostly useful to modules that create their
own caches when loaded and destroy them when unloaded. To avoid wasting mem-
ory space, the kernel must destroy all slabs before destroying the cache itself. The
kmem_cache_shrink() function destroys all the slabs in a cache by invoking slab_
destroy() iteratively (see the later section “Releasing a Slab from a Cache”).

The names of all general and specific caches can be obtained at runtime by reading
/proc/slabinfo; this file also specifies the number of free objects and the number of
allocated objects in each cache.

Interfacing the Slab Allocator with the Zoned Page Frame
Allocator
When the slab allocator creates a new slab, it relies on the zoned page frame alloca-
tor to obtain a group of free contiguous page frames. For this purpose, it invokes the
kmem_getpages() function, which is essentially equivalent, on a UMA system, to the
following code fragment:

void * kmem_getpages(kmem_cache_t *cachep, int flags)
{
 struct page *page;
 int i;

 flags |= cachep->gfpflags;
 page = alloc_pages(flags, cachep->gfporder);
 if (!page)
 return NULL;
 i = (1 << cache->gfporder);
 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
 atomic_add(i, &slab_reclaim_pages);
 while (i--)
 SetPageSlab(page++);
 return page_address(page);
}

The two parameters have the following meaning:

cachep
Points to the cache descriptor of the cache that needs additional page frames (the
number of required page frames is determined by the order in the cachep->
gfporder field).

flags
Specifies how the page frame is requested (see the section “The Zoned Page
Frame Allocator” earlier in this chapter). This set of flags is combined with the
specific cache allocation flags stored in the gfpflags field of the cache descriptor.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 8: Memory Management

The size of the memory allocation request is specified by the gfporder field of the
cache descriptor, which encodes the size of a slab in the cache.* If the slab cache has
been created with the SLAB_RECLAIM_ACCOUNT flag set, the page frames assigned to the
slabs are accounted for as reclaimable pages when the kernel checks whether there is
enough memory to satisfy some User Mode requests. The function also sets the PG_
slab flag in the page descriptors of the allocated page frames.

In the reverse operation, page frames assigned to a slab can be released (see the sec-
tion “Releasing a Slab from a Cache” later in this chapter) by invoking the kmem_
freepages() function:

void kmem_freepages(kmem_cache_t *cachep, void *addr)
{
 unsigned long i = (1<<cachep->gfporder);
 struct page *page = virt_to_page(addr);

 if (current->reclaim_state)
 current->reclaim_state->reclaimed_slab += i;
 while (i--)
 ClearPageSlab(page++);
 free_pages((unsigned long) addr, cachep->gfporder);
 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
 atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
}

The function releases the page frames, starting from the one having the linear
address addr, that had been allocated to the slab of the cache identified by cachep. If
the current process is performing memory reclaiming (current->reclaim_state field
not NULL), the reclaimed_slab field of the reclaim_state structure is properly
increased, so that the pages just freed can be accounted for by the page frame
reclaiming algorithm (see the section “Low On Memory Reclaiming” in Chapter 17).
Moreover, if the SLAB_RECLAIM_ACCOUNT flag is set (see above), the slab_reclaim_pages
variable is properly decreased.

Allocating a Slab to a Cache
A newly created cache does not contain a slab and therefore does not contain any
free objects. New slabs are assigned to a cache only when both of the following are
true:

• A request has been issued to allocate a new object.

• The cache does not include a free object.

* Notice that it is not possible to allocate page frames from the ZONE_HIGHMEM memory zone, because the kmem_
getpages() function returns the linear address yielded by the page_address() function; as explained in the
section “Kernel Mappings of High-Memory Page Frames” earlier in this chapter, this function returns NULL
for unmapped high-memory page frames.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Area Management | 331

Under these circumstances, the slab allocator assigns a new slab to the cache by
invoking cache_grow(). This function calls kmem_getpages() to obtain from the
zoned page frame allocator the group of page frames needed to store a single slab; it
then calls alloc_slabmgmt() to get a new slab descriptor. If the CFLGS_OFF_SLAB flag of
the cache descriptor is set, the slab descriptor is allocated from the general cache
pointed to by the slabp_cache field of the cache descriptor; otherwise, the slab
descriptor is allocated in the first page frame of the slab.

The kernel must be able to determine, given a page frame, whether it is used by the
slab allocator and, if so, to derive quickly the addresses of the corresponding cache
and slab descriptors. Therefore, cache_grow() scans all page descriptors of the page
frames assigned to the new slab, and loads the next and prev subfields of the lru fields
in the page descriptors with the addresses of, respectively, the cache descriptor and
the slab descriptor. This works correctly because the lru field is used by functions of
the buddy system only when the page frame is free, while page frames handled by the
slab allocator functions have the PG_slab flag set and are not free as far as the buddy
system is concerned.* The opposite question—given a slab in a cache, which are the
page frames that implement it?—can be answered by using the s_mem field of the slab
descriptor and the gfporder field (the size of a slab) of the cache descriptor.

Next, cache_grow() calls cache_init_objs(), which applies the constructor method
(if defined) to all the objects contained in the new slab.

Finally, cache_grow() calls list_add_tail() to add the newly obtained slab descrip-
tor *slabp at the end of the fully free slab list of the cache descriptor *cachep, and
updates the counter of free objects in the cache:

list_add_tail(&slabp->list, &cachep->lists->slabs_free);
cachep->lists->free_objects += cachep->num;

Releasing a Slab from a Cache
Slabs can be destroyed in two cases:

• There are too many free objects in the slab cache (see the later section “Releas-
ing a Slab from a Cache”).

• A timer function invoked periodically determines that there are fully unused
slabs that can be released (see Chapter 17).

In both cases, the slab_destroy() function is invoked to destroy a slab and release
the corresponding page frames to the zoned page frame allocator:

void slab_destroy(kmem_cache_t *cachep, slab_t *slabp)
{
 if (cachep->dtor) {
 int i;

* As we’ll in Chapter 17, the lru field is also used by the page frame reclaiming algorithm.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 8: Memory Management

 for (i = 0; i < cachep->num; i++) {
 void* objp = slabp->s_mem+cachep->objsize*i;
 (cachep->dtor)(objp, cachep, 0);
 }
 }
 kmem_freepages(cachep, slabp->s_mem - slabp->colouroff);
 if (cachep->flags & CFLGS_OFF_SLAB)
 kmem_cache_free(cachep->slabp_cache, slabp);
}

The function checks whether the cache has a destructor method for its objects (the
dtor field is not NULL), in which case it applies the destructor to all the objects in the
slab; the objp local variable keeps track of the currently examined object. Next, it
calls kmem_freepages(), which returns all the contiguous page frames used by the
slab to the buddy system. Finally, if the slab descriptor is stored outside of the slab,
the function releases it from the cache of slab descriptors.

Actually, the function is slightly more complicated. For example, a slab cache can be
created with the SLAB_DESTROY_BY_RCU flag, which means that slabs should be released
in a deferred way by registering a callback with the call_rcu() function (see the sec-
tion “Read-Copy Update (RCU)” in Chapter 5). The callback function, in turn,
invokes kmem_freepages() and, possibly, the kmem_cache_free(), as in the main case
shown above.

Object Descriptor
Each object has a short descriptor of type kmem_bufctl_t. Object descriptors are
stored in an array placed right after the corresponding slab descriptor. Thus, like the
slab descriptors themselves, the object descriptors of a slab can be stored in two pos-
sible ways that are illustrated in Figure 8-5.

External object descriptors
Stored outside the slab, in the general cache pointed to by the slabp_cache field
of the cache descriptor. The size of the memory area, and thus the particular
general cache used to store object descriptors, depends on the number of objects
stored in the slab (num field of the cache descriptor).

Internal object descriptors
Stored inside the slab, right before the objects they describe.

The first object descriptor in the array describes the first object in the slab, and so
on. An object descriptor is simply an unsigned short integer, which is meaningful
only when the object is free. It contains the index of the next free object in the slab,
thus implementing a simple list of free objects inside the slab. The object descriptor
of the last element in the free object list is marked by the conventional value BUFCTL_
END (0xffff).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Area Management | 333

Aligning Objects in Memory
The objects managed by the slab allocator are aligned in memory—that is, they are
stored in memory cells whose initial physical addresses are multiples of a given con-
stant, which is usually a power of 2. This constant is called the alignment factor.

The largest alignment factor allowed by the slab allocator is 4,096—the page frame
size. This means that objects can be aligned by referring to either their physical
addresses or their linear addresses. In both cases, only the 12 least significant bits of
the address may be altered by the alignment.

Usually, microcomputers access memory cells more quickly if their physical
addresses are aligned with respect to the word size (that is, to the width of the inter-
nal memory bus of the computer). Thus, by default, the kmem_cache_create() func-
tion aligns objects according to the word size specified by the BYTES_PER_WORD macro.
For 80 × 86 processors, the macro yields the value 4 because the word is 32 bits long.

When creating a new slab cache, it’s possible to specify that the objects included in it
be aligned in the first-level hardware cache. To achieve this, the kernel sets the SLAB_
HWCACHE_ALIGN cache descriptor flag. The kmem_cache_create() function handles the
request as follows:

• If the object’s size is greater than half of a cache line, it is aligned in RAM to a
multiple of L1_CACHE_BYTES—that is, at the beginning of the line.

Figure 8-5. Relationships between slab and object descriptors

Allocated
Object

Slab with Internal Descriptors

free
s_mem

Free
Object

Allocated
Object

Free
Object

Allocated
Object

Slab with External Descriptors

Free
Object

Allocated
Object

Free
Object

Slab
Descriptor

Slab
Descriptor

free
s_mem

Slab

Slab
General

Cache Object

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 8: Memory Management

• Otherwise, the object size is rounded up to a submultiple of L1_CACHE_BYTES; this
ensures that a small object will never span across two cache lines.

Clearly, what the slab allocator is doing here is trading memory space for access
time; it gets better cache performance by artificially increasing the object size, thus
causing additional internal fragmentation.

Slab Coloring
We know from Chapter 2 that the same hardware cache line maps many different
blocks of RAM. In this chapter, we have also seen that objects of the same size end
up being stored at the same offset within a cache. Objects that have the same offset
within different slabs will, with a relatively high probability, end up mapped in the
same cache line. The cache hardware might therefore waste memory cycles transfer-
ring two objects from the same cache line back and forth to different RAM locations,
while other cache lines go underutilized. The slab allocator tries to reduce this
unpleasant cache behavior by a policy called slab coloring: different arbitrary values
called colors are assigned to the slabs.

Before examining slab coloring, we have to look at the layout of objects in the cache.
Let’s consider a cache whose objects are aligned in RAM. This means that the object
address must be a multiple of a given positive value, say aln. Even taking the align-
ment constraint into account, there are many possible ways to place objects inside
the slab. The choices depend on decisions made for the following variables:

num
Number of objects that can be stored in a slab (its value is in the num field of the
cache descriptor).

osize
Object size, including the alignment bytes.

dsize
Slab descriptor size plus all object descriptors size, rounded up to the smallest
multiple of the hardware cache line size. Its value is equal to 0 if the slab and
object descriptors are stored outside of the slab.

free
Number of unused bytes (bytes not assigned to any object) inside the slab.

The total length in bytes of a slab can then be expressed as:

slab length = (num × osize) + dsize + free

free is always smaller than osize, because otherwise, it would be possible to place
additional objects inside the slab. However, free could be greater than aln.

The slab allocator takes advantage of the free unused bytes to color the slab. The
term “color” is used simply to subdivide the slabs and allow the memory allocator to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Area Management | 335

spread objects out among different linear addresses. In this way, the kernel obtains
the best possible performance from the microprocessor’s hardware cache.

Slabs having different colors store the first object of the slab in different memory
locations, while satisfying the alignment constraint. The number of available colors is
free⁄aln (this value is stored in the colour field of the cache descriptor). Thus, the first
color is denoted as 0 and the last one is denoted as (free ⁄aln)−1. (As a particular case,
if free is lower than aln, colour is set to 0, nevertheless all slabs use color 0, thus
really the number of colors is one.)

If a slab is colored with color col, the offset of the first object (with respect to the slab
initial address) is equal to col × aln + dsize bytes. Figure 8-6 illustrates how the place-
ment of objects inside the slab depends on the slab color. Coloring essentially leads
to moving some of the free area of the slab from the end to the beginning.

Coloring works only when free is large enough. Clearly, if no alignment is required
for the objects or if the number of unused bytes inside the slab is smaller than the
required alignment (free < aln), the only possible slab coloring is the one that has the
color 0—the one that assigns a zero offset to the first object.

The various colors are distributed equally among slabs of a given object type by stor-
ing the current color in a field of the cache descriptor called colour_next. The cache_
grow() function assigns the color specified by colour_next to a new slab and then
increases the value of this field. After reaching colour, it wraps around again to 0. In
this way, each slab is created with a different color from the previous one, up to the
maximum available colors. The cache_grow() function, moreover, gets the value aln
from the colour_off field of the cache descriptor, computes dsize according to the
number of objects inside the slab, and finally stores the value col × aln + dsize in the
colouroff field of the slab descriptor.

Local Caches of Free Slab Objects
The Linux 2.6 implementation of the slab allocator for multiprocessor systems dif-
fers from that of the original Solaris 2.4. To reduce spin lock contention among pro-
cessors and to make better use of the hardware caches, each cache of the slab

Figure 8-6. Slab with color col and alignment aln

ObjectObjectObjectObject
Slab and
Objects

Descriptor

free-
col alnosizeosize...osizeosizedsizecol aln

num + osize

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 8: Memory Management

allocator includes a per-CPU data structure consisting of a small array of pointers to
freed objects called the slab local cache. Most allocations and releases of slab objects
affect the local cache only; the slab data structures get involved only when the local
cache underflows or overflows. This technique is quite similar to the one illustrated
in the section “The Per-CPU Page Frame Cache” earlier in this chapter.

The array field of the cache descriptor is an array of pointers to array_cache data
structures, one element for each CPU in the system. Each array_cache data structure
is a descriptor of the local cache of free objects, whose fields are illustrated in
Table 8-11.

Notice that the local cache descriptor does not include the address of the local cache
itself; in fact, the local cache is placed right after the descriptor. Of course, the local
cache stores the pointers to the freed objects, not the object themselves, which are
always placed inside the slabs of the cache.

When creating a new slab cache, the kmem_cache_create() function determines the
size of the local caches (storing this value in the limit field of the cache descriptor),
allocates them, and stores their pointers into the array field of the cache descriptor.
The size depends on the size of the objects stored in the slab cache, and ranges from
1 for very large objects to 120 for small ones. Moreover, the initial value of the
batchcount field, which is the number of objects added or removed in a chunk from a
local cache, is initially set to half of the local cache size.*

In multiprocessor systems, slab caches for small objects also sport an additional local
cache, whose address is stored in the lists.shared field of the cache descriptor. The
shared local cache is, as the name suggests, shared among all CPUs, and it makes the
task of migrating free objects from a local cache to another easier (see the following
section). Its initial size is equal to eight times the value of the batchcount field.

Table 8-11. The fields of the array_cache structure

Type Name Description

unsigned int avail Number of pointers to available objects in the local cache. The field also acts
as the index of the first free slot in the cache.

unsigned int limit Size of the local cache—that is, the maximum number of pointers in the
local cache.

unsigned int batchcount Chunk size for local cache refill or emptying.

unsigned int touched Flag set to 1 if the local cache has been recently used.

* The system administrator can tune—for each cache—the size of the local caches and the value of the
batchcount field by writing into the /proc/slabinfo file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Area Management | 337

Allocating a Slab Object
New objects may be obtained by invoking the kmem_cache_alloc() function. The
parameter cachep points to the cache descriptor from which the new free object must
be obtained, while the parameter flag represents the flags to be passed to the zoned
page frame allocator functions, should all slabs of the cache be full.

The function is essentially equivalent to the following:

void * kmem_cache_alloc(kmem_cache_t *cachep, int flags)
{
 unsigned long save_flags;
 void *objp;
 struct array_cache *ac;

 local_irq_save(save_flags);
 ac = cache_p->array[smp_processor_id()];
 if (ac->avail) {
 ac->touched = 1;
 objp = ((void **)(ac+1))[--ac->avail];
 } else
 objp = cache_alloc_refill(cachep, flags);
 local_irq_restore(save_flags);
 return objp;
}

The function tries first to retrieve a free object from the local cache. If there are free
objects, the avail field contains the index in the local cache of the entry that points
to the last freed object. Because the local cache array is stored right after the ac
descriptor, ((void**)(ac+1))[--ac->avail] gets the address of that free object and
decreases the value of ac->avail. The cache_alloc_refill() function is invoked to
repopulate the local cache and get a free object when there are no free objects in the
local cache.

The cache_alloc_refill() function essentially performs the following steps:

1. Stores in the ac local variable the address of the local cache descriptor:
ac = cachep->array[smp_processor_id()];

2. Gets the cachep->spinlock.

3. If the slab cache includes a shared local cache, and if the shared local cache
includes some free objects, it refills the CPU’s local cache by moving up to ac->
batchcount pointers from the shared local cache. Then, it jumps to step 6.

4. Tries to fill the local cache with up to ac->batchcount pointers to free objects
included in the slabs of the cache:

a. Looks in the slabs_partial and slabs_free lists of the cache descriptor, and
gets the address slabp of a slab descriptor whose corresponding slab is either
partially filled or empty. If no such descriptor exists, the function goes to
step 5.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 8: Memory Management

b. For each free object in the slab, the function increases the inuse field of the
slab descriptor, inserts the object’s address in the local cache, and updates
the free field so that it stores the index of the next free object in the slab:

slabp->inuse++;
((void**)(ac+1))[ac->avail++] =
 slabp->s_mem + slabp->free * cachep->obj_size;
slabp->free = ((kmem_bufctl_t*)(slabp+1))[slabp->free];

c. Inserts, if necessary, the depleted slab in the proper list, either the slab_full
or the slab_partial list.

5. At this point, the number of pointers added to the local cache is stored in the ac-
>avail field: the function decreases the free_objects field of the kmem_list3
structure of the same amount to specify that the objects are no longer free.

6. Releases the cachep->spinlock.

7. If the ac->avail field is now greater than 0 (some cache refilling took place), it
sets the ac->touched field to 1 and returns the free object pointer that was last
inserted in the local cache:

return ((void**)(ac+1))[--ac->avail];

8. Otherwise, no cache refilling took place: invokes cache_grow() to get a new slab,
and thus new free objects.

9. If cache_grow() fails, it returns NULL; otherwise it goes back to step 1 to repeat the
procedure.

Freeing a Slab Object
The kmem_cache_free() function releases an object previously allocated by the slab
allocator to some kernel function. Its parameters are cachep, the address of the cache
descriptor, and objp, the address of the object to be released:

void kmem_cache_free(kmem_cache_t *cachep, void *objp)
{
 unsigned long flags;
 struct array_cache *ac;

 local_irq_save(flags);
 ac = cachep->array[smp_processor_id()];
 if (ac->avail == ac->limit)
 cache_flusharray(cachep, ac);
 ((void**)(ac+1))[ac->avail++] = objp;
 local_irq_restore(flags);
}

The function checks first whether the local cache has room for an additional pointer
to a free object. If so, the pointer is added to the local cache and the function returns.
Otherwise it first invokes cache_flusharray() to deplete the local cache and then
adds the pointer to the local cache.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Area Management | 339

The cache_flusharray() function performs the following operations:

1. Acquires the cachep->spinlock spin lock.

2. If the slab cache includes a shared local cache, and if the shared local cache is
not already full, it refills the shared local cache by moving up to ac->batchcount
pointers from the CPU’s local cache. Then, it jumps to step 4.

3. Invokes the free_block() function to give back to the slab allocator up to ac->
batchcount objects currently included in the local cache. For each object at
address objp, the function executes the following steps:

a. Increases the lists.free_objects field of the cache descriptor.

b. Determines the address of the slab descriptor containing the object:
slabp = (struct slab *)(virt_to_page(objp)->lru.prev);

(Remember that the lru.prev field of the descriptor of the slab page points
to the corresponding slab descriptor.)

c. Removes the slab descriptor from its slab cache list (either cachep->lists.
slabs_partial or cachep->lists.slabs_full).

d. Computes the index of the object inside the slab:
objnr = (objp - slabp->s_mem) / cachep->objsize;

e. Stores in the object descriptor the current value of the slabp->free, and puts
in slabp->free the index of the object (the last released object will be the
first object to be allocated again):

((kmem_bufctl_t *)(slabp+1))[objnr] = slabp->free;
slabp->free = objnr;

f. Decreases the slabp->inuse field.

g. If slabp->inuse is equal to zero—all objects in the slab are free—and the
number of free objects in the whole slab cache (cachep->lists.free_objects)
is greater than the limit stored in the cachep->free_limit field, then the
function releases the slab’s page frame(s) to the zoned page frame allocator:

cachep->lists.free_objects -= cachep->num;
slab_destroy(cachep, slabp);

The value stored in the cachep->free_limit field is usually equal to cachep->
num+ (1+N) × cachep->batchcount, where N denotes the number of CPUs of
the system.

h. Otherwise, if slab->inuse is equal to zero but the number of free objects in
the whole slab cache is less than cachep->free_limit, it inserts the slab
descriptor in the cachep->lists.slabs_free list.

i. Finally, if slab->inuse is greater than zero, the slab is partially filled, so the
function inserts the slab descriptor in the cachep->lists.slabs_partial list.

4. Releases the cachep->spinlock spin lock.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 8: Memory Management

5. Updates the avail field of the local cache descriptor by subtracting the number
of objects moved to the shared local cache or released to the slab allocator.

6. Moves all valid pointers in the local cache at the beginning of the local cache’s
array. This step is necessary because the first object pointers have been removed
from the local cache, thus the remaining ones must be moved up.

General Purpose Objects
As stated earlier in the section “The Buddy System Algorithm,” infrequent requests
for memory areas are handled through a group of general caches whose objects have
geometrically distributed sizes ranging from a minimum of 32 to a maximum of
131,072 bytes.

Objects of this type are obtained by invoking the kmalloc() function, which is essen-
tially equivalent to the following code fragment:

void * kmalloc(size_t size, int flags)
{
 struct cache_sizes *csizep = malloc_sizes;
 kmem_cache_t * cachep;
 for (; csizep->cs_size; csizep++) {
 if (size > csizep->cs_size)
 continue;
 if (flags & __GFP_DMA)
 cachep = csizep->cs_dmacachep;
 else
 cachep = csizep->cs_cachep;
 return kmem_cache_alloc(cachep, flags);
 }
 return NULL;
}

The function uses the malloc_sizes table to locate the nearest power-of-2 size to the
requested size. It then calls kmem_cache_alloc() to allocate the object, passing to it
either the cache descriptor for the page frames usable for ISA DMA or the cache
descriptor for the “normal” page frames, depending on whether the caller specified
the __GFP_DMA flag.

Objects obtained by invoking kmalloc() can be released by calling kfree():

void kfree(const void *objp)
{
 kmem_cache_t * c;
 unsigned long flags;
 if (!objp)
 return;
 local_irq_save(flags);
 c = (kmem_cache_t *)(virt_to_page(objp)->lru.next);

kmem_cache_free(c, (void *)objp);
 local_irq_restore(flags);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Area Management | 341

The proper cache descriptor is identified by reading the lru.next subfield of the
descriptor of the first page frame containing the memory area. The memory area is
released by invoking kmem_cache_free().

Memory Pools
Memory pools are a new feature of Linux 2.6. Basically, a memory pool allows a ker-
nel component—such as the block device subsystem—to allocate some dynamic
memory to be used only in low-on-memory emergencies.

Memory pools should not be confused with the reserved page frames described in
the earlier section “The Pool of Reserved Page Frames.” In fact, those page frames
can be used only to satisfy atomic memory allocation requests issued by interrupt
handlers or inside critical regions. Instead, a memory pool is a reserve of dynamic
memory that can be used only by a specific kernel component, namely the “owner”
of the pool. The owner does not normally use the reserve; however, if dynamic mem-
ory becomes so scarce that all usual memory allocation requests are doomed to fail,
the kernel component can invoke, as a last resort, special memory pool functions
that dip in the reserve and get the memory needed. Thus, creating a memory pool is
similar to keeping a reserve of canned foods on hand and using a can opener only
when no fresh food is available.

Often, a memory pool is stacked over the slab allocator—that is, it is used to keep a
reserve of slab objects. Generally speaking, however, a memory pool can be used to
allocate every kind of dynamic memory, from whole page frames to small memory
areas allocated with kmalloc(). Therefore, we will generically refer to the memory
units handled by a memory pool as “memory elements.”

A memory pool is described by a mempool_t object, whose fields are shown in
Table 8-12.

The min_nr field stores the initial number of elements in the memory pool. In other
words, the value stored in this field represents the number of memory elements that

Table 8-12. The fields of the mempool_t object

Type Name Description

spinlock_t lock Spin lock protecting the object fields

int min_nr Maximum number of elements in the memory pool

int curr_nr Current number of elements in the memory pool

void ** elements Pointer to an array of pointers to the reserved elements

void * pool_data Private data available to the pool’s owner

mempool_alloc_t * alloc Method to allocate an element

mempool_free_t * free Method to free an element

wait_queue_head_t wait Wait queue used when the memory pool is empty

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 8: Memory Management

the owner of the memory pool is sure to obtain from the memory allocator. The
curr_nr field, which is always lower than or equal to min_nr, stores the number of
memory elements currently included in the memory pool. The memory elements
themselves are referenced by an array of pointers, whose address is stored in the
elements field.

The alloc and free methods interface with the underlying memory allocator to get
and release a memory element, respectively. Both methods may be custom functions
provided by the kernel component that owns the memory pool.

When the memory elements are slab objects, the alloc and free methods are com-
monly implemented by the mempool_alloc_slab() and mempool_free_slab() func-
tions, which just invoke the kmem_cache_alloc() and kmem_cache_free() functions,
respectively. In this case, the pool_data field of the mempool_t object stores the
address of the slab cache descriptor.

The mempool_create() function creates a new memory pool; it receives the number of
memory elements min_nr, the addresses of the functions that implement the alloc
and free methods, and an optional value for the pool_data field. The function allo-
cates memory for the mempool_t object and the array of pointers to the memory ele-
ments, then repeatedly invokes the alloc method to get the min_nr memory
elements. Conversely, the mempool_destroy() function releases all memory elements
in the pool, then releases the array of elements and the mempool_t object themselves.

To allocate an element from a memory pool, the kernel invokes the mempool_alloc()
function, passing to it the address of the mempool_t object and the memory allocation
flags (see Table 8-5 and Table 8-6 earlier in this chapter). Essentially, the function
tries to allocate a memory element from the underlying memory allocator by invok-
ing the alloc method, according to the memory allocation flags specified as parame-
ters. If the allocation succeeds, the function returns the memory element obtained,
without touching the memory pool. Otherwise, if the allocation fails, the memory
element is taken from the memory pool. Of course, too many allocations in a low-
on-memory condition can exhaust the memory pool: in this case, if the _ _GFP_WAIT
flag is not set, mempool_alloc() blocks the current process until a memory element is
released to the memory pool.

Conversely, to release an element to a memory pool, the kernel invokes the mempool_
free() function. If the memory pool is not full (curr_min is smaller than min_nr), the
function adds the element to the memory pool. Otherwise, mempool_free() invokes
the free method to release the element to the underlying memory allocator.

Noncontiguous Memory Area Management
We already know that it is preferable to map memory areas into sets of contiguous
page frames, thus making better use of the cache and achieving lower average mem-
ory access times. Nevertheless, if the requests for memory areas are infrequent, it

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Noncontiguous Memory Area Management | 343

makes sense to consider an allocation scheme based on noncontiguous page frames
accessed through contiguous linear addresses. The main advantage of this schema is
to avoid external fragmentation, while the disadvantage is that it is necessary to fid-
dle with the kernel Page Tables. Clearly, the size of a noncontiguous memory area
must be a multiple of 4,096. Linux uses noncontiguous memory areas in several
ways—for instance, to allocate data structures for active swap areas (see the section
“Activating and Deactivating a Swap Area” in Chapter 17), to allocate space for a
module (see Appendix B), or to allocate buffers to some I/O drivers. Furthermore,
noncontiguous memory areas provide yet another way to make use of high memory
page frames (see the later section “Allocating a Noncontiguous Memory Area”).

Linear Addresses of Noncontiguous Memory Areas
To find a free range of linear addresses, we can look in the area starting from PAGE_
OFFSET (usually 0xc0000000, the beginning of the fourth gigabyte). Figure 8-7 shows
how the fourth gigabyte linear addresses are used:

• The beginning of the area includes the linear addresses that map the first
896 MB of RAM (see the section “Process Page Tables” in Chapter 2); the linear
address that corresponds to the end of the directly mapped physical memory is
stored in the high_memory variable.

• The end of the area contains the fix-mapped linear addresses (see the section
“Fix-Mapped Linear Addresses” in Chapter 2).

• Starting from PKMAP_BASE we find the linear addresses used for the persistent ker-
nel mapping of high-memory page frames (see the section “Kernel Mappings of
High-Memory Page Frames” earlier in this chapter).

• The remaining linear addresses can be used for noncontiguous memory areas. A
safety interval of size 8 MB (macro VMALLOC_OFFSET) is inserted between the end
of the physical memory mapping and the first memory area; its purpose is to
“capture” out-of-bounds memory accesses. For the same reason, additional
safety intervals of size 4 KB are inserted to separate noncontiguous memory
areas.

Figure 8-7. The linear address interval starting from PAGE_OFFSET

Physical
memory
mapping

PAGE_OFFSET

high_memory

8 MB vmalloc
area

VMALLOC_START

4 KB vmalloc
area

Persistent
kernel

mappings

PKMAP_BASE

Fix-mapped
linear

addresses

4 GB

8KB

VMALLOC_END

FIXADDR_START

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 8: Memory Management

The VMALLOC_START macro defines the starting address of the linear space reserved for
noncontiguous memory areas, while VMALLOC_END defines its ending address.

Descriptors of Noncontiguous Memory Areas
Each noncontiguous memory area is associated with a descriptor of type vm_struct,
whose fields are listed in Table 8-13.

These descriptors are inserted in a simple list by means of the next field; the address
of the first element of the list is stored in the vmlist variable. Accesses to this list are
protected by means of the vmlist_lock read/write spin lock. The flags field identi-
fies the type of memory mapped by the area: VM_ALLOC for pages obtained by means
of vmalloc(), VM_MAP for already allocated pages mapped by means of vmap() (see the
next section), and VM_IOREMAP for on-board memory of hardware devices mapped by
means of ioremap() (see Chapter 13).

The get_vm_area() function looks for a free range of linear addresses between
VMALLOC_START and VMALLOC_END. This function acts on two parameters: the size (size)
in bytes of the memory region to be created, and a flag (flag) specifying the type of
region (see above). The steps performed are the following:

1. Invokes kmalloc() to obtain a memory area for the new descriptor of type vm_
struct.

2. Gets the vmlist_lock lock for writing and scans the list of descriptors of type vm_
struct looking for a free range of linear addresses that includes at least size+
4096 addresses (4096 is the size of the safety interval between the memory areas).

3. If such an interval exists, the function initializes the fields of the descriptor,
releases the vmlist_lock lock, and terminates by returning the initial address of
the noncontiguous memory area.

4. Otherwise, get_vm_area() releases the descriptor obtained previously, releases
the vmlist_lock lock, and returns NULL.

Table 8-13. The fields of the vm_struct descriptor

Type Name Description

void * addr Linear address of the first memory cell of the area

unsigned long size Size of the area plus 4,096 (inter-area safety interval)

unsigned long flags Type of memory mapped by the noncontiguous memory area

struct page ** pages Pointer to array of nr_pages pointers to page descriptors

unsigned int nr_pages Number of pages filled by the area

unsigned long phys_addr Set to 0 unless the area has been created to map the I/O shared
memory of a hardware device

struct vm_struct * next Pointer to next vm_struct structure

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Noncontiguous Memory Area Management | 345

Allocating a Noncontiguous Memory Area
The vmalloc() function allocates a noncontiguous memory area to the kernel. The
parameter size denotes the size of the requested area. If the function is able to sat-
isfy the request, it then returns the initial linear address of the new area; otherwise, it
returns a NULL pointer:

void * vmalloc(unsigned long size)
{
 struct vm_struct *area;
 struct page **pages;
 unsigned int array_size, i;
 size = (size + PAGE_SIZE - 1) & PAGE_MASK;
 area = get_vm_area(size, VM_ALLOC);
 if (!area)
 return NULL;
 area->nr_pages = size >> PAGE_SHIFT;
 array_size = (area->nr_pages * sizeof(struct page *));
 area->pages = pages = kmalloc(array_size, GFP_KERNEL);
 if (!area_pages) {
 remove_vm_area(area->addr);
 kfree(area);
 return NULL;
 }
 memset(area->pages, 0, array_size);
 for (i=0; i<area->nr_pages; i++) {
 area->pages[i] = alloc_page(GFP_KERNEL|_ _GFP_HIGHMEM);
 if (!area->pages[i]) {
 area->nr_pages = i;
 fail: vfree(area->addr);
 return NULL;
 }
 }
 if (map_vm_area(area, _ _pgprot(0x63), &pages))
 goto fail;
 return area->addr;
}

The function starts by rounding up the value of the size parameter to a multiple of
4,096 (the page frame size). Then vmalloc() invokes get_vm_area(), which creates a
new descriptor and returns the linear addresses assigned to the memory area. The
flags field of the descriptor is initialized with the VM_ALLOC flag, which means that the
noncontiguous page frames will be mapped into a linear address range by means of
the vmalloc() function. Then the vmalloc() function invokes kmalloc() to request a
group of contiguous page frames large enough to contain an array of page descriptor
pointers. The memset() function is invoked to set all these pointers to NULL. Next the
alloc_page() function is called repeatedly, once for each of the nr_pages of the
region, to allocate a page frame and store the address of the corresponding page
descriptor in the area->pages array. Observe that using the area->pages array is nec-
essary because the page frames could belong to the ZONE_HIGHMEM memory zone, thus
right now they are not necessarily mapped to a linear address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 8: Memory Management

Now comes the tricky part. Up to this point, a fresh interval of contiguous linear
addresses has been obtained and a group of noncontiguous page frames has been
allocated to map these linear addresses. The last crucial step consists of fiddling with
the page table entries used by the kernel to indicate that each page frame allocated to
the noncontiguous memory area is now associated with a linear address included in
the interval of contiguous linear addresses yielded by vmalloc(). This is what map_vm_
area() does.

The map_vm_area() function uses three parameters:

area
The pointer to the vm_struct descriptor of the area.

prot
The protection bits of the allocated page frames. It is always set to 0x63, which
corresponds to Present, Accessed, Read/Write, and Dirty.

pages
The address of a variable pointing to an array of pointers to page descriptors
(thus, struct page *** is used as the data type!).

The function starts by assigning the linear addresses of the start and end of the area
to the address and end local variables, respectively:

address = area->addr;
end = address + (area->size - PAGE_SIZE);

Remember that area->size stores the actual size of the area plus the 4 KB inter-area
safety interval. The function then uses the pgd_offset_k macro to derive the entry in
the master kernel Page Global Directory related to the initial linear address of the
area; it then acquires the kernel Page Table spin lock:

pgd = pgd_offset_k(address);
spin_lock(&init_mm.page_table_lock);

The function then executes the following cycle:

int ret = 0;
for (i = pgd_index(address); i < pgd_index(end-1); i++) {
 pud_t *pud = pud_alloc(&init_mm, pgd, address);
 ret = -ENOMEM;
 if (!pud)
 break;
 next = (address + PGDIR_SIZE) & PGDIR_MASK;
 if (next < address || next > end)
 next = end;
 if (map_area_pud(pud, address, next, prot, pages))
 break;
 address = next;
 pgd++;
 ret = 0;
}
spin_unlock(&init_mm.page_table_lock);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Noncontiguous Memory Area Management | 347

flush_cache_vmap((unsigned long)area->addr, end);
return ret;

In each cycle, it first invokes pud_alloc() to create a Page Upper Directory for the
new area and writes its physical address in the right entry of the kernel Page Global
Directory. It then calls map_area_pud() to allocate all the page tables associated with
the new Page Upper Directory. It adds the size of the range of linear addresses
spanned by a single Page Upper Directory—the constant 230 if PAE is enabled, 222

otherwise—to the current value of address, and it increases the pointer pgd to the
Page Global Directory.

The cycle is repeated until all Page Table entries referring to the noncontiguous
memory area are set up.

The map_area_pud() function executes a similar cycle for all the page tables that a
Page Upper Directory points to:

do {
 pmd_t * pmd = pmd_alloc(&init_mm, pud, address);
 if (!pmd)
 return -ENOMEM;
 if (map_area_pmd(pmd, address, end-address, prot, pages))
 return -ENOMEM;
 address = (address + PUD_SIZE) & PUD_MASK;
 pud++;
} while (address < end);

The map_area_pmd() function executes a similar cycle for all the Page Tables that a
Page Middle Directory points to:

do {
 pte_t * pte = pte_alloc_kernel(&init_mm, pmd, address);
 if (!pte)
 return -ENOMEM;
 if (map_area_pte(pte, address, end-address, prot, pages))
 return -ENOMEM;
 address = (address + PMD_SIZE) & PMD_MASK;
 pmd++;
} while (address < end);

The pte_alloc_kernel() function (see the section “Page Table Handling” in
Chapter 2) allocates a new Page Table and updates the corresponding entry in the
Page Middle Directory. Next, map_area_pte() allocates all the page frames corre-
sponding to the entries in the Page Table. The value of address is increased by 222 —
the size of the linear address interval spanned by a single Page Table—and the cycle
is repeated.

The main cycle of map_area_pte() is:

do {
 struct page * page = **pages;
 set_pte(pte, mk_pte(page, prot));
 address += PAGE_SIZE;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 8: Memory Management

 pte++;
 (*pages)++;
} while (address < end);

The page descriptor address page of the page frame to be mapped is read from the
array’s entry pointed to by the variable at address pages. The physical address of the
new page frame is written into the Page Table by the set_pte and mk_pte macros. The
cycle is repeated after adding the constant 4,096 (the length of a page frame) to
address.

Notice that the Page Tables of the current process are not touched by map_vm_area().
Therefore, when a process in Kernel Mode accesses the noncontiguous memory area,
a Page Fault occurs, because the entries in the process’s Page Tables corresponding
to the area are null. However, the Page Fault handler checks the faulty linear address
against the master kernel Page Tables (which are init_mm.pgd Page Global Directory
and its child page tables; see the section “Kernel Page Tables” in Chapter 2). Once
the handler discovers that a master kernel Page Table includes a non-null entry for
the address, it copies its value into the corresponding process’s Page Table entry and
resumes normal execution of the process. This mechanism is described in the sec-
tion “Page Fault Exception Handler” in Chapter 9.

Beside the vmalloc() function, a noncontiguous memory area can be allocated by the
vmalloc_32() function, which is very similar to vmalloc() but only allocates page
frames from the ZONE_NORMAL and ZONE_DMA memory zones.

Linux 2.6 also features a vmap() function, which maps page frames already allocated
in a noncontiguous memory area: essentially, this function receives as its parameter
an array of pointers to page descriptors, invokes get_vm_area() to get a new vm_
struct descriptor, and then invokes map_vm_area() to map the page frames. The
function is thus similar to vmalloc(), but it does not allocate page frames.

Releasing a Noncontiguous Memory Area
The vfree() function releases noncontiguous memory areas created by vmalloc() or
vmalloc_32(), while the vunmap() function releases memory areas created by vmap().
Both functions have one parameter—the address of the initial linear address of the
area to be released; they both rely on the _ _vunmap() function to do the real work.

The _ _vunmap() function receives two parameters: the address addr of the initial lin-
ear address of the area to be released, and the flag deallocate_pages, which is set if
the page frames mapped in the area should be released to the zoned page frame allo-
cator (vfree()’s invocation), and cleared otherwise (vunmap()’s invocation). The
function performs the following operations:

1. Invokes the remove_vm_area() function to get the address area of the vm_struct
descriptor and to clear the kernel’s page table entries corresponding to the linear
address in the noncontiguous memory area.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Noncontiguous Memory Area Management | 349

2. If the deallocate_pages flag is set, it scans the area->pages array of pointers to
the page descriptor; for each element of the array, invokes the _ _free_page()
function to release the page frame to the zoned page frame allocator. Moreover,
executes kfree(area->pages) to release the array itself.

3. Invokes kfree(area) to release the vm_struct descriptor.

The remove_vm_area() function performs the following cycle:

write_lock(&vmlist_lock);
for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
 if (tmp->addr == addr) {
 unmap_vm_area(tmp);
 *p = tmp->next;
 break;
 }
}
write_unlock(&vmlist_lock);
return tmp;

The area itself is released by invoking unmap_vm_area(). This function acts on a sin-
gle parameter, namely a pointer area to the vm_struct descriptor of the area. It exe-
cutes the following cycle to reverse the actions performed by map_vm_area():

address = area->addr;
end = address + area->size;
pgd = pgd_offset_k(address);
for (i = pgd_index(address); i <= pgd_index(end-1); i++) {
 next = (address + PGDIR_SIZE) & PGDIR_MASK;
 if (next <= address || next > end)
 next = end;
 unmap_area_pud(pgd, address, next - address);
 address = next;
 pgd++;
}

In turn, unmap_area_pud() reverses the actions of map_area_pud() in the cycle:

do {
 unmap_area_pmd(pud, address, end-address);
 address = (address + PUD_SIZE) & PUD_MASK;
 pud++;
} while (address && (address < end));

The unmap_area_pmd() function reverses the actions of map_area_pmd() in the cycle:

do {
 unmap_area_pte(pmd, address, end-address);
 address = (address + PMD_SIZE) & PMD_MASK;
 pmd++;
} while (address < end);

Finally, unmap_area_pte() reverses the actions of map_area_pte() in the cycle:

do {
 pte_t page = ptep_get_and_clear(pte);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 8: Memory Management

 address += PAGE_SIZE;
 pte++;
 if (!pte_none(page) && !pte_present(page))
 printk("Whee... Swapped out page in kernel page table\n");
} while (address < end);

In every iteration of the cycle, the page table entry pointed to by pte is set to 0 by the
ptep_get_and_clear macro.

As for vmalloc(), the kernel modifies the entries of the master kernel Page Global
Directory and its child page tables (see the section “Kernel Page Tables” in
Chapter 2), but it leaves unchanged the entries of the process page tables mapping
the fourth gigabyte. This is fine because the kernel never reclaims Page Upper Direc-
tories, Page Middle Directories, and Page Tables rooted at the master kernel Page
Global Directory.

For instance, suppose that a process in Kernel Mode accessed a noncontiguous mem-
ory area that later got released. The process’s Page Global Directory entries are equal
to the corresponding entries of the master kernel Page Global Directory, thanks to
the mechanism explained in the section “Page Fault Exception Handler” in
Chapter 9; they point to the same Page Upper Directories, Page Middle Directories,
and Page Tables. The unmap_area_pte() function clears only the entries of the page
tables (without reclaiming the page tables themselves). Further accesses of the pro-
cess to the released noncontiguous memory area will trigger Page Faults because of
the null page table entries. However, the handler will consider such accesses a bug,
because the master kernel page tables do not include valid entries.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

351

Chapter 9 CHAPTER 9

Process Address Space

As seen in the previous chapter, a kernel function gets dynamic memory in a fairly
straightforward manner by invoking one of a variety of functions: __get_free_pages()
or alloc_pages() to get pages from the zoned page frame allocator, kmem_cache_
alloc() or kmalloc() to use the slab allocator for specialized or general-purpose
objects, and vmalloc() or vmalloc_32() to get a noncontiguous memory area. If the
request can be satisfied, each of these functions returns a page descriptor address or a
linear address identifying the beginning of the allocated dynamic memory area.

These simple approaches work for two reasons:

• The kernel is the highest-priority component of the operating system. If a kernel
function makes a request for dynamic memory, it must have a valid reason to
issue that request, and there is no point in trying to defer it.

• The kernel trusts itself. All kernel functions are assumed to be error-free, so the
kernel does not need to insert any protection against programming errors.

When allocating memory to User Mode processes, the situation is entirely different:

• Process requests for dynamic memory are considered non-urgent. When a pro-
cess’s executable file is loaded, for instance, it is unlikely that the process will
address all the pages of code in the near future. Similarly, when a process
invokes malloc() to get additional dynamic memory, it doesn’t mean the pro-
cess will soon access all the additional memory obtained. Thus, as a general rule,
the kernel tries to defer allocating dynamic memory to User Mode processes.

• Because user programs cannot be trusted, the kernel must be prepared to catch
all addressing errors caused by processes in User Mode.

As this chapter describes, the kernel succeeds in deferring the allocation of dynamic
memory to processes by using a new kind of resource. When a User Mode process
asks for dynamic memory, it doesn’t get additional page frames; instead, it gets the
right to use a new range of linear addresses, which become part of its address space.
This interval is called a “memory region.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 9: Process Address Space

In the next section, we discuss how the process views dynamic memory. We then
describe the basic components of the process address space in the section “Memory
Regions.” Next, we examine in detail the role played by the Page Fault exception
handler in deferring the allocation of page frames to processes and illustrate how the
kernel creates and deletes whole process address spaces. Last, we discuss the APIs
and system calls related to address space management.

The Process’s Address Space
The address space of a process consists of all linear addresses that the process is
allowed to use. Each process sees a different set of linear addresses; the address used
by one process bears no relation to the address used by another. As we will see later,
the kernel may dynamically modify a process address space by adding or removing
intervals of linear addresses.

The kernel represents intervals of linear addresses by means of resources called mem-
ory regions, which are characterized by an initial linear address, a length, and some
access rights. For reasons of efficiency, both the initial address and the length of a
memory region must be multiples of 4,096, so that the data identified by each mem-
ory region completely fills up the page frames allocated to it. Following are some typ-
ical situations in which a process gets new memory regions:

• When the user types a command at the console, the shell process creates a new
process to execute the command. As a result, a fresh address space, and thus a
set of memory regions, is assigned to the new process (see the section “Creating
and Deleting a Process Address Space” later in this chapter; also, see
Chapter 20).

• A running process may decide to load an entirely different program. In this case,
the process ID remains unchanged, but the memory regions used before loading
the program are released and a new set of memory regions is assigned to the pro-
cess (see the section “The exec Functions” in Chapter 20).

• A running process may perform a “memory mapping” on a file (or on a portion
of it). In such cases, the kernel assigns a new memory region to the process to
map the file (see the section “Memory Mapping” in Chapter 16).

• A process may keep adding data on its User Mode stack until all addresses in the
memory region that map the stack have been used. In this case, the kernel may
decide to expand the size of that memory region (see the section “Page Fault
Exception Handler” later in this chapter).

• A process may create an IPC-shared memory region to share data with other
cooperating processes. In this case, the kernel assigns a new memory region to
the process to implement this construct (see the section “IPC Shared Memory”
in Chapter 19).

• A process may expand its dynamic area (the heap) through a function such as
malloc(). As a result, the kernel may decide to expand the size of the memory

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Memory Descriptor | 353

region assigned to the heap (see the section “Managing the Heap” later in this
chapter).

Table 9-1 illustrates some of the system calls related to the previously mentioned
tasks. brk() is discussed at the end of this chapter, while the remaining system calls
are described in other chapters.

As we’ll see in the later section “Page Fault Exception Handler,” it is essential for the
kernel to identify the memory regions currently owned by a process (the address
space of a process), because that allows the Page Fault exception handler to effi-
ciently distinguish between two types of invalid linear addresses that cause it to be
invoked:

• Those caused by programming errors.

• Those caused by a missing page; even though the linear address belongs to the
process’s address space, the page frame corresponding to that address has yet to
be allocated.

The latter addresses are not invalid from the process’s point of view; the induced
Page Faults are exploited by the kernel to implement demand paging: the kernel pro-
vides the missing page frame and lets the process continue.

The Memory Descriptor
All information related to the process address space is included in an object called
the memory descriptor of type mm_struct. This object is referenced by the mm field of
the process descriptor. The fields of a memory descriptor are listed in Table 9-2.

Table 9-1. System calls related to memory region creation and deletion

System call Description

brk() Changes the heap size of the process

execve() Loads a new executable file, thus changing the process address space

_exit() Terminates the current process and destroys its address space

fork() Creates a new process, and thus a new address space

mmap(), mmap2() Creates a memory mapping for a file, thus enlarging the process address space

mremap() Expands or shrinks a memory region

remap_file_pages() Creates a non-linear mapping for a file (see Chapter 16)

munmap() Destroys a memory mapping for a file, thus contracting the process address space

shmat() Attaches a shared memory region

shmdt() Detaches a shared memory region

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 9: Process Address Space

Table 9-2. The fields of the memory descriptor

Type Field Description

struct
vm_area_struct *

mmap Pointer to the head of the list of memory region
objects

struct rb_root mm_rb Pointer to the root of the red-black tree of memory
region objects

struct
vm_area_struct *

mmap_cache Pointer to the last referenced memory region object

unsigned long (*)() get_unmapped_area Method that searches an available linear address
interval in the process address space

void (*)() unmap_area Method invoked when releasing a linear address
interval

unsigned long mmap_base Identifies the linear address of the first allocated
anonymous memory region or file memory mapping
(see the section “Program Segments and Process
Memory Regions” in Chapter 20)

unsigned long free_area_cache Address from which the kernel will look for a free
interval of linear addresses in the process address
space

pgd_t * pgd Pointer to the Page Global Directory

atomic_t mm_users Secondary usage counter

atomic_t mm_count Main usage counter

int map_count Number of memory regions

struct
rw_semaphore

mmap_sem Memory regions’ read/write semaphore

spinlock_t page_table_lock Memory regions’ and Page Tables’ spin lock

struct list_head mmlist Pointers to adjacent elements in the list of memory
descriptors

unsigned long start_code Initial address of executable code

unsigned long end_code Final address of executable code

unsigned long start_data Initial address of initialized data

unsigned long end_data Final address of initialized data

unsigned long start_brk Initial address of the heap

unsigned long brk Current final address of the heap

unsigned long start_stack Initial address of User Mode stack

unsigned long arg_start Initial address of command-line arguments

unsigned long arg_end Final address of command-line arguments

unsigned long env_start Initial address of environment variables

unsigned long env_end Final address of environment variables

unsigned long rss Number of page frames allocated to the process

unsigned long anon_rss Number of page frames assigned to anonymous
memory mappings

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Memory Descriptor | 355

All memory descriptors are stored in a doubly linked list. Each descriptor stores the
address of the adjacent list items in the mmlist field. The first element of the list is the
mmlist field of init_mm, the memory descriptor used by process 0 in the initialization

unsigned long total_vm Size of the process address space (number of pages)

unsigned long locked_vm Number of “locked” pages that cannot be swapped
out (see Chapter 17)

unsigned long shared_vm Number of pages in shared file memory mappings

unsigned long exec_vm Number of pages in executable memory mappings

unsigned long stack_vm Number of pages in the User Mode stack

unsigned long reserved_vm Number of pages in reserved or special memory
regions

unsigned long def_flags Default access flags of the memory regions

unsigned long nr_ptes Number of Page Tables of this process

unsigned long [] saved_auxv Used when starting the execution of an ELF program
(see Chapter 20)

unsigned int dumpable Flag that specifies whether the process can produce
a core dump of the memory

cpumask_t cpu_vm_mask Bit mask for lazy TLB switches (see Chapter 2)

mm_context_t context Pointer to table for architecture-specific information
(e.g., LDT’s address in 80x86 platforms)

unsigned long swap_token_time When this process will become eligible for having
the swap token (see the section “The Swap Token”
in Chapter 17)

char recent_pagein Flag set if a major Page Fault has recently occurred

int core_waiters Number of lightweight processes that are dumping
the contents of the process address space to a core
file (see the section “Deleting a Process Address
Space” later in this chapter)

struct completion * core_startup_done Pointer to a completion used when creating a core
file (see the section “Completions” in Chapter 5)

struct completion core_done Completion used when creating a core file

rwlock_t ioctx_list_lock Lock used to protect the list of asynchronous I/O
contexts (see Chapter 16)

struct kioctx * ioctx_list List of asynchronous I/O contexts (see Chapter 16)

struct kioctx default_kioctx Default asynchronous I/O context (see Chapter 16)

unsigned long hiwater_rss Maximum number of page frames ever owned by
the process

unsigned long hiwater_vm Maximum number of pages ever included in the
memory regions of the process

Table 9-2. The fields of the memory descriptor (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 9: Process Address Space

phase. The list is protected against concurrent accesses in multiprocessor systems by
the mmlist_lock spin lock.

The mm_users field stores the number of lightweight processes that share the mm_
struct data structure (see the section “The clone(), fork(), and vfork() System Calls”
in Chapter 3). The mm_count field is the main usage counter of the memory descrip-
tor; all “users” in mm_users count as one unit in mm_count. Every time the mm_count
field is decreased, the kernel checks whether it becomes zero; if so, the memory
descriptor is deallocated because it is no longer in use.

We’ll try to explain the difference between the use of mm_users and mm_count with an
example. Consider a memory descriptor shared by two lightweight processes. Nor-
mally, its mm_users field stores the value 2, while its mm_count field stores the value 1
(both owner processes count as one).

If the memory descriptor is temporarily lent to a kernel thread (see the next section),
the kernel increases the mm_count field. In this way, even if both lightweight pro-
cesses die and the mm_users field becomes zero, the memory descriptor is not released
until the kernel thread finishes using it because the mm_count field remains greater
than zero.

If the kernel wants to be sure that the memory descriptor is not released in the mid-
dle of a lengthy operation, it might increase the mm_users field instead of mm_count
(this is what the try_to_unuse() function does; see the section “Activating and Deac-
tivating a Swap Area” in Chapter 17). The final result is the same because the incre-
ment of mm_users ensures that mm_count does not become zero even if all lightweight
processes that own the memory descriptor die.

The mm_alloc() function is invoked to get a new memory descriptor. Because these
descriptors are stored in a slab allocator cache, mm_alloc() calls kmem_cache_alloc(),
initializes the new memory descriptor, and sets the mm_count and mm_users field to 1.

Conversely, the mmput() function decreases the mm_users field of a memory descrip-
tor. If that field becomes 0, the function releases the Local Descriptor Table, the
memory region descriptors (see later in this chapter), and the Page Tables referenced
by the memory descriptor, and then invokes mmdrop(). The latter function decreases
mm_count and, if it becomes zero, releases the mm_struct data structure.

The mmap, mm_rb, mmlist, and mmap_cache fields are discussed in the next section.

Memory Descriptor of Kernel Threads
Kernel threads run only in Kernel Mode, so they never access linear addresses below
TASK_SIZE (same as PAGE_OFFSET, usually 0xc0000000). Contrary to regular processes,
kernel threads do not use memory regions, therefore most of the fields of a memory
descriptor are meaningless for them.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Regions | 357

Because the Page Table entries that refer to the linear address above TASK_SIZE should
always be identical, it does not really matter what set of Page Tables a kernel thread
uses. To avoid useless TLB and cache flushes, a kernel thread uses the set of Page
Tables of the last previously running regular process. To that end, two kinds of mem-
ory descriptor pointers are included in every process descriptor: mm and active_mm.

The mm field in the process descriptor points to the memory descriptor owned by the
process, while the active_mm field points to the memory descriptor used by the pro-
cess when it is in execution. For regular processes, the two fields store the same
pointer. Kernel threads, however, do not own any memory descriptor, thus their mm
field is always NULL. When a kernel thread is selected for execution, its active_mm
field is initialized to the value of the active_mm of the previously running process (see
the section “The schedule() Function” in Chapter 7).

There is, however, a small complication. Whenever a process in Kernel Mode modi-
fies a Page Table entry for a “high” linear address (above TASK_SIZE), it should also
update the corresponding entry in the sets of Page Tables of all processes in the sys-
tem. In fact, once set by a process in Kernel Mode, the mapping should be effective
for all other processes in Kernel Mode as well. Touching the sets of Page Tables of all
processes is a costly operation; therefore, Linux adopts a deferred approach.

We already mentioned this deferred approach in the section “Noncontiguous Mem-
ory Area Management” in Chapter 8: every time a high linear address has to be
remapped (typically by vmalloc() or vfree()), the kernel updates a canonical set of
Page Tables rooted at the swapper_pg_dir master kernel Page Global Directory (see
the section “Kernel Page Tables” in Chapter 2). This Page Global Directory is
pointed to by the pgd field of a master memory descriptor, which is stored in the init_
mm variable.*

Later, in the section “Handling Noncontiguous Memory Area Accesses,” we’ll
describe how the Page Fault handler takes care of spreading the information stored
in the canonical Page Tables when effectively needed.

Memory Regions
Linux implements a memory region by means of an object of type vm_area_struct; its
fields are shown in Table 9-3.†

* We mentioned in the section “Kernel Threads” in Chapter 3 that the swapper process uses init_mm during
the initialization phase. However, swapper never uses this memory descriptor once the initialization phase
completes.

† We omitted describing a few additional fields used in NUMA systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 9: Process Address Space

Each memory region descriptor identifies a linear address interval. The vm_start field
contains the first linear address of the interval, while the vm_end field contains the
first linear address outside of the interval; vm_end–vm_start thus denotes the length of
the memory region. The vm_mm field points to the mm_struct memory descriptor of the
process that owns the region. We will describe the other fields of vm_area_struct as
they come up.

Memory regions owned by a process never overlap, and the kernel tries to merge
regions when a new one is allocated right next to an existing one. Two adjacent
regions can be merged if their access rights match.

As shown in Figure 9-1, when a new range of linear addresses is added to the pro-
cess address space, the kernel checks whether an already existing memory region can
be enlarged (case a). If not, a new memory region is created (case b). Similarly, if a
range of linear addresses is removed from the process address space, the kernel

Table 9-3. The fields of the memory region object

Type Field Description

struct mm_struct * vm_mm Pointer to the memory descriptor that owns the region.

unsigned long vm_start First linear address inside the region.

unsigned long vm_end First linear address after the region.

struct
vm_area_struct *

vm_next Next region in the process list.

pgprot_t vm_page_prot Access permissions for the page frames of the region.

unsigned long vm_flags Flags of the region.

struct rb_node vm_rb Data for the red-black tree (see later in this chapter).

union shared Links to the data structures used for reverse mapping (see
the section “Reverse Mapping for Mapped Pages” in
Chapter 17).

struct list_head anon_vma_node Pointers for the list of anonymous memory regions (see the
section “Reverse Mapping for Anonymous Pages” in
Chapter 17).

struct anon_vma * anon_vma Pointer to the anon_vma data structure (see the section
“Reverse Mapping for Anonymous Pages” in Chapter 17).

struct
vm_operations_struct*

vm_ops Pointer to the methods of the memory region.

unsigned long vm_pgoff Offset in mapped file (see Chapter 16). For anonymous pages,
it is either zero or equal to vm_start/PAGE_SIZE (see
Chapter 17).

struct file * vm_file Pointer to the file object of the mapped file, if any.

void * vm_private_data Pointer to private data of the memory region.

unsigned long vm_truncate_count Used when releasing a linear address interval in a non-linear
file memory mapping.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Regions | 359

resizes the affected memory regions (case c). In some cases, the resizing forces a
memory region to split into two smaller ones (case d).*

The vm_ops field points to a vm_operations_struct data structure, which stores the
methods of the memory region. Only four methods—illustrated in Table 9-4—are
applicable to UMA systems.

Figure 9-1. Adding or removing a linear address interval

* Removing a linear address interval may theoretically fail because no free memory is available for a new mem-
ory descriptor.

Table 9-4. The methods to act on a memory region

Method Description

open Invoked when the memory region is added to the set of regions owned by a process.

close Invoked when the memory region is removed from the set of regions owned by a process.

nopage Invoked by the Page Fault exception handler when a process tries to access a page not present in
RAM whose linear address belongs to the memory region (see the later section “Page Fault Excep-
tion Handler”).

Access rights of interval to be added are
equal to those of contiguous region

(a) The existing region is enlarged(a')

Access rights of interval to be added are
different from those of contiguous region

(b) A new memory region is created(b')

Interval to be removed is at the end of
existing region

(c) The existing region is shortened(c')

Interval to be removed is inside
existing region

(d) Two smaller regions are created(d')

Address space before operation Address space after operation

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 9: Process Address Space

Memory Region Data Structures
All the regions owned by a process are linked in a simple list. Regions appear in the
list in ascending order by memory address; however, successive regions can be sepa-
rated by an area of unused memory addresses. The vm_next field of each vm_area_
struct element points to the next element in the list. The kernel finds the memory
regions through the mmap field of the process memory descriptor, which points to the
first memory region descriptor in the list.

The map_count field of the memory descriptor contains the number of regions
owned by the process. By default, a process may own up to 65,536 different mem-
ory regions; however, the system administrator may change this limit by writing in
the /proc/sys/vm/max_map_count file.

Figure 9-2 illustrates the relationships among the address space of a process, its
memory descriptor, and the list of memory regions.

A frequent operation performed by the kernel is to search the memory region that
includes a specific linear address. Because the list is sorted, the search can terminate
as soon as a memory region that ends after the specific linear address is found.

However, using the list is convenient only if the process has very few memory
regions—let’s say less than a few tens of them. Searching, inserting elements, and
deleting elements in the list involve a number of operations whose times are linearly
proportional to the list length.

populate Invoked to set the page table entries corresponding to the linear addresses of the memory region
(prefaulting). Mainly used for non-linear file memory mappings.

Figure 9-2. Descriptors related to the address space of a process

Table 9-4. The methods to act on a memory region (continued)

Method Description

vm_start
vm_end
vm_next

Linear Address Space

Memory Regions

mmap

Memory Descriptor

mmap_cache

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Regions | 361

Although most Linux processes use very few memory regions, there are some large
applications, such as object-oriented databases or specialized debuggers for the usage
of malloc(), that have many hundreds or even thousands of regions. In such cases,
the memory region list management becomes very inefficient, hence the perfor-
mance of the memory-related system calls degrades to an intolerable point.

Therefore, Linux 2.6 stores memory descriptors in data structures called red-black
trees. In a red-black tree, each element (or node) usually has two children: a left child
and a right child. The elements in the tree are sorted. For each node N, all elements
of the subtree rooted at the left child of N precede N, while, conversely, all elements
of the subtree rooted at the right child of N follow N (see Figure 9-3(a); the key of the
node is written inside the node itself. Moreover, a red-black tree must satisfy four
additional rules:

1. Every node must be either red or black.

2. The root of the tree must be black.

3. The children of a red node must be black.

4. Every path from a node to a descendant leaf must contain the same number of
black nodes. When counting the number of black nodes, null pointers are
counted as black nodes.

These four rules ensure that every red-black tree with n internal nodes has a height of
at most .

Searching an element in a red-black tree is thus very efficient, because it requires
operations whose execution time is linearly proportional to the logarithm of the tree
size. In other words, doubling the number of memory regions adds just one more
iteration to the operation.

Figure 9-3. Example of red-black trees

(a) (b)

Red node

Black node

19

25

26

10

15 215

73

10

19

25

5

7

21

153

264

2 n 1+()log×

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 9: Process Address Space

Inserting and deleting an element in a red-black tree is also efficient, because the
algorithm can quickly traverse the tree to locate the position at which the element
will be inserted or from which it will be removed. Each new node must be inserted as
a leaf and colored red. If the operation breaks the rules, a few nodes of the tree must
be moved or recolored.

For instance, suppose that an element having the value 4 must be inserted in the red-
black tree shown in Figure 9-3(a). Its proper position is the right child of the node
that has key 3, but once it is inserted, the red node that has the value 3 has a red
child, thus breaking rule 3. To satisfy the rule, the color of nodes that have the val-
ues 3, 4, and 7 is changed. This operation, however, breaks rule 4, thus the algo-
rithm performs a “rotation” on the subtree rooted at the node that has the key 19,
producing the new red-black tree shown in Figure 9-3(b). This looks complicated,
but inserting or deleting an element in a red-black tree requires a small number of
operations—a number linearly proportional to the logarithm of the tree size.

Therefore, to store the memory regions of a process, Linux uses both a linked list
and a red-black tree. Both data structures contain pointers to the same memory
region descriptors. When inserting or removing a memory region descriptor, the ker-
nel searches the previous and next elements through the red-black tree and uses
them to quickly update the list without scanning it.

The head of the linked list is referenced by the mmap field of the memory descriptor.
Each memory region object stores the pointer to the next element of the list in the
vm_next field. The head of the red-black tree is referenced by the mm_rb field of the
memory descriptor. Each memory region object stores the color of the node, as well
as the pointers to the parent, the left child, and the right child, in the vm_rb field of
type rb_node.

In general, the red-black tree is used to locate a region including a specific address,
while the linked list is mostly useful when scanning the whole set of regions.

Memory Region Access Rights
Before moving on, we should clarify the relation between a page and a memory
region. As mentioned in Chapter 2, we use the term “page” to refer both to a set of
linear addresses and to the data contained in this group of addresses. In particular, we
denote the linear address interval ranging between 0 and 4,095 as page 0, the linear
address interval ranging between 4,096 and 8,191 as page 1, and so forth. Each mem-
ory region therefore consists of a set of pages that have consecutive page numbers.

We have already discussed two kinds of flags associated with a page:

• A few flags such as Read/Write, Present, or User/Supervisor stored in each Page
Table entry (see the section “Regular Paging” in Chapter 2).

• A set of flags stored in the flags field of each page descriptor (see the section
“Page Frame Management” in Chapter 8).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Regions | 363

The first kind of flag is used by the 80 × 86 hardware to check whether the requested
kind of addressing can be performed; the second kind is used by Linux for many dif-
ferent purposes (see Table 8-2).

We now introduce a third kind of flag: those associated with the pages of a memory
region. They are stored in the vm_flags field of the vm_area_struct descriptor (see
Table 9-5). Some flags offer the kernel information about all the pages of the mem-
ory region, such as what they contain and what rights the process has to access each
page. Other flags describe the region itself, such as how it can grow.

Page access rights included in a memory region descriptor may be combined arbi-
trarily. It is possible, for instance, to allow the pages of a region to be read but not

Table 9-5. The memory region flags

Flag name Description

VM_READ Pages can be read

VM_WRITE Pages can be written

VM_EXEC Pages can be executed

VM_SHARED Pages can be shared by several processes

VM_MAYREAD VM_READ flag may be set

VM_MAYWRITE VM_WRITE flag may be set

VM_MAYEXEC VM_EXEC flag may be set

VM_MAYSHARE VM_SHARE flag may be set

VM_GROWSDOWN The region can expand toward lower addresses

VM_GROWSUP The region can expand toward higher addresses

VM_SHM The region is used for IPC’s shared memory

VM_DENYWRITE The region maps a file that cannot be opened for writing

VM_EXECUTABLE The region maps an executable file

VM_LOCKED Pages in the region are locked and cannot be swapped out

VM_IO The region maps the I/O address space of a device

VM_SEQ_READ The application accesses the pages sequentially

VM_RAND_READ The application accesses the pages in a truly random order

VM_DONTCOPY Do not copy the region when forking a new process

VM_DONTEXPAND Forbid region expansion through mremap() system call

VM_RESERVED The region is special (for instance, it maps the I/O address space of a device), so its pages
must not be swapped out

VM_ACCOUNT Check whether there is enough free memory for the mapping when creating an IPC shared
memory region (see Chapter 19)

VM_HUGETLB The pages in the region are handled through the extended paging mechanism (see the sec-
tion “Extended Paging” in Chapter 2)

VM_NONLINEAR The region implements a non-linear file mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 9: Process Address Space

executed. To implement this protection scheme efficiently, the Read, Write, and
Execute access rights associated with the pages of a memory region must be dupli-
cated in all the corresponding Page Table entries, so that checks can be directly per-
formed by the Paging Unit circuitry. In other words, the page access rights dictate
what kinds of access should generate a Page Fault exception. As we’ll see shortly, the
job of figuring out what caused the Page Fault is delegated by Linux to the Page Fault
handler, which implements several page-handling strategies.

The initial values of the Page Table flags (which must be the same for all pages in the
memory region, as we have seen) are stored in the vm_page_prot field of the vm_area_
struct descriptor. When adding a page, the kernel sets the flags in the correspond-
ing Page Table entry according to the value of the vm_page_prot field.

However, translating the memory region’s access rights into the page protection bits
is not straightforward for the following reasons:

• In some cases, a page access should generate a Page Fault exception even when
its access type is granted by the page access rights specified in the vm_flags field
of the corresponding memory region. For instance, as we’ll see in the section
“Copy On Write” later in this chapter, the kernel may wish to store two identi-
cal, writable private pages (whose VM_SHARE flags are cleared) belonging to two
different processes in the same page frame; in this case, an exception should be
generated when either one of the processes tries to modify the page.

• As mentioned in Chapter 2, 80 × 86 processors’s Page Tables have just two pro-
tection bits, namely the Read/Write and User/Supervisor flags. Moreover, the
User/Supervisor flag of every page included in a memory region must always be
set, because the page must always be accessible by User Mode processes.

• Recent Intel Pentium 4 microprocessors with PAE enabled sport a NX (No eXe-
cute) flag in each 64-bit Page Table entry.

If the kernel has been compiled without support for PAE, Linux adopts the follow-
ing rules, which overcome the hardware limitation of the 80 × 86 microprocessors:

• The Read access right always implies the Execute access right, and vice versa.

• The Write access right always implies the Read access right.

Conversely, if the kernel has been compiled with support for PAE and the CPU has
the NX flag, Linux adopts different rules:

• The Execute access right always implies the Read access right.

• The Write access right always implies the Read access right.

Moreover, to correctly defer the allocation of page frames through the “Copy On
Write” technique (see later in this chapter), the page frame is write-protected when-
ever the corresponding page must not be shared by several processes.

Therefore, the 16 possible combinations of the Read, Write, Execute, and Share
access rights are scaled down according to the following rules:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Regions | 365

• If the page has both Write and Share access rights, the Read/Write bit is set.

• If the page has the Read or Execute access right but does not have either the
Write or the Share access right, the Read/Write bit is cleared.

• If the NX bit is supported and the page does not have the Execute access right, the
NX bit is set.

• If the page does not have any access rights, the Present bit is cleared so that each
access generates a Page Fault exception. However, to distinguish this condition
from the real page-not-present case, Linux also sets the Page size bit to 1.*

The downscaled protection bits corresponding to each combination of access rights
are stored in the 16 elements of the protection_map array.

Memory Region Handling
Having the basic understanding of data structures and state information that control
memory handling, we can look at a group of low-level functions that operate on
memory region descriptors. They should be considered auxiliary functions that sim-
plify the implementation of do_mmap() and do_munmap(). Those two functions, which
are described in the sections “Allocating a Linear Address Interval” and “Releasing a
Linear Address Interval” later in this chapter, enlarge and shrink the address space of
a process, respectively. Working at a higher level than the functions we consider
here, they do not receive a memory region descriptor as their parameter, but rather
the initial address, the length, and the access rights of a linear address interval.

Finding the closest region to a given address: find_vma()

The find_vma() function acts on two parameters: the address mm of a process mem-
ory descriptor and a linear address addr. It locates the first memory region whose vm_
end field is greater than addr and returns the address of its descriptor; if no such
region exists, it returns a NULL pointer. Notice that the region selected by find_vma()
does not necessarily include addr because addr may lie outside of any memory region.

Each memory descriptor includes an mmap_cache field that stores the descriptor
address of the region that was last referenced by the process. This additional field is
introduced to reduce the time spent in looking for the region that contains a given
linear address. Locality of address references in programs makes it highly likely that
if the last linear address checked belonged to a given region, the next one to be
checked belongs to the same region.

* You might consider this use of the Page size bit to be a dirty trick, because the bit was meant to indicate the
real page size. But Linux can get away with the deception because the 80 × 86 chip checks the Page size bit
in Page Directory entries, but not in Page Table entries.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 9: Process Address Space

The function thus starts by checking whether the region identified by mmap_cache
includes addr. If so, it returns the region descriptor pointer:

vma = mm->mmap_cache;
if (vma && vma->vm_end > addr && vma->vm_start <= addr)
 return vma;

Otherwise, the memory regions of the process must be scanned, and the function
looks up the memory region in the red-black tree:

rb_node = mm->mm_rb.rb_node;
vma = NULL;
while (rb_node) {
 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
 if (vma_tmp->vm_end > addr) {
 vma = vma_tmp;
 if (vma_tmp->vm_start <= addr)
 break;
 rb_node = rb_node->rb_left;
 } else
 rb_node = rb_node->rb_right;
}
if (vma)
 mm->mmap_cache = vma;
return vma;

The function uses the rb_entry macro, which derives from a pointer to a node of the
red-black tree the address of the corresponding memory region descriptor.

The find_vma_prev() function is similar to find_vma(), except that it writes in an
additional pprev parameter a pointer to the descriptor of the memory region that pre-
cedes the one selected by the function.

Finally, the find_vma_prepare() function locates the position of the new leaf in the
red-black tree that corresponds to a given linear address and returns the addresses of
the preceding memory region and of the parent node of the leaf to be inserted.

Finding a region that overlaps a given interval: find_vma_intersection()

The find_vma_intersection() function finds the first memory region that overlaps a
given linear address interval; the mm parameter points to the memory descriptor of the
process, while the start_addr and end_addr linear addresses specify the interval:

vma = find_vma(mm,start_addr);
if (vma && end_addr <= vma->vm_start)
 vma = NULL;
return vma;

The function returns a NULL pointer if no such region exists. To be exact, if find_vma()
returns a valid address but the memory region found starts after the end of the linear
address interval, vma is set to NULL.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Regions | 367

Finding a free interval: get_unmapped_area()

The get_unmapped_area() function searches the process address space to find an
available linear address interval. The len parameter specifies the interval length,
while a non-null addr parameter specifies the address from which the search must be
started. If the search is successful, the function returns the initial address of the new
interval; otherwise, it returns the error code -ENOMEM.

If the addr parameter is not NULL, the function checks that the specified address is in
the User Mode address space and that it is aligned to a page boundary. Next, the
function invokes either one of two methods, depending on whether the linear
address interval should be used for a file memory mapping or for an anonymous
memory mapping. In the former case, the function executes the get_unmapped_area
file operation; this is discussed in Chapter 16.

In the latter case, the function executes the get_unmapped_area method of the mem-
ory descriptor. In turn, this method is implemented by either the arch_get_unmapped_
area() function, or the arch_get_unmapped_area_topdown() function, according to the
memory region layout of the process. As we’ll see in the section “Program Segments
and Process Memory Regions” in Chapter 20, every process can have two different
layouts for the memory regions allocated through the mmap() system call: either they
start from the linear address 0x40000000 and grow towards higher addresses, or they
start right above the User Mode stack and grow towards lower addresses.

Let us discuss the arch_get_unmapped_area() function, which is used when the mem-
ory regions are allocated moving from lower addresses to higher ones. It is essen-
tially equivalent to the following code fragment:

if (len > TASK_SIZE)
 return -ENOMEM;
addr = (addr + 0xfff) & 0xfffff000;
if (addr && addr + len <= TASK_SIZE) {
 vma = find_vma(current->mm, addr);
 if (!vma || addr + len <= vma->vm_start)
 return addr;
}
start_addr = addr = mm->free_area_cache;
for (vma = find_vma(current->mm, addr); ; vma = vma->vm_next) {
 if (addr + len > TASK_SIZE) {
 if (start_addr == (TASK_SIZE/3+0xfff)&0xfffff000)
 return -ENOMEM;
 start_addr = addr = (TASK_SIZE/3+0xfff)&0xfffff000;
 vma = find_vma(current->mm, addr);
 }
 if (!vma || addr + len <= vma->vm_start) {
 mm->free_area_cache = addr + len;
 return addr;
 }
 addr = vma->vm_end;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 9: Process Address Space

The function starts by checking to make sure the interval length is within TASK_SIZE,
the limit imposed on User Mode linear addresses (usually 3 GB). If addr is different
from zero, the function tries to allocate the interval starting from addr. To be on the
safe side, the function rounds up the value of addr to a multiple of 4 KB.

If addr is 0 or the previous search failed, the arch_get_unmapped_area() function
scans the User Mode linear address space looking for a range of linear addresses not
included in any memory region and large enough to contain the new region. To
speed up the search, the search’s starting point is usually set to the linear address fol-
lowing the last allocated memory region. The mm->free_area_cache field of the mem-
ory descriptor is initialized to one-third of the User Mode linear address space—
usually, 1 GB—and then updated as new memory regions are created. If the func-
tion fails in finding a suitable range of linear addresses, the search restarts from the
beginning—that is, from one-third of the User Mode linear address space: in fact, the
first third of the User Mode linear address space is reserved for memory regions hav-
ing a predefined starting linear address, typically the text, data, and bss segments of
an executable file (see Chapter 20).

The function invokes find_vma() to locate the first memory region ending after the
search’s starting point, then repeatedly considers all the following memory regions.
Three cases may occur:

• The requested interval is larger than the portion of linear address space yet to be
scanned (addr + len > TASK_SIZE): in this case, the function either restarts from
one-third of the User Mode address space or, if the second search has already
been done, returns -ENOMEM (there are not enough linear addresses to satisfy the
request).

• The hole following the last scanned region is not large enough (vma != NULL &&
vma->vm_start < addr + len). In this case, the function considers the next
region.

• If neither one of the preceding conditions holds, a large enough hole has been
found. In this case, the function returns addr.

Inserting a region in the memory descriptor list: insert_vm_struct()

insert_vm_struct() inserts a vm_area_struct structure in the memory region object
list and red-black tree of a memory descriptor. It uses two parameters: mm, which
specifies the address of a process memory descriptor, and vma, which specifies the
address of the vm_area_struct object to be inserted. The vm_start and vm_end fields of
the memory region object must have already been initialized. The function invokes
the find_vma_prepare() function to look up the position in the red-black tree mm->mm_
rb where vma should go. Then insert_vm_struct() invokes the vma_link() function,
which in turn:

1. Inserts the memory region in the linked list referenced by mm->mmap.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Regions | 369

2. Inserts the memory region in the red-black tree mm->mm_rb.

3. If the memory region is anonymous, inserts the region in the list headed at the
corresponding anon_vma data structure (see the section “Reverse Mapping for
Anonymous Pages” in Chapter 17).

4. Increases the mm->map_count counter.

If the region contains a memory-mapped file, the vma_link() function performs addi-
tional tasks that are described in Chapter 17.

The __vma_unlink() function receives as its parameters a memory descriptor address
mm and two memory region object addresses vma and prev. Both memory regions
should belong to mm, and prev should precede vma in the memory region ordering. The
function removes vma from the linked list and the red-black tree of the memory
descriptor. It also updates mm->mmap_cache, which stores the last referenced memory
region, if this field points to the memory region just deleted.

Allocating a Linear Address Interval
Now let’s discuss how new linear address intervals are allocated. To do this, the do_
mmap() function creates and initializes a new memory region for the current process.
However, after a successful allocation, the memory region could be merged with
other memory regions defined for the process.

The function uses the following parameters:

file and offset
File object pointer file and file offset offset are used if the new memory region
will map a file into memory. This topic is discussed in Chapter 16. In this sec-
tion, we assume that no memory mapping is required and that file and offset
are both NULL.

addr
This linear address specifies where the search for a free interval must start.

len
The length of the linear address interval.

prot
This parameter specifies the access rights of the pages included in the memory
region. Possible flags are PROT_READ, PROT_WRITE, PROT_EXEC, and PROT_NONE. The
first three flags mean the same things as the VM_READ, VM_WRITE, and VM_EXEC flags.
PROT_NONE indicates that the process has none of those access rights.

flag
This parameter specifies the remaining memory region flags:

MAP_GROWSDOWN, MAP_LOCKED, MAP_DENYWRITE, and MAP_EXECUTABLE
Their meanings are identical to those of the flags listed in Table 9-5.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 9: Process Address Space

MAP_SHARED and MAP_PRIVATE
The former flag specifies that the pages in the memory region can be shared
among several processes; the latter flag has the opposite effect. Both flags
refer to the VM_SHARED flag in the vm_area_struct descriptor.

MAP_FIXED

The initial linear address of the interval must be exactly the one specified in
the addr parameter.

MAP_ANONYMOUS
No file is associated with the memory region (see Chapter 16).

MAP_NORESERVE
The function doesn’t have to do a preliminary check on the number of free
page frames.

MAP_POPULATE
The function should pre-allocate the page frames required for the mapping
established by the memory region. This flag is significant only for memory
regions that map files (see Chapter 16) and for IPC shared memory regions
(see Chapter 19).

MAP_NONBLOCK
Significant only when the MAP_POPULATE flag is set: when pre-allocating the
page frames, the function must not block.

The do_mmap() function performs some preliminary checks on the value of offset
and then executes the do_mmap_pgoff() function. In this chapter we will suppose that
the new interval of linear address does not map a file on disk—file memory mapping
is discussed in detail in Chapter 16. Here is a description of the do_mmap_pgoff()
function for anonymous memory regions:

1. Checks whether the parameter values are correct and whether the request can be
satisfied. In particular, it checks for the following conditions that prevent it from
satisfying the request:

• The linear address interval has zero length or includes addresses greater than
TASK_SIZE.

• The process has already mapped too many memory regions—that is, the
value of the map_count field of its mm memory descriptor exceeds the allowed
maximum value.

• The flag parameter specifies that the pages of the new linear address inter-
val must be locked in RAM, but the process is not allowed to create locked
memory regions, or the number of pages locked by the process exceeds the
threshold stored in the signal->rlim[RLIMIT_MEMLOCK].rlim_cur field of the
process descriptor.

If any of the preceding conditions holds, do_mmap_pgoff() terminates by return-
ing a negative value. If the linear address interval has a zero length, the function
returns without performing any action.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Regions | 371

2. Invokes get_unmapped_area() to obtain a linear address interval for the new
region (see the previous section “Memory Region Handling”).

3. Computes the flags of the new memory region by combining the values stored in
the prot and flags parameters:

vm_flags = calc_vm_prot_bits(prot,flags) |
 calc_vm_flag_bits(prot,flags) |
 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
if (flags & MAP_SHARED)
 vm_flags |= VM_SHARED | VM_MAYSHARE;

The calc_vm_prot_bits() function sets the VM_READ, VM_WRITE, and VM_EXEC flags
in vm_flags only if the corresponding PROT_READ, PROT_WRITE, and PROT_EXEC flags
in prot are set. The calc_vm_flag_bits() function sets the VM_GROWSDOWN, VM_
DENYWRITE, VM_EXECUTABLE, and VM_LOCKED flags in vm_flags only if the correspond-
ing MAP_GROWSDOWN, MAP_DENYWRITE, MAP_EXECUTABLE, and MAP_LOCKED flags in flags
are set. A few other flags are set in vm_flags: VM_MAYREAD, VM_MAYWRITE, VM_
MAYEXEC, the default flags for all memory regions in mm->def_flags,* and both VM_
SHARED and VM_MAYSHARE if the pages of the memory region have to be shared with
other processes.

4. Invokes find_vma_prepare() to locate the object of the memory region that shall
precede the new interval, as well as the position of the new region in the red-
black tree:

for (;;) {
 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
 if (!vma || vma->vm_start >= addr + len)
 break;
 if (do_munmap(mm, addr, len))
 return -ENOMEM;
}

The find_vma_prepare() function also checks whether a memory region that
overlaps the new interval already exists. This occurs when the function returns a
non-NULL address pointing to a region that starts before the end of the new inter-
val. In this case, do_mmap_pgoff() invokes do_munmap() to remove the new inter-
val and then repeats the whole step (see the later section “Releasing a Linear
Address Interval”).

5. Checks whether inserting the new memory region causes the size of the process
address space (mm->total_vm<<PAGE_SHIFT)+len to exceed the threshold stored in
the signal->rlim[RLIMIT_AS].rlim_cur field of the process descriptor. If so, it
returns the error code -ENOMEM. Notice that the check is done here and not in
step 1 with the other checks, because some memory regions could have been
removed in step 4.

* Actually, the def_flags field of the memory descriptor is modified only by the mlockall() system call, which
can be used to set the VM_LOCKED flag, thus locking all future pages of the calling process in RAM.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 9: Process Address Space

6. Returns the error code -ENOMEM if the MAP_NORESERVE flag was not set in the flags
parameter, the new memory region contains private writable pages, and there
are not enough free page frames; this last check is performed by the security_vm_
enough_memory() function.

7. If the new interval is private (VM_SHARED not set) and it does not map a file on
disk, it invokes vma_merge() to check whether the preceding memory region can
be expanded in such a way to include the new interval. Of course, the preceding
memory region must have exactly the same flags as those memory regions stored
in the vm_flags local variable. If the preceding memory region can be expanded,
vma_merge() also tries to merge it with the following memory region (this occurs
when the new interval fills the hole between two memory regions and all three
have the same flags). In case it succeeds in expanding the preceding memory
region, the function jumps to step 12.

8. Allocates a vm_area_struct data structure for the new memory region by invok-
ing the kmem_cache_alloc() slab allocator function.

9. Initializes the new memory region object (pointed to by vma):
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags;
vma->vm_page_prot = protection_map[vm_flags & 0x0f];
vma->vm_ops = NULL;
vma->vm_pgoff = pgoff;
vma->vm_file = NULL;
vma->vm_private_data = NULL;
vma->vm_next = NULL;
INIT_LIST_HEAD(&vma->shared);

10. If the MAP_SHARED flag is set (and the new memory region doesn’t map a file on
disk), the region is a shared anonymous region: invokes shmem_zero_setup() to
initialize it. Shared anonymous regions are mainly used for interprocess commu-
nications; see the section “IPC Shared Memory” in Chapter 19.

11. Invokes vma_link() to insert the new region in the memory region list and red-
black tree (see the earlier section “Memory Region Handling”).

12. Increases the size of the process address space stored in the total_vm field of the
memory descriptor.

13. If the VM_LOCKED flag is set, it invokes make_pages_present() to allocate all the
pages of the memory region in succession and lock them in RAM:
 if (vm_flags & VM_LOCKED) {
 mm->locked_vm += len >> PAGE_SHIFT;
 make_pages_present(addr, addr + len);
 }

The make_pages_present() function, in turn, invokes get_user_pages() as fol-
lows:
 write = (vma->vm_flags & VM_WRITE) != 0;
 get_user_pages(current, current->mm, addr, len, write, 0, NULL, NULL);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Regions | 373

The get_user_pages() function cycles through all starting linear addresses of the
pages between addr and addr+len; for each of them, it invokes follow_page() to
check whether there is a mapping to a physical page in the current’s Page
Tables. If no such physical page exists, get_user_pages() invokes handle_mm_
fault(), which, as we’ll see in the section “Handling a Faulty Address Inside the
Address Space,” allocates one page frame and sets its Page Table entry accord-
ing to the vm_flags field of the memory region descriptor.

14. Finally, it terminates by returning the linear address of the new memory region.

Releasing a Linear Address Interval
When the kernel must delete a linear address interval from the address space of the
current process, it uses the do_munmap() function. The parameters are: the address mm
of the process’s memory descriptor, the starting address start of the interval, and its
length len. The interval to be deleted does not usually correspond to a memory
region; it may be included in one memory region or span two or more regions.

The do_munmap() function

The function goes through two main phases. In the first phase (steps 1–6), it scans
the list of memory regions owned by the process and unlinks all regions included in
the linear address interval from the process address space. In the second phase (steps
7–12), the function updates the process Page Tables and removes the memory
regions identified in the first phase. The function makes use of the split_vma() and
unmap_region() functions, which will be described later. do_munmap() executes the
following steps:

1. Performs some preliminary checks on the parameter values. If the linear address
interval includes addresses greater than TASK_SIZE, if start is not a multiple of
4,096, or if the linear address interval has a zero length, the function returns the
error code -EINVAL.

2. Locates the first memory region mpnt that ends after the linear address interval to
be deleted (mpnt->end > start), if any:

mpnt = find_vma_prev(mm, start, &prev);

3. If there is no such memory region, or if the region does not overlap with the lin-
ear address interval, nothing has to be done because there is no memory region
in the interval:

end = start + len;
if (!mpnt || mpnt->vm_start >= end)
 return 0;

4. If the linear address interval starts inside the mpnt memory region, it invokes
split_vma() (described below) to split the mpnt memory region into two smaller
regions: one outside the interval and the other inside the interval:

if (start > mpnt->vm_start) {
 if (split_vma(mm, mpnt, start, 0))

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 9: Process Address Space

 return -ENOMEM;
 prev = mpnt;
}

The prev local variable, which previously stored the pointer to the memory
region preceding mpnt, is updated so that it points to mpnt—that is, to the new
memory region lying outside the linear address interval. In this way, prev still
points to the memory region preceding the first memory region to be removed.

5. If the linear address interval ends inside a memory region, it invokes split_vma()
once again to split the last overlapping memory region into two smaller regions:
one inside the interval and the other outside the interval:*

last = find_vma(mm, end);
if (last && end > last->vm_start)){
 if (split_vma(mm, last, start, end, 1))
 return -ENOMEM;
}

6. Updates the value of mpnt so that it points to the first memory region in the lin-
ear address interval. If prev is NULL—that is, there is no preceding memory
region—the address of the first memory region is taken from mm->mmap:

mpnt = prev ? prev->vm_next : mm->mmap;

7. Invokes detach_vmas_to_be_unmapped()to remove the memory regions included
in the linear address interval from the process’s linear address space. This func-
tion essentially executes the following code:

vma = mpnt;
insertion_point = (prev ? &prev->vm_next : &mm->mmap);
do {
 rb_erase(&vma->vm_rb, &mm->mm_rb);
 mm->map_count--;
 tail_vma = vma;
 vma = vma->next;
} while (vma && vma->start < end);
*insertion_point = vma;
tail_vma->vm_next = NULL;
mm->map_cache = NULL;

The descriptors of the regions to be removed are stored in an ordered list, whose
head is pointed to by the mpnt local variable (actually, this list is just a fragment
of the original process’s list of memory regions).

8. Gets the mm->page_table_lock spin lock.

9. Invokes unmap_region() to clear the Page Table entries covering the linear
address interval and to free the corresponding page frames (discussed later):

unmap_region(mm, mpnt, prev, start, end);

10. Releases the mm->page_table_lock spin lock.

* If the linear address interval is properly contained inside a memory region, the region must be replaced by
two new smaller regions. When this case occurs, step 4 and step 5 break the memory region in three smaller
regions: the middle region is destroyed, while the first and the last ones will be preserved.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Regions | 375

11. Releases the descriptors of the memory regions collected in the list built in
step 7:

do {
 struct vm_area_struct * next = mpnt->vm_next;
 unmap_vma(mm, mpnt);
 mpnt = next;
} while (mpnt != NULL);

The unmap_vma() function is invoked on every memory region in the list; it essen-
tially executes the following steps:

a. Updates the mm->total_vm and mm->locked_vm fields.

b. Executes the mm->unmap_area method of the memory descriptor. This
method is implemented either by arch_unmap_area() or by arch_unmap_area_
topdown(), according to the memory region layout of the process (see the
earlier section “Memory Region Handling”). In both cases, the mm->free_
area_cache field is updated, if needed.

c. Invokes the close method of the memory region, if defined.

d. If the memory region is anonymous, the function removes it from the anony-
mous memory region list headed at mm->anon_vma.

e. Invokes kmem_cache_free() to release the memory region descriptor.

12. Returns 0 (success).

The split_vma() function

The purpose of the split_vma() function is to split a memory region that intersects a
linear address interval into two smaller regions, one outside of the interval and the
other inside. The function receives four parameters: a memory descriptor pointer mm, a
memory area descriptor pointer vma that identifies the region to be split, an address
addr that specifies the intersection point between the interval and the memory region,
and a flag new_below that specifies whether the intersection occurs at the beginning or
at the end of the interval. The function performs the following basic steps:

1. Invokes kmem_cache_alloc() to get an additional vm_area_struct descriptor, and
stores its address in the new local variable. If no free memory is available, it
returns -ENOMEM.

2. Initializes the fields of the new descriptor with the contents of the fields of the vma
descriptor.

3. If the new_below flag is 0, the linear address interval starts inside the vma region,
so the new region must be placed after the vma region. Thus, the function sets
both the new->vm_start and the vma->vm_end fields to addr.

4. Conversely, if the new_below flag is equal to 1, the linear address interval ends
inside the vma region, so the new region must be placed before the vma region.
Thus, the function sets both the new->vm_end and the vma->vm_start fields to
addr.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 9: Process Address Space

5. If the open method of the new memory region is defined, the function executes it.

6. Links the new memory region descriptor to the mm->mmap list of memory regions
and to the mm->mm_rb red-black tree. Moreover, the function adjusts the red-black
tree to take care of the new size of the memory region vma.

7. Returns 0 (success).

The unmap_region() function

The unmap_region() function walks through a list of memory regions and releases the
page frames belonging to them. It acts on five parameters: a memory descriptor
pointer mm, a pointer vma to the descriptor of the first memory region being removed, a
pointer prev to the memory region preceding vma in the process’s list (see steps 2 and
4 in do_munmap()), and two addresses start and end that delimit the linear address
interval being removed. The function essentially executes the following steps:

1. Invokes lru_add_drain() (see Chapter 17).

2. Invokes the tlb_gather_mmu() function to initialize a per-CPU variable named
mmu_gathers. The contents of mmu_gathers are architecture-dependent: generally
speaking, the variable should store all information required for a successful
updating of the page table entries of a process. In the 80 × 86 architecture, the
tlb_gather_mmu() function simply saves the value of the mm memory descriptor
pointer in the mmu_gathers variable of the local CPU.

3. Stores the address of the mmu_gathers variable in the tlb local variable.

4. Invokes unmap_vmas() to scan all Page Table entries belonging to the linear
address interval: if only one CPU is available, the function invokes free_swap_
and_cache() repeatedly to release the corresponding pages (see Chapter 17); oth-
erwise, the function saves the pointers of the corresponding page descriptors in
the mmu_gathers local variable.

5. Invokes free_pgtables(tlb,prev,start,end) to try to reclaim the Page Tables of
the process that have been emptied in the previous step.

6. Invokes tlb_finish_mmu(tlb,start,end) to finish the work: in turn, this function:

a. Invokes flush_tlb_mm() to flush the TLB (see the section “Handling the
Hardware Cache and the TLB” in Chapter 2).

b. In multiprocessor system, invokes free_pages_and_swap_cache() to release
the page frames whose pointers have been collected in the mmu_gather data
structure. This function is described in Chapter 17.

Page Fault Exception Handler
As stated previously, the Linux Page Fault exception handler must distinguish excep-
tions caused by programming errors from those caused by a reference to a page that
legitimately belongs to the process address space but simply hasn’t been allocated yet.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Fault Exception Handler | 377

The memory region descriptors allow the exception handler to perform its job quite
efficiently. The do_page_fault() function, which is the Page Fault interrupt service
routine for the 80 × 86 architecture, compares the linear address that caused the Page
Fault against the memory regions of the current process; it can thus determine the
proper way to handle the exception according to the scheme that is illustrated in
Figure 9-4.

In practice, things are a lot more complex because the Page Fault handler must rec-
ognize several particular subcases that fit awkwardly into the overall scheme, and it
must distinguish several kinds of legal access. A detailed flow diagram of the handler
is illustrated in Figure 9-5.

The identifiers vmalloc_fault, good_area, bad_area, and no_context are labels appear-
ing in do_page_fault() that should help you to relate the blocks of the flow diagram
to specific lines of code.

The do_page_fault() function accepts the following input parameters:

• The regs address of a pt_regs structure containing the values of the microproces-
sor registers when the exception occurred.

• A 3-bit error_code, which is pushed on the stack by the control unit when the
exception occurred (see “Hardware Handling of Interrupts and Exceptions” in
Chapter 4). The bits have the following meanings:

— If bit 0 is clear, the exception was caused by an access to a page that is not
present (the Present flag in the Page Table entry is clear); otherwise, if bit 0
is set, the exception was caused by an invalid access right.

Figure 9-4. Overall scheme for the Page Fault handler

Does the address
belong to the

process address
space?

YES

NO

Does the access type
match the memory

region access rights?

Did the exception
occur in User Mode?

YES

NO

YES

NO

Legal access:
allocate a new

page frame.

Illegal access:
send a SIGSEGV

signal.

Kernel bug:
kill the process.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 9: Process Address Space

— If bit 1 is clear, the exception was caused by a read or execute access; if set,
the exception was caused by a write access.

— If bit 2 is clear, the exception occurred while the processor was in Kernel
Mode; otherwise, it occurred in User Mode.

The first operation of do_page_fault() consists of reading the linear address that
caused the Page Fault. When the exception occurs, the CPU control unit stores that
value in the cr2 control register:

asm("movl %%cr2,%0":"=r" (address));
if (regs->eflags & 0x00020200)

Figure 9-5. The flow diagram of the Page Fault handler

good_area

Access
to kernel space

NOYES

Noncontiguous
memory area address

In interrupt, softirq,
critical region, or

kernel thread

YESNO

Address in a
memory region

NO

Address could belong
to User Mode stack

NO

Kernel page table
entry fixup

YES

Write access

YES

Access
in User Mode

bad_area

NOYES

Page is present

NO

NO YES

Address is a wrong
system call parameter

YESNO

no_context

Region is readable
or executable

Region is
writable

YES

YES NO

YES NO

Demand Paging
and/or

Copy On Write

Demand
paging

Send
SIGSEGV

Kill process
and kernel

“Oops”

“Fixup code”
(typically send

SIGSEGV)

NO

YES

Access in
Kernel Mode

NOYES

vmalloc_fault

do_sigbus

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Fault Exception Handler | 379

 local_irq_enable();
tsk = current;

The linear address is saved in the address local variable. The function also ensures
that local interrupts are enabled if they were enabled before the fault or the CPU was
running in virtual-8086 mode, and saves the pointers to the process descriptor of
current in the tsk local variable.

As shown at the top of Figure 9-5, do_page_fault() checks whether the faulty linear
address belongs to the fourth gigabyte:

info.si_code = SEGV_MAPERR;
if (address >= TASK_SIZE) {
 if (!(error_code & 0x101))
 goto vmalloc_fault;
 goto bad_area_nosemaphore;
}

If the exception was caused by the kernel trying to access a nonexisting page frame, a
jump is made to the code at label vmalloc_fault, which takes care of faults that were
likely caused by accessing a noncontiguous memory area in Kernel Mode; we describe
this case in the later section “Handling Noncontiguous Memory Area Accesses.” Oth-
erwise, a jump is made to the code at the bad_area_nosemaphore label, described in the
later section “Handling a Faulty Address Outside the Address Space.”

Next, the handler checks whether the exception occurred while the kernel was exe-
cuting some critical routine or running a kernel thread (remember that the mm field of
the process descriptor is always NULL for kernel threads):

if (in_atomic() || !tsk->mm)
 goto bad_area_nosemaphore;

The in_atomic() macro yields the value one if the fault occurred while either one of
the following conditions holds:

• The kernel was executing an interrupt handler or a deferrable function.

• The kernel was executing a critical region with kernel preemption disabled (see
the section “Kernel Preemption” in Chapter 5).

If the Page Fault did occur in an interrupt handler, in a deferrable function, in a criti-
cal region, or in a kernel thread, do_page_fault() does not try to compare the linear
address with the memory regions of current. Kernel threads never use linear
addresses below TASK_SIZE. Similarly, interrupt handlers, deferrable functions, and
code of critical regions should not use linear addresses below TASK_SIZE because this
might block the current process. (See the section “Handling a Faulty Address Out-
side the Address Space” later in this chapter for information on the info local vari-
able and a description of the code at the bad_area_nosemaphore label.)

Let’s suppose that the Page Fault did not occur in an interrupt handler, in a deferra-
ble function, in a critical region, or in a kernel thread. Then the function must
inspect the memory regions owned by the process to determine whether the faulty

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 9: Process Address Space

linear address is included in the process address space. In order to this, it must
acquire the mmap_sem read/write semaphore of the process:

if (!down_read_trylock(&tsk->mm>mmap_sem)) {
 if ((error_code & 4) == 0 &&
 !search_exception_table(regs->eip))
 goto bad_area_nosemaphore;
 down_read(&tsk->mm->mmap_sem);
}

If kernel bugs and hardware malfunctioning can be ruled out, the current process has
not already acquired the mmap_sem semaphore for writing when the Page Fault occurs.
However, do_page_fault() wants to be sure that this is actually true, because other-
wise a deadlock would occur. For that reason, the function makes use of down_read_
trylock() instead of down_read() (see the section “Read/Write Semaphores” in
Chapter 5). If the semaphore is closed and the Page Fault occurred in Kernel Mode,
do_page_fault() determines whether the exception occurred while using some linear
address that has been passed to the kernel as a parameter of a system call (see the
next section “Handling a Faulty Address Outside the Address Space”). In this case,
do_page_fault() knows for sure that the semaphore is owned by another process—
because every system call service routine carefully avoids acquiring the mmap_sem
semaphore for writing before accessing the User Mode address space—so the func-
tion waits until the semaphore is released. Otherwise, the Page Fault is due to a ker-
nel bug or to a serious hardware problem, so the function jumps to the bad_area_
nosemaphore label.

Let’s assume that the mmap_sem semaphore has been safely acquired for reading. Now
do_page_fault() looks for a memory region containing the faulty linear address:

vma = find_vma(tsk->mm, address);
if (!vma)
 goto bad_area;
if (vma->vm_start <= address)
 goto good_area;

If vma is NULL, there is no memory region ending after address, and thus the faulty
address is certainly bad. On the other hand, if the first memory region ending after
address includes address, the function jumps to the code at label good_area.

If none of the two “if” conditions are satisfied, the function has determined that
address is not included in any memory region; however, it must perform an addi-
tional check, because the faulty address may have been caused by a push or pusha
instruction on the User Mode stack of the process.

Let’s make a short digression to explain how stacks are mapped into memory
regions. Each region that contains a stack expands toward lower addresses; its VM_
GROWSDOWN flag is set, so the value of its vm_end field remains fixed while the value of
its vm_start field may be decreased. The region boundaries include, but do not
delimit precisely, the current size of the User Mode stack. The reasons for the fuzz
factor are:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Fault Exception Handler | 381

• The region size is a multiple of 4 KB (it must include complete pages) while the
stack size is arbitrary.

• Page frames assigned to a region are never released until the region is deleted; in
particular, the value of the vm_start field of a region that includes a stack can
only decrease; it can never increase. Even if the process executes a series of pop
instructions, the region size remains unchanged.

It should now be clear how a process that has filled up the last page frame allocated
to its stack may cause a Page Fault exception: the push refers to an address outside of
the region (and to a nonexistent page frame). Notice that this kind of exception is
not caused by a programming error; thus it must be handled separately by the Page
Fault handler.

We now return to the description of do_page_fault(), which checks for the case
described previously:

if (!(vma->vm_flags & VM_GROWSDOWN))
 goto bad_area;
if (error_code & 4 /* User Mode */
 && address + 32 < regs->esp)
 goto bad_area;
if (expand_stack(vma, address))
 goto bad_area;
goto good_area;

If the VM_GROWSDOWN flag of the region is set and the exception occurred in User Mode,
the function checks whether address is smaller than the regs->esp stack pointer (it
should be only a little smaller). Because a few stack-related assembly language
instructions (such as pusha) perform a decrement of the esp register only after the
memory access, a 32-byte tolerance interval is granted to the process. If the address is
high enough (within the tolerance granted), the code invokes the expand_stack()
function to check whether the process is allowed to extend both its stack and its
address space; if everything is OK, it sets the vm_start field of vma to address and
returns 0; otherwise, it returns -ENOMEM.

Note that the preceding code skips the tolerance check whenever the VM_GROWSDOWN
flag of the region is set and the exception did not occur in User Mode. These
conditions mean that the kernel is addressing the User Mode stack and that the code
should always run expand_stack().

Handling a Faulty Address Outside the Address Space
If address does not belong to the process address space, do_page_fault() proceeds to
execute the statements at the label bad_area. If the error occurred in User Mode, it
sends a SIGSEGV signal to current (see the section “Generating a Signal” in
Chapter 11) and terminates:

bad_area:
up_read(&tsk->mm->mmap_sem);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 9: Process Address Space

bad_area_nosemaphore:
if (error_code & 4) { /* User Mode */
 tsk->thread.cr2 = address;
 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
 tsk->thread.trap_no = 14;
 info.si_signo = SIGSEGV;
 info.si_errno = 0;
 info.si_addr = (void *) address;
 force_sig_info(SIGSEGV, &info, tsk);
 return;
}

The force_sig_info() function makes sure that the process does not ignore or block
the SIGSEGV signal, and sends the signal to the User Mode process while passing some
additional information in the info local variable (see the section “Generating a Sig-
nal” in Chapter 11). The info.si_code field is already set to SEGV_MAPERR (if the excep-
tion was due to a nonexisting page frame) or to SEGV_ACCERR (if the exception was due
to an invalid access to an existing page frame).

If the exception occurred in Kernel Mode (bit 2 of error_code is clear), there are still
two alternatives:

• The exception occurred while using some linear address that has been passed to
the kernel as a parameter of a system call.

• The exception is due to a real kernel bug.

The function distinguishes these two alternatives as follows:

no_context:
if ((fixup = search_exception_table(regs->eip)) != 0) {
 regs->eip = fixup;
 return;
}

In the first case, it jumps to a “fixup code,” which typically sends a SIGSEGV signal to
current or terminates a system call handler with a proper error code (see the section
“Dynamic Address Checking: The Fix-up Code” in Chapter 10).

In the second case, the function prints a complete dump of the CPU registers and of
the Kernel Mode stack both on the console and on a system message buffer; it then
kills the current process by invoking the do_exit() function (see Chapter 20). This is
the so-called “Kernel oops” error, named after the message displayed. The dumped
values can be used by kernel hackers to reconstruct the conditions that triggered the
bug, and thus find and correct it.

Handling a Faulty Address Inside the Address Space
If address belongs to the process address space, do_page_fault() proceeds to the
statement labeled good_area:

good_area:
info.si_code = SEGV_ACCERR;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Fault Exception Handler | 383

write = 0;
if (error_code & 2) { /* write access */
 if (!(vma->vm_flags & VM_WRITE))
 goto bad_area;
 write++;
} else /* read access */
 if ((error_code & 1) || !(vma->vm_flags & (VM_READ | VM_EXEC)))
 goto bad_area;

If the exception was caused by a write access, the function checks whether the mem-
ory region is writable. If not, it jumps to the bad_area code; if so, it sets the write
local variable to 1.

If the exception was caused by a read or execute access, the function checks whether
the page is already present in RAM. In this case, the exception occurred because the
process tried to access a privileged page frame (one whose User/Supervisor flag is
clear) in User Mode, so the function jumps to the bad_area code.* If the page is not
present, the function also checks whether the memory region is readable or executable.

If the memory region access rights match the access type that caused the exception,
the handle_mm_fault() function is invoked to allocate a new page frame:

survive:
ret = handle_mm_fault(tsk->mm, vma, address, write);
if (ret == VM_FAULT_MINOR || ret == VM_FAULT_MAJOR) {
 if (ret == VM_FAULT_MINOR) tsk->min_flt++; else tsk->maj_flt++;
 up_read(&tsk->mm->mmap_sem);
 return;
}

The handle_mm_fault() function returns VM_FAULT_MINOR or VM_FAULT_MAJOR if it suc-
ceeded in allocating a new page frame for the process. The value VM_FAULT_MINOR
indicates that the Page Fault has been handled without blocking the current process;
this kind of Page Fault is called minor fault. The value VM_FAULT_MAJOR indicates that
the Page Fault forced the current process to sleep (most likely because time was
spent while filling the page frame assigned to the process with data read from disk); a
Page Fault that blocks the current process is called a major fault. The function can
also return VM_FAULT_OOM (for not enough memory) or VM_FAULT_SIGBUS (for every
other error).

If handle_mm_fault() returns the value VM_FAULT_SIGBUS, a SIGBUS signal is sent to the
process:

if (ret == VM_FAULT_SIGBUS) {
do_sigbus:
 up_read(&tsk->mm->mmap_sem);
 if (!(error_code & 4)) /* Kernel Mode */
 goto no_context;
 tsk->thread.cr2 = address;

* However, this case should never happen, because the kernel does not assign privileged page frames to the
processes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 9: Process Address Space

 tsk->thread.error_code = error_code;
 tsk->thread.trap_no = 14;
 info.si_signo = SIGBUS;
 info.si_errno = 0;
 info.si_code = BUS_ADRERR;
 info.si_addr = (void *) address;
 force_sig_info(SIGBUS, &info, tsk);
}

If handle_mm_fault() cannot allocate the new page frame, it returns the value VM_
FAULT_OOM; in this case, the kernel usually kills the current process. However, if
current is the init process, it is just put at the end of the run queue and the scheduler
is invoked; once init resumes its execution, handle_mm_fault() is executed again:

if (ret == VM_FAULT_OOM) {
 out_of_memory:
 up_read(&tsk->mm->mmap_sem);
 if (tsk->pid != 1) {
 if (error_code & 4) /* User Mode */
 do_exit(SIGKILL);
 goto no_context;
 }
 yield();
 down_read(&tsk->mm->mmap_sem);
 goto survive;
}

The handle_mm_fault() function acts on four parameters:

mm
A pointer to the memory descriptor of the process that was running on the CPU
when the exception occurred

vma
A pointer to the descriptor of the memory region, including the linear address
that caused the exception

address
The linear address that caused the exception

write_access
Set to 1 if tsk attempted to write in address and to 0 if tsk attempted to read or
execute it

The function starts by checking whether the Page Middle Directory and the Page
Table used to map address exist. Even if address belongs to the process address
space, the corresponding Page Tables might not have been allocated, so the task of
allocating them precedes everything else:

pgd = pgd_offset(mm, address);
spin_lock(&mm->page_table_lock);
pud = pud_alloc(mm, pgd, address);
if (pud) {
 pmd = pmd_alloc(mm, pud, address);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Fault Exception Handler | 385

 if (pmd) {
 pte = pte_alloc_map(mm, pmd, address);
 if (pte)
 return handle_pte_fault(mm, vma, address,
 write_access, pte, pmd);
 }
}
spin_unlock(&mm->page_table_lock);
return VM_FAULT_OOM;

The pgd local variable contains the Page Global Directory entry that refers to address;
pud_alloc() and pmd_alloc() are invoked to allocate, if needed, a new Page Upper
Directory and a new Page Middle Directory, respectively.* pte_alloc_map() is then
invoked to allocate, if needed, a new Page Table. If both operations are successful, the
pte local variable points to the Page Table entry that refers to address. The handle_
pte_fault() function is then invoked to inspect the Page Table entry corresponding
to address and to determine how to allocate a new page frame for the process:

• If the accessed page is not present—that is, if it is not already stored in any page
frame—the kernel allocates a new page frame and initializes it properly; this
technique is called demand paging.

• If the accessed page is present but is marked read-only—i.e., if it is already
stored in a page frame—the kernel allocates a new page frame and initializes its
contents by copying the old page frame data; this technique is called Copy On
Write.

Demand Paging
The term demand paging denotes a dynamic memory allocation technique that con-
sists of deferring page frame allocation until the last possible moment—until the pro-
cess attempts to address a page that is not present in RAM, thus causing a Page Fault
exception.

The motivation behind demand paging is that processes do not address all the
addresses included in their address space right from the start; in fact, some of these
addresses may never be used by the process. Moreover, the program locality princi-
ple (see the section “Hardware Cache” in Chapter 2) ensures that, at each stage of
program execution, only a small subset of the process pages are really referenced,
and therefore the page frames containing the temporarily useless pages can be used
by other processes. Demand paging is thus preferable to global allocation (assigning
all page frames to the process right from the start and leaving them in memory until
program termination), because it increases the average number of free page frames in
the system and therefore allows better use of the available free memory. From

* On 80 × 86 microprocessors, these allocations never occur, because the Page Upper Directories are always
included in the Page Global Directory, and the Page Middle Directories are either included in the Page Upper
Directory (PAE not enabled) or allocated together with the Page Upper Directory (PAE enabled).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 9: Process Address Space

another viewpoint, it allows the system as a whole to get better throughput with the
same amount of RAM.

The price to pay for all these good things is system overhead: each Page Fault excep-
tion induced by demand paging must be handled by the kernel, thus wasting CPU
cycles. Fortunately, the locality principle ensures that once a process starts working
with a group of pages, it sticks with them without addressing other pages for quite a
while. Thus, Page Fault exceptions may be considered rare events.

An addressed page may not be present in main memory either because the page was
never accessed by the process, or because the corresponding page frame has been
reclaimed by the kernel (see Chapter 17).

In both cases, the page fault handler must assign a new page frame to the process.
How this page frame is initialized, however, depends on the kind of page and on
whether the page was previously accessed by the process. In particular:

1. Either the page was never accessed by the process and it does not map a disk file,
or the page maps a disk file. The kernel can recognize these cases because the
Page Table entry is filled with zeros—i.e., the pte_none macro returns the
value 1.

2. The page belongs to a non-linear disk file mapping (see the section “Non-Linear
Memory Mappings” in Chapter 16). The kernel can recognize this case, because
the Present flag is cleared and the Dirty flag is set—i.e., the pte_file macro
returns the value 1.

3. The page was already accessed by the process, but its content is temporarily
saved on disk. The kernel can recognize this case because the Page Table entry is
not filled with zeros, but the Present and Dirty flags are cleared.

Thus, the handle_pte_fault() function is able to distinguish the three cases by
inspecting the Page Table entry that refers to address:

entry = *pte;
if (!pte_present(entry)) {
 if (pte_none(entry))
 return do_no_page(mm, vma, address, write_access, pte, pmd);
 if (pte_file(entry))
 return do_file_page(mm, vma, address, write_access, pte, pmd);
 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
}

We’ll examine cases 2 and 3 in Chapter 16 and in Chapter 17, respectively.

In case 1, when the page was never accessed or the page linearly maps a disk file, the
do_no_page() function is invoked. There are two ways to load the missing page,
depending on whether the page is mapped to a disk file. The function determines
this by checking the nopage method of the vma memory region object, which points to
the function that loads the missing page from disk into RAM if the page is mapped to
a file. Therefore, the possibilities are:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Fault Exception Handler | 387

• The vma->vm_ops->nopage field is not NULL. In this case, the memory region maps
a disk file and the field points to the function that loads the page. This case is
covered in the section “Demand Paging for Memory Mapping” in Chapter 16
and in the section “IPC Shared Memory” in Chapter 19.

• Either the vma->vm_ops field or the vma->vm_ops->nopage field is NULL. In this case,
the memory region does not map a file on disk—i.e., it is an anonymous map-
ping. Thus, do_no_page() invokes the do_anonymous_page() function to get a new
page frame:

if (!vma->vm_ops || !vma->vm_ops->nopage)
 return do_anonymous_page(mm, vma, page_table, pmd,
 write_access, address);

The do_anonymous_page() function* handles write and read requests separately:

if (write_access) {
 pte_unmap(page_table);
 spin_unlock(&mm->page_table_lock);
 page = alloc_page(GFP_HIGHUSER | _ _GFP_ZERO);
 spin_lock(&mm->page_table_lock);
 page_table = pte_offset_map(pmd, addr);
 mm->rss++;
 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
 vma->vm_page_prot)), vma);
 lru_cache_add_active(page);
 SetPageReferenced(page);
 set_pte(page_table, entry);
 pte_unmap(page_table);
 spin_unlock(&mm->page_table_lock);
 return VM_FAULT_MINOR;
}

The first execution of the pte_unmap macro releases the temporary kernel mapping for
the high-memory physical address of the Page Table entry established by pte_offset_
map before invoking the handle_pte_fault() function (see Table 2-7 in the section
“Page Table Handling” in Chapter 2). The following pair or pte_offset_map and pte_
unmap macros acquires and releases the same temporary kernel mapping. The tempo-
rary kernel mapping has to be released before invoking alloc_page(), because this
function might block the current process.

The function increases the rss field of the memory descriptor to keep track of the
number of page frames allocated to the process. The Page Table entry is then set to
the physical address of the page frame, which is marked as writable† and dirty. The
lru_cache_add_active() function inserts the new page frame in the swap-related data
structures; we discuss it in Chapter 17.

* To simplify the description of this function, we skip the statements that deal with reverse mapping, a topic
that will be covered in the section “Reverse Mapping” in Chapter 17.

† If a debugger attempts to write in a page belonging to a read-only memory region of the traced process, the
kernel does not set the Read/Write flag. The maybe_mkwrite() function takes care of this special case.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 9: Process Address Space

Conversely, when handling a read access, the content of the page is irrelevant
because the process is addressing it for the first time. It is safer to give a page filled
with zeros to the process rather than an old page filled with information written by
some other process. Linux goes one step further in the spirit of demand paging.
There is no need to assign a new page frame filled with zeros to the process right
away, because we might as well give it an existing page called zero page, thus defer-
ring further page frame allocation. The zero page is allocated statically during kernel
initialization in the empty_zero_page variable (an array of 4,096 bytes filled with
zeros).

The Page Table entry is thus set with the physical address of the zero page:

entry = pte_wrprotect(mk_pte(virt_to_page(empty_zero_page),
 vma->vm_page_prot));
set_pte(page_table, entry);
spin_unlock(&mm->page_table_lock);
return VM_FAULT_MINOR;

Because the page is marked as nonwritable, if the process attempts to write in it, the
Copy On Write mechanism is activated. Only then does the process get a page of its
own to write in. The mechanism is described in the next section.

Copy On Write
First-generation Unix systems implemented process creation in a rather clumsy way:
when a fork() system call was issued, the kernel duplicated the whole parent
address space in the literal sense of the word and assigned the copy to the child pro-
cess. This activity was quite time consuming since it required:

• Allocating page frames for the Page Tables of the child process

• Allocating page frames for the pages of the child process

• Initializing the Page Tables of the child process

• Copying the pages of the parent process into the corresponding pages of the
child process

This way of creating an address space involved many memory accesses, used up
many CPU cycles, and completely spoiled the cache contents. Last but not least, it
was often pointless because many child processes start their execution by loading a
new program, thus discarding entirely the inherited address space (see Chapter 20).

Modern Unix kernels, including Linux, follow a more efficient approach called Copy
On Write (COW). The idea is quite simple: instead of duplicating page frames, they
are shared between the parent and the child process. However, as long as they are
shared, they cannot be modified. Whenever the parent or the child process attempts
to write into a shared page frame, an exception occurs. At this point, the kernel
duplicates the page into a new page frame that it marks as writable. The original
page frame remains write-protected: when the other process tries to write into it, the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Fault Exception Handler | 389

kernel checks whether the writing process is the only owner of the page frame; in
such a case, it makes the page frame writable for the process.

The _count field of the page descriptor is used to keep track of the number of pro-
cesses that are sharing the corresponding page frame. Whenever a process releases a
page frame or a Copy On Write is executed on it, its _count field is decreased; the
page frame is freed only when _count becomes -1 (see the section “Page Descrip-
tors” in Chapter 8).

Let’s now describe how Linux implements COW. When handle_pte_fault() deter-
mines that the Page Fault exception was caused by an access to a page present in
memory, it executes the following instructions:

if (pte_present(entry)) {
 if (write_access) {
 if (!pte_write(entry))
 return do_wp_page(mm, vma, address, pte, pmd, entry);
 entry = pte_mkdirty(entry);
 }
 entry = pte_mkyoung(entry);
 set_pte(pte, entry);
 flush_tlb_page(vma, address);
 pte_unmap(pte);
 spin_unlock(&mm->page_table_lock);
 return VM_FAULT_MINOR;
}

The handle_pte_fault() function is architecture-independent: it considers each pos-
sible violation of the page access rights. However, in the 80 × 86 architecture, if the
page is present, the access was for writing and the page frame is write-protected (see
the earlier section “Handling a Faulty Address Inside the Address Space”). Thus, the
do_wp_page() function is always invoked.

The do_wp_page() function* starts by deriving the page descriptor of the page frame
referenced by the Page Table entry involved in the Page Fault exception. Next, the
function determines whether the page must really be duplicated. If only one process
owns the page, Copy On Write does not apply, and the process should be free to
write the page. Basically, the function reads the _count field of the page descriptor: if
it is equal to 0 (a single owner), COW must not be done. Actually, the check is
slightly more complicated, because the _count field is also increased when the page is
inserted into the swap cache (see the section “The Swap Cache” in Chapter 17) and
when the PG_private flag in the page descriptor is set. However, when COW is not
to be done, the page frame is marked as writable, so that it does not cause further
Page Fault exceptions when writes are attempted:

set_pte(page_table, maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),vma));
flush_tlb_page(vma, address);

* To simplify the description of this function, we skip the statements that deal with reverse mapping, a topic
that will be covered in the section “Reverse Mapping” in Chapter 17.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 9: Process Address Space

pte_unmap(page_table);
spin_unlock(&mm->page_table_lock);
return VM_FAULT_MINOR;

If the page is shared among several processes by means of COW, the function copies
the content of the old page frame (old_page) into the newly allocated one (new_page).
To avoid race conditions, get_page() is invoked to increase the usage counter of old_
page before starting the copy operation:

old_page = pte_page(pte);
pte_unmap(page_table);
get_page(old_page);
spin_unlock(&mm->page_table_lock);
if (old_page == virt_to_page(empty_zero_page))
 new_page = alloc_page(GFP_HIGHUSER | _ _GFP_ZERO);
} else {
 new_page = alloc_page(GFP_HIGHUSER);
 vfrom = kmap_atomic(old_page, KM_USER0)
 vto = kmap_atomic(new_page, KM_USER1);
 copy_page(vto, vfrom);
 kunmap_atomic(vfrom, KM_USER0);
 kunmap_atomic(vto, KM_USER0);
}

If the old page is the zero page, the new frame is efficiently filled with zeros when it is
allocated (_ _GFP_ZERO flag). Otherwise, the page frame content is copied using the
copy_page() macro. Special handling for the zero page is not strictly required, but it
improves the system performance, because it preserves the microprocessor hardware
cache by making fewer address references.

Because the allocation of a page frame can block the process, the function checks
whether the Page Table entry has been modified since the beginning of the function
(pte and *page_table do not have the same value). In this case, the new page frame is
released, the usage counter of old_page is decreased (to undo the increment made
previously), and the function terminates.

If everything looks OK, the physical address of the new page frame is finally written
into the Page Table entry, and the corresponding TLB register is invalidated:

spin_lock(&mm->page_table_lock);
entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page,
 vma->vm_page_prot)),vma);
set_pte(page_table, entry);
flush_tlb_page(vma, address);
lru_cache_add_active(new_page);
pte_unmap(page_table);
spin_unlock(&mm->page_table_lock);

The lru_cache_add_active() function inserts the new page frame in the swap-related
data structures; see Chapter 17 for its description.

Finally, do_wp_page() decreases the usage counter of old_page twice. The first decre-
ment undoes the safety increment made before copying the page frame contents; the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Page Fault Exception Handler | 391

second decrement reflects the fact that the current process no longer owns the page
frame.

Handling Noncontiguous Memory Area Accesses
We have seen in the section “Noncontiguous Memory Area Management” in
Chapter 8 that the kernel is quite lazy in updating the Page Table entries correspond-
ing to noncontiguous memory areas. In fact, the vmalloc() and vfree() functions
limit themselves to updating the master kernel Page Tables (i.e., the Page Global
Directory init_mm.pgd and its child Page Tables).

However, once the kernel initialization phase ends, the master kernel Page Tables are
not directly used by any process or kernel thread. Thus, consider the first time that a
process in Kernel Mode accesses a noncontiguous memory area. When translating
the linear address into a physical address, the CPU’s memory management unit
encounters a null Page Table entry and raises a Page Fault. However, the handler rec-
ognizes this special case because the exception occurred in Kernel Mode, and the
faulty linear address is greater than TASK_SIZE. Thus, the do_page_fault() handler
checks the corresponding master kernel Page Table entry:

vmalloc_fault:
asm("movl %%cr3,%0":"=r" (pgd_paddr));
pgd = pgd_index(address) + (pgd_t *) __va(pgd_paddr);
pgd_k = init_mm.pgd + pgd_index(address);
if (!pgd_present(*pgd_k))
 goto no_context;
pud = pud_offset(pgd, address);
pud_k = pud_offset(pgd_k, address);
if (!pud_present(*pud_k))
 goto no_context;
pmd = pmd_offset(pud, address);
pmd_k = pmd_offset(pud_k, address);
if (!pmd_present(*pmd_k))
 goto no_context;
set_pmd(pmd, *pmd_k);
pte_k = pte_offset_kernel(pmd_k, address);
if (!pte_present(*pte_k))
 goto no_context;
return;

The pgd_paddr local variable is loaded with the physical address of the Page Global
Directory of the current process, which is stored in the cr3 register.* The pgd local
variable is then loaded with the linear address corresponding to pgd_paddr, and the
pgd_k local variable is loaded with the linear address of the master kernel Page Glo-
bal Directory.

* The kernel doesn’t use current->mm->pgd to derive the address because this fault can occur anytime, even
during a process switch.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 9: Process Address Space

If the master kernel Page Global Directory entry corresponding to the faulty linear
address is null, the function jumps to the code at the no_context label (see the earlier
section “Handling a Faulty Address Outside the Address Space”). Otherwise, the
function looks at the master kernel Page Upper Directory entry and at the master
kernel Page Middle Directory entry corresponding to the faulty linear address. Again,
if either one of these entries is null, a jump is done to the no_context label. Other-
wise, the master entry is copied into the corresponding entry of the process’s Page
Middle Directory.* Then the whole operation is repeated with the master Page Table
entry.

Creating and Deleting a Process Address Space
Of the six typical cases mentioned earlier in the section “The Process’s Address
Space,” in which a process gets new memory regions, the first one—issuing a fork()
system call—requires the creation of a whole new address space for the child pro-
cess. Conversely, when a process terminates, the kernel destroys its address space. In
this section, we discuss how these two activities are performed by Linux.

Creating a Process Address Space
In the section “The clone(), fork(), and vfork() System Calls” in Chapter 3, we men-
tioned that the kernel invokes the copy_mm() function while creating a new process.
This function creates the process address space by setting up all Page Tables and
memory descriptors of the new process.

Each process usually has its own address space, but lightweight processes can be cre-
ated by calling clone() with the CLONE_VM flag set. These processes share the same
address space; that is, they are allowed to address the same set of pages.

Following the COW approach described earlier, traditional processes inherit the
address space of their parent: pages stay shared as long as they are only read. When
one of the processes attempts to write one of them, however, the page is duplicated;
after some time, a forked process usually gets its own address space that is different
from that of the parent process. Lightweight processes, on the other hand, use the
address space of their parent process. Linux implements them simply by not dupli-
cating address space. Lightweight processes can be created considerably faster than
normal processes, and the sharing of pages can also be considered a benefit as long
as the parent and children coordinate their accesses carefully.

* You might remember from the section “Paging in Linux” in Chapter 2 that if PAE is enabled then the Page
Upper Directory entry cannot be null; otherwise, if PAE is disabled, setting the Page Middle Directory entry
implicitly sets the Page Upper Directory entry, too.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating and Deleting a Process Address Space | 393

If the new process has been created by means of the clone() system call and if the
CLONE_VM flag of the flag parameter is set, copy_mm() gives the clone (tsk) the address
space of its parent (current):

if (clone_flags & CLONE_VM) {
 atomic_inc(¤t->mm->mm_users);
 spin_unlock_wait(¤t->mm->page_table_lock);
 tsk->mm = current->mm;
 tsk->active_mm = current->mm;
 return 0;
}

Invoking the spin_unlock_wait() function ensures that, if the page table spin lock of
the process is held by some other CPU, the page fault handler does not terminate
until that lock is released. In fact, beside protecting the page tables, this spin lock
must forbid the creation of new lightweight processes sharing the current->mm
descriptor.

If the CLONE_VM flag is not set, copy_mm() must create a new address space (even
though no memory is allocated within that address space until the process requests
an address). The function allocates a new memory descriptor, stores its address in
the mm field of the new process descriptor tsk, and copies the contents of current->mm
into tsk->mm. It then changes a few fields of the new descriptor:

tsk->mm = kmem_cache_alloc(mm_cachep, SLAB_KERNEL);
memcpy(tsk->mm, current->mm, sizeof(*tsk->mm));
atomic_set(&tsk->mm->mm_users, 1);
atomic_set(&tsk->mm->mm_count, 1);
init_rwsem(&tsk->mm->mmap_sem);
tsk->mm->core_waiters = 0;
tsk->mm->page_table_lock = SPIN_LOCK_UNLOCKED;
tsk->mm->ioctx_list_lock = RW_LOCK_UNLOCKED;
tsk->mm->ioctx_list = NULL;
tsk->mm->default_kioctx = INIT_KIOCTX(tsk->mm->default_kioctx,
 *tsk->mm);
tsk->mm->free_area_cache = (TASK_SIZE/3+0xfff)&0xfffff000;
tsk->mm->pgd = pgd_alloc(tsk->mm);
tsk->mm->def_flags = 0;

Remember that the pgd_alloc() macro allocates a Page Global Directory for the new
process.

The architecture-dependent init_new_context() function is then invoked: when
dealing with 80 × 86 processors, this function checks whether the current process
owns a customized Local Descriptor Table; if so, init_new_context() makes a copy
of the Local Descriptor Table of current and adds it to the address space of tsk.

Finally, the dup_mmap() function is invoked to duplicate both the memory regions
and the Page Tables of the parent process. This function inserts the new memory
descriptor tsk->mm in the global list of memory descriptors. Then it scans the list of
regions owned by the parent process, starting from the one pointed to by current->
mm->mmap. It duplicates each vm_area_struct memory region descriptor encountered

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 9: Process Address Space

and inserts the copy in the list of regions and in the red-black tree owned by the child
process.

Right after inserting a new memory region descriptor, dup_mmap() invokes copy_page_
range() to create, if necessary, the Page Tables needed to map the group of pages
included in the memory region and to initialize the new Page Table entries. In partic-
ular, each page frame corresponding to a private, writable page (VM_SHARED flag off
and VM_MAYWRITE flag on) is marked as read-only for both the parent and the child, so
that it will be handled with the Copy On Write mechanism.

Deleting a Process Address Space
When a process terminates, the kernel invokes the exit_mm() function to release the
address space owned by that process:

mm_release(tsk, tsk->mm);
if (!(mm = tsk->mm)) /* kernel thread ? */
 return;
down_read(&mm->mmap_sem);

The mm_release() function essentially wakes up all processes sleeping in the tsk->
vfork_done completion (see the section “Completions” in Chapter 5). Typically, the
corresponding wait queue is nonempty only if the exiting process was created by
means of the vfork() system call (see the section “The clone(), fork(), and vfork()
System Calls” in Chapter 3).

If the process being terminated is not a kernel thread, the exit_mm() function must
release the memory descriptor and all related data structures. First of all, it checks
whether the mm->core_waiters flag is set: if it does, then the process is dumping the
contents of the memory to a core file. To avoid corruption in the core file, the func-
tion makes use of the mm->core_done and mm->core_startup_done completions to seri-
alize the execution of the lightweight processes sharing the same memory descriptor
mm.

Next, the function increases the memory descriptor’s main usage counter, resets the
mm field of the process descriptor, and puts the processor in lazy TLB mode (see
“Handling the Hardware Cache and the TLB” in Chapter 2):

atomic_inc(&mm->mm_count);
spin_lock(tsk->alloc_lock);
tsk->mm = NULL;
up_read(&mm->map_sem);
enter_lazy_tlb(mm, current);
spin_unlock(tsk->alloc_lock);
mmput(mm);

Finally, the mmput() function is invoked to release the Local Descriptor Table, the
memory region descriptors, and the Page Tables. The memory descriptor itself, how-
ever, is not released, because exit_mm() has increased the main usage counter. The

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing the Heap | 395

descriptor will be released by the finish_task_switch() function when the process
being terminated will be effectively evicted from the local CPU (see the section “The
schedule() Function” in Chapter 7).

Managing the Heap
Each Unix process owns a specific memory region called the heap, which is used to
satisfy the process’s dynamic memory requests. The start_brk and brk fields of the
memory descriptor delimit the starting and ending addresses, respectively, of that
region.

The following APIs can be used by the process to request and release dynamic mem-
ory:

malloc(size)
Requests size bytes of dynamic memory; if the allocation succeeds, it returns the
linear address of the first memory location.

calloc(n,size)
Requests an array consisting of n elements of size size; if the allocation suc-
ceeds, it initializes the array components to 0 and returns the linear address of
the first element.

realloc(ptr,size)
Changes the size of a memory area previously allocated by malloc() or calloc().

free(addr)
Releases the memory region allocated by malloc() or calloc() that has an ini-
tial address of addr.

brk(addr)
Modifies the size of the heap directly; the addr parameter specifies the new value
of current->mm->brk, and the return value is the new ending address of the mem-
ory region (the process must check whether it coincides with the requested addr
value).

sbrk(incr)
Is similar to brk(), except that the incr parameter specifies the increment or dec-
rement of the heap size in bytes.

The brk() function differs from the other functions listed because it is the only one
implemented as a system call. All the other functions are implemented in the C
library by using brk() and mmap().*

When a process in User Mode invokes the brk() system call, the kernel executes the
sys_brk(addr) function. This function first verifies whether the addr parameter falls

* The realloc() library function can also make use of the mremap() system call.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 9: Process Address Space

inside the memory region that contains the process code; if so, it returns immedi-
ately because the heap cannot overlap with memory region containing the process’s
code:

mm = current->mm;
down_write(&mm->mmap_sem);
if (addr < mm->end_code) {
out:
 up_write(&mm->mmap_sem);
 return mm->brk;
}

Because the brk() system call acts on a memory region, it allocates and deallocates
whole pages. Therefore, the function aligns the value of addr to a multiple of PAGE_
SIZE and compares the result with the value of the brk field of the memory descriptor:

newbrk = (addr + 0xfff) & 0xfffff000;
oldbrk = (mm->brk + 0xfff) & 0xfffff000;
if (oldbrk == newbrk) {
 mm->brk = addr;
 goto out;
}

If the process asked to shrink the heap, sys_brk() invokes the do_munmap() function
to do the job and then returns:

if (addr <= mm->brk) {
 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 mm->brk = addr;
 goto out;
}

If the process asked to enlarge the heap, sys_brk() first checks whether the process is
allowed to do so. If the process is trying to allocate memory outside its limit, the
function simply returns the original value of mm->brk without allocating more
memory:

rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
if (rlim < RLIM_INFINITY && addr - mm->start_data > rlim)
 goto out;

The function then checks whether the enlarged heap would overlap some other
memory region belonging to the process and, if so, returns without doing anything:

if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 goto out;

If everything is OK, the do_brk() function is invoked. If it returns the oldbrk value,
the allocation was successful and sys_brk() returns the value addr; otherwise, it
returns the old mm->brk value:

if (do_brk(oldbrk, newbrk-oldbrk) == oldbrk)
 mm->brk = addr;
goto out;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing the Heap | 397

The do_brk() function is actually a simplified version of do_mmap() that handles only
anonymous memory regions. Its invocation might be considered equivalent to:

do_mmap(NULL, oldbrk, newbrk-oldbrk, PROT_READ|PROT_WRITE|PROT_EXEC,
 MAP_FIXED|MAP_PRIVATE, 0)

do_brk() is slightly faster than do_mmap(), because it avoids several checks on the
memory region object fields by assuming that the memory region doesn’t map a file
on disk.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

398

Chapter 10CHAPTER 10

System Calls

Operating systems offer processes running in User Mode a set of interfaces to inter-
act with hardware devices such as the CPU, disks, and printers. Putting an extra
layer between the application and the hardware has several advantages. First, it
makes programming easier by freeing users from studying low-level programming
characteristics of hardware devices. Second, it greatly increases system security,
because the kernel can check the accuracy of the request at the interface level before
attempting to satisfy it. Last but not least, these interfaces make programs more por-
table, because they can be compiled and executed correctly on every kernel that
offers the same set of interfaces.

Unix systems implement most interfaces between User Mode processes and hardware
devices by means of system calls issued to the kernel. This chapter examines in detail
how Linux implements system calls that User Mode programs issue to the kernel.

POSIX APIs and System Calls
Let’s start by stressing the difference between an application programmer interface
(API) and a system call. The former is a function definition that specifies how to
obtain a given service, while the latter is an explicit request to the kernel made via a
software interrupt.

Unix systems include several libraries of functions that provide APIs to program-
mers. Some of the APIs defined by the libc standard C library refer to wrapper rou-
tines (routines whose only purpose is to issue a system call). Usually, each system call
has a corresponding wrapper routine, which defines the API that application pro-
grams should employ.

The converse is not true, by the way—an API does not necessarily correspond to a
specific system call. First of all, the API could offer its services directly in User Mode.
(For something abstract such as math functions, there may be no reason to make sys-
tem calls.) Second, a single API function could make several system calls. Moreover,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Call Handler and Service Routines | 399

several API functions could make the same system call, but wrap extra functionality
around it. For instance, in Linux, the malloc(), calloc(), and free() APIs are imple-
mented in the libc library. The code in this library keeps track of the allocation and
deallocation requests and uses the brk() system call to enlarge or shrink the process
heap (see the section “Managing the Heap” in Chapter 9).

The POSIX standard refers to APIs and not to system calls. A system can be certified
as POSIX-compliant if it offers the proper set of APIs to the application programs, no
matter how the corresponding functions are implemented. As a matter of fact, sev-
eral non-Unix systems have been certified as POSIX-compliant, because they offer all
traditional Unix services in User Mode libraries.

From the programmer’s point of view, the distinction between an API and a system
call is irrelevant—the only things that matter are the function name, the parameter
types, and the meaning of the return code. From the kernel designer’s point of view,
however, the distinction does matter because system calls belong to the kernel, while
User Mode libraries don’t.

Most wrapper routines return an integer value, whose meaning depends on the cor-
responding system call. A return value of –1 usually indicates that the kernel was
unable to satisfy the process request. A failure in the system call handler may be
caused by invalid parameters, a lack of available resources, hardware problems, and
so on. The specific error code is contained in the errno variable, which is defined in
the libc library.

Each error code is defined as a macro constant, which yields a corresponding posi-
tive integer value. The POSIX standard specifies the macro names of several error
codes. In Linux, on 80 × 86 systems, these macros are defined in the header file
include/asm-i386/errno.h. To allow portability of C programs among Unix systems,
the include/asm-i386/errno.h header file is included, in turn, in the standard /usr/
include/errno.h C library header file. Other systems have their own specialized subdi-
rectories of header files.

System Call Handler and Service Routines
When a User Mode process invokes a system call, the CPU switches to Kernel Mode
and starts the execution of a kernel function. As we will see in the next section, in the
80 × 86 architecture a Linux system call can be invoked in two different ways. The net
result of both methods, however, is a jump to an assembly language function called
the system call handler.

Because the kernel implements many different system calls, the User Mode process
must pass a parameter called the system call number to identify the required system
call; the eax register is used by Linux for this purpose. As we’ll see in the section
“Parameter Passing” later in this chapter, additional parameters are usually passed
when invoking a system call.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 10: System Calls

All system calls return an integer value. The conventions for these return values are
different from those for wrapper routines. In the kernel, positive or 0 values denote a
successful termination of the system call, while negative values denote an error con-
dition. In the latter case, the value is the negation of the error code that must be
returned to the application program in the errno variable. The errno variable is not
set or used by the kernel. Instead, the wrapper routines handle the task of setting this
variable after a return from a system call.

The system call handler, which has a structure similar to that of the other exception
handlers, performs the following operations:

• Saves the contents of most registers in the Kernel Mode stack (this operation is
common to all system calls and is coded in assembly language).

• Handles the system call by invoking a corresponding C function called the sys-
tem call service routine.

• Exits from the handler: the registers are loaded with the values saved in the Ker-
nel Mode stack, and the CPU is switched back from Kernel Mode to User Mode
(this operation is common to all system calls and is coded in assembly language).

The name of the service routine associated with the xyz() system call is usually sys_
xyz(); there are, however, a few exceptions to this rule.

Figure 10-1 illustrates the relationships between the application program that invokes
a system call, the corresponding wrapper routine, the system call handler, and the sys-
tem call service routine. The arrows denote the execution flow between the functions.
The terms “SYSCALL” and “SYSEXIT” are placeholders for the actual assembly language
instructions that switch the CPU, respectively, from User Mode to Kernel Mode and
from Kernel Mode to User Mode.

To associate each system call number with its corresponding service routine, the ker-
nel uses a system call dispatch table , which is stored in the sys_call_table array and

Figure 10-1. Invoking a system call

System call
invocation in
application

program

...
xyz()
...

xyz() {
...
SYSCALL
...
}

Wrapper routine
in libc standard

library

User Mode

System call
handler

system_call:
 ...
 sys_xyz()
 ...
 SYSEXIT

System call
service routine

Kernel Mode

sys_xyz() {

 ...

}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Entering and Exiting a System Call | 401

has NR_syscalls entries (289 in the Linux 2.6.11 kernel). The nth entry contains the
service routine address of the system call having number n.

The NR_syscalls macro is just a static limit on the maximum number of implement-
able system calls; it does not indicate the number of system calls actually
implemented. Indeed, each entry of the dispatch table may contain the address of the
sys_ni_syscall() function, which is the service routine of the “nonimplemented”
system calls; it just returns the error code -ENOSYS.

Entering and Exiting a System Call
Native applications* can invoke a system call in two different ways:

• By executing the int $0x80 assembly language instruction; in older versions of
the Linux kernel, this was the only way to switch from User Mode to Kernel
Mode.

• By executing the sysenter assembly language instruction, introduced in the Intel
Pentium II microprocessors; this instruction is now supported by the Linux 2.6
kernel.

Similarly, the kernel can exit from a system call—thus switching the CPU back to
User Mode—in two ways:

• By executing the iret assembly language instruction.

• By executing the sysexit assembly language instruction, which was introduced
in the Intel Pentium II microprocessors together with the sysenter instruction.

However, supporting two different ways to enter the kernel is not as simple as it
might look, because:

• The kernel must support both older libraries that only use the int $0x80 instruc-
tion and more recent ones that also use the sysenter instruction.

• A standard library that makes use of the sysenter instruction must be able to
cope with older kernels that support only the int $0x80 instruction.

• The kernel and the standard library must be able to run both on older proces-
sors that do not include the sysenter instruction and on more recent ones that
include it.

We will see in the section “Issuing a System Call via the sysenter Instruction” later in
this chapter how the Linux kernel solves these compatibility problems.

* As we will see in the section “Execution Domains” in Chapter 20, Linux can execute programs compiled for
“foreign” operating systems. Therefore, the kernel offers a compatibility mode to enter a system call: User
Mode processes executing iBCS and Solaris/x86 programs can enter the kernel by jumping into suitable call
gates included in the default Local Descriptor Table (see the section “The Linux LDTs” in Chapter 2).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 10: System Calls

Issuing a System Call via the int $0x80 Instruction
The “traditional” way to invoke a system call makes use of the int assembly lan-
guage instruction, which was discussed in the section “Hardware Handling of Inter-
rupts and Exceptions” in Chapter 4.

The vector 128—in hexadecimal, 0x80—is associated with the kernel entry point.
The trap_init() function, invoked during kernel initialization, sets up the Interrupt
Descriptor Table entry corresponding to vector 128 as follows:

set_system_gate(0x80, &system_call);

The call loads the following values into the gate descriptor fields (see the section
“Interrupt, Trap, and System Gates” in Chapter 4):

Segment Selector
The _ _KERNEL_CS Segment Selector of the kernel code segment.

Offset
The pointer to the system_call() system call handler.

Type
Set to 15. Indicates that the exception is a Trap and that the corresponding han-
dler does not disable maskable interrupts.

DPL (Descriptor Privilege Level)
Set to 3. This allows processes in User Mode to invoke the exception handler
(see the section “Hardware Handling of Interrupts and Exceptions” in
Chapter 4).

Therefore, when a User Mode process issues an int $0x80 instruction, the CPU
switches into Kernel Mode and starts executing instructions from the system_call
address.

The system_call() function

The system_call() function starts by saving the system call number and all the CPU
registers that may be used by the exception handler on the stack—except for eflags,
cs, eip, ss, and esp, which have already been saved automatically by the control unit
(see the section “Hardware Handling of Interrupts and Exceptions” in Chapter 4).
The SAVE_ALL macro, which was already discussed in the section “I/O Interrupt Han-
dling” in Chapter 4, also loads the Segment Selector of the kernel data segment in ds
and es:

system_call:
 pushl %eax
 SAVE_ALL
 movl $0xffffe000, %ebx /* or 0xfffff000 for 4-KB stacks */
 andl %esp, %ebx

The function then stores the address of the thread_info data structure of the current
process in ebx (see the section “Identifying a Process” in Chapter 3). This is done by

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Entering and Exiting a System Call | 403

taking the value of the kernel stack pointer and rounding it up to a multiple of 4 or
8 KB (see the section “Identifying a Process” in Chapter 3).

Next, the system_call() function checks whether either one of the TIF_SYSCALL_
TRACE and TIF_SYSCALL_AUDIT flags included in the flags field of the thread_info
structure is set—that is, whether the system call invocations of the executed pro-
gram are being traced by a debugger. If this is the case, system_call() invokes the
do_syscall_trace() function twice: once right before and once right after the execu-
tion of the system call service routine (as described later). This function stops
current and thus allows the debugging process to collect information about it.

A validity check is then performed on the system call number passed by the User
Mode process. If it is greater than or equal to the number of entries in the system call
dispatch table, the system call handler terminates:

 cmpl $NR_syscalls, %eax
 jb nobadsys
 movl $(-ENOSYS), 24(%esp)
 jmp resume_userspace
nobadsys:

If the system call number is not valid, the function stores the -ENOSYS value in the
stack location where the eax register has been saved—that is, at offset 24 from the
current stack top. It then jumps to resume_userspace (see below). In this way, when
the process resumes its execution in User Mode, it will find a negative return code in
eax.

Finally, the specific service routine associated with the system call number contained
in eax is invoked:

 call *sys_call_table(0, %eax, 4)

Because each entry in the dispatch table is 4 bytes long, the kernel finds the address
of the service routine to be invoked by multiplying the system call number by 4, add-
ing the initial address of the sys_call_table dispatch table, and extracting a pointer
to the service routine from that slot in the table.

Exiting from the system call

When the system call service routine terminates, the system_call() function gets its
return code from eax and stores it in the stack location where the User Mode value of
the eax register is saved:

 movl %eax, 24(%esp)

Thus, the User Mode process will find the return code of the system call in the eax
register.

Then, the system_call() function disables the local interrupts and checks the flags in
the thread_info structure of current:

 cli
 movl 8(%ebp), %ecx

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 10: System Calls

 testw $0xffff, %cx
 je restore_all

The flags field is at offset 8 in the thread_info structure; the mask 0xffff selects the
bits corresponding to all flags listed in Table 4-15 except TIF_POLLING_NRFLAG. If none
of these flags is set, the function jumps to the restore_all label: as described in the
section “Returning from Interrupts and Exceptions” in Chapter 4, this code restores
the contents of the registers saved on the Kernel Mode stack and executes an iret
assembly language instruction to resume the User Mode process. (You might refer to
the flow diagram in Figure 4-6.)

If any of the flags is set, then there is some work to be done before returning to User
Mode. If the TIF_SYSCALL_TRACE flag is set, the system_call() function invokes for the
second time the do_syscall_trace() function, then jumps to the resume_userspace
label. Otherwise, if the TIF_SYSCALL_TRACE flag is not set, the function jumps to the
work_pending label.

As explained in the section “Returning from Interrupts and Exceptions” in
Chapter 4, that code at the resume_userspace and work_pending labels checks for
rescheduling requests, virtual-8086 mode, pending signals, and single stepping; then
eventually a jump is done to the restore_all label to resume the execution of the
User Mode process.

Issuing a System Call via the sysenter Instruction
The int assembly language instruction is inherently slow because it performs several
consistency and security checks. (The instruction is described in detail in the section
“Hardware Handling of Interrupts and Exceptions” in Chapter 4.)

The sysenter instruction, dubbed in Intel documentation as “Fast System Call,” pro-
vides a faster way to switch from User Mode to Kernel Mode.

The sysenter instruction

The sysenter assembly language instruction makes use of three special registers that
must be loaded with the following information:*

SYSENTER_CS_MSR
The Segment Selector of the kernel code segment

SYSENTER_EIP_MSR
The linear address of the kernel entry point

SYSENTER_ESP_MSR
The kernel stack pointer

* “MSR” is an acronym for “Model-Specific Register” and denotes a register that is present only in some mod-
els of 80 × 86 microprocessors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Entering and Exiting a System Call | 405

When the sysenter instruction is executed, the CPU control unit:

1. Copies the content of SYSENTER_CS_MSR into cs.

2. Copies the content of SYSENTER_EIP_MSR into eip.

3. Copies the content of SYSENTER_ESP_MSR into esp.

4. Adds 8 to the value of SYSENTER_CS_MSR, and loads this value into ss.

Therefore, the CPU switches to Kernel Mode and starts executing the first instruc-
tion of the kernel entry point. As we have seen in the section “The Linux GDT” in
Chapter 2, the kernel stack segment coincides with the kernel data segment, and the
corresponding descriptor follows the descriptor of the kernel code segment in the
Global Descriptor Table; therefore, step 4 loads the proper Segment Selector in the
ss register.

The three model-specific registers are initialized by the enable_sep_cpu() function,
which is executed once by every CPU in the system during the initialization of the
kernel. The function performs the following steps:

1. Writes the Segment Selector of the kernel code (_ _KERNEL_CS) in the SYSENTER_
CS_MSR register.

2. Writes in the SYSENTER_CS_EIP register the linear address of the sysenter_entry()
function described below.

3. Computes the linear address of the end of the local TSS, and writes this value in
the SYSENTER_CS_ESP register.*

The setting of the SYSENTER_CS_ESP register deserves some comments. When a sys-
tem call starts, the kernel stack is empty, thus the esp register should point to the end
of the 4- or 8-KB memory area that includes the kernel stack and the descriptor of
the current process (see Figure 3-2). The User Mode wrapper routine cannot prop-
erly set this register, because it does not know the address of this memory area; on
the other hand, the value of the register must be set before switching to Kernel
Mode. Therefore, the kernel initializes the register so as to encode the address of the
Task State Segment of the local CPU. As we have described in step 3 of the _ _
switch_to() function (see the section “Performing the Process Switch” in Chapter 3),
at every process switch the kernel saves the kernel stack pointer of the current pro-
cess in the esp0 field of the local TSS. Thus, the system call handler reads the esp reg-
ister, computes the address of the esp0 field of the local TSS, and loads into the same
esp register the proper kernel stack pointer.

* The encoding of the local TSS address written in SYSENTER_ESP_MSR is due to the fact that the register should
point to a real stack, which grows towards lower address. In practice, initializing the register with any value
would work, provided that it is possible to get the address of the local TSS from such a value.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 10: System Calls

The vsyscall page

A wrapper function in the libc standard library can make use of the sysenter instruc-
tion only if both the CPU and the Linux kernel support it.

This compatibility problem calls for a quite sophisticated solution. Essentially, in the
initialization phase the sysenter_setup() function builds a page frame called vsyscall
page containing a small ELF shared object (i.e., a tiny ELF dynamic library). When a
process issues an execve() system call to start executing an ELF program, the code in
the vsyscall page is dynamically linked to the process address space (see the section
“The exec Functions” in Chapter 20). The code in the vsyscall page makes use of the
best available instruction to issue a system call.

The sysenter_setup() function allocates a new page frame for the vsyscall page and
associates its physical address with the FIX_VSYSCALL fix-mapped linear address (see
the section “Fix-Mapped Linear Addresses” in Chapter 2). Then, the function copies
in the page either one of two predefined ELF shared objects:

• If the CPU does not support sysenter, the function builds a vsyscall page that
includes the code:

_ _kernel_vsyscall:
 int $0x80
 ret

• Otherwise, if the CPU does support sysenter, the function builds a vsyscall page
that includes the code:

_ _kernel_vsyscall:
 pushl %ecx
 pushl %edx
 pushl %ebp
 movl %esp, %ebp
 sysenter

When a wrapper routine in the standard library must invoke a system call, it calls
the _ _kernel_vsyscall() function, whatever it may be.

A final compatibility problem is due to old versions of the Linux kernel that do not
support the sysenter instruction; in this case, of course, the kernel does not build the
vsyscall page and the _ _kernel_vsyscall() function is not linked to the address
space of the User Mode processes. When recent standard libraries recognize this fact,
they simply execute the int $0x80 instruction to invoke the system calls.

Entering the system call

The sequence of steps performed when a system call is issued via the sysenter
instruction is the following:

1. The wrapper routine in the standard library loads the system call number into
the eax register and calls the _ _kernel_vsyscall() function.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Entering and Exiting a System Call | 407

2. The _ _kernel_vsyscall() function saves on the User Mode stack the contents of
ebp, edx, and ecx (these registers are going to be used by the system call han-
dler), copies the user stack pointer in ebp, then executes the sysenter instruction.

3. The CPU switches from User Mode to Kernel Mode, and the kernel starts execut-
ing the sysenter_entry() function (pointed to by the SYSENTER_EIP_MSR register).

4. The sysenter_entry() assembly language function performs the following steps:

a. Sets up the kernel stack pointer:
movl -508(%esp), %esp

Initially, the esp register points to the first location after the local TSS, which
is 512bytes long. Therefore, the instruction loads in the esp register the con-
tents of the field at offset 4 in the local TSS, that is, the contents of the esp0
field. As already explained, the esp0 field always stores the kernel stack
pointer of the current process.

b. Enables local interrupts:
sti

c. Saves in the Kernel Mode stack the Segment Selector of the user data seg-
ment, the current user stack pointer, the eflags register, the Segment Selec-
tor of the user code segment, and the address of the instruction to be
executed when exiting from the system call:

pushl $(__USER_DS)
pushl %ebp
pushfl
pushl $(__USER_CS)
pushl $SYSENTER_RETURN

Observe that these instructions emulate some operations performed by the
int assembly language instruction (steps 5c and 7 in the description of int in
the section “Hardware Handling of Interrupts and Exceptions” in
Chapter 4).

d. Restores in ebp the original value of the register passed by the wrapper rou-
tine:

movl (%ebp), %ebp

This instruction does the job, because _ _kernel_vsyscall() saved on the
User Mode stack the original value of ebp and then loaded in ebp the current
value of the user stack pointer.

e. Invokes the system call handler by executing a sequence of instructions
identical to that starting at the system_call label described in the earlier sec-
tion “Issuing a System Call via the int $0x80 Instruction.”

Exiting from the system call

When the system call service routine terminates, the sysenter_entry() function exe-
cutes essentially the same operations as the system_call() function (see previous

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 10: System Calls

section). First, it gets the return code of the system call service routine from eax and
stores it in the kernel stack location where the User Mode value of the eax register is
saved. Then, the function disables the local interrupts and checks the flags in the
thread_info structure of current.

If any of the flags is set, then there is some work to be done before returning to User
Mode. In order to avoid code duplication, this case is handled exactly as in the
system_call() function, thus the function jumps to the resume_userspace or work_
pending labels (see flow diagram in Figure 4-6 in Chapter 4). Eventually, the iret
assembly language instruction fetches from the Kernel Mode stack the five argu-
ments saved in step 4c by the sysenter_entry() function, and thus switches the CPU
back to User Mode and starts executing the code at the SYSENTER_RETURN label (see
below).

If the sysenter_entry() function determines that the flags are cleared, it performs a
quick return to User Mode:

movl 40(%esp), %edx
movl 52(%esp), %ecx
xorl %ebp, %ebp
sti
sysexit

The edx and ecx registers are loaded with a couple of the stack values saved by
sysenter_entry() in step 4c in the previos section: edx gets the address of the
SYSENTER_RETURN label, while ecx gets the current user data stack pointer.

The sysexit instruction

The sysexit assembly language instruction is the companion of sysenter: it allows a
fast switch from Kernel Mode to User Mode. When the instruction is executed, the
CPU control unit performs the following steps:

1. Adds 16 to the value in the SYSENTER_CS_MSR register, and loads the result in the
cs register.

2. Copies the content of the edx register into the eip register.

3. Adds 24 to the value in the SYSENTER_CS_MSR register, and loads the result in the
ss register.

4. Copies the content of the ecx register into the esp register.

Because the SYSENTER_CS_MSR register is loaded with the Segment Selector of the ker-
nel code, the cs register is loaded with the Segment Selector of the user code, while
the ss register is loaded with the Segment Selector of the user data segment (see the
section “The Linux GDT” in Chapter 2).

As a result, the CPU switches from Kernel Mode to User Mode and starts executing
the instruction whose address is stored in the edx register.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parameter Passing | 409

The SYSENTER_RETURN code

The code at the SYSENTER_RETURN label is stored in the vsyscall page, and it is exe-
cuted when a system call entered via sysenter is being terminated, either by the iret
instruction or the sysexit instruction.

The code simply restores the original contents of the ebp, edx, and ecx registers saved
in the User Mode stack, and returns the control to the wrapper routine in the stan-
dard library:

SYSENTER_RETURN:
 popl %ebp
 popl %edx
 popl %ecx
 ret

Parameter Passing
Like ordinary functions, system calls often require some input/output parameters,
which may consist of actual values (i.e., numbers), addresses of variables in the
address space of the User Mode process, or even addresses of data structures includ-
ing pointers to User Mode functions (see the section “System Calls Related to Signal
Handling” in Chapter 11).

Because the system_call() and the sysenter_entry() functions are the common
entry points for all system calls in Linux, each of them has at least one parameter: the
system call number passed in the eax register. For instance, if an application pro-
gram invokes the fork() wrapper routine, the eax register is set to 2 (i.e., __NR_fork)
before executing the int $0x80 or sysenter assembly language instruction. Because
the register is set by the wrapper routines included in the libc library, programmers
do not usually care about the system call number.

The fork() system call does not require other parameters. However, many system
calls do require additional parameters, which must be explicitly passed by the appli-
cation program. For instance, the mmap() system call may require up to six addi-
tional parameters (besides the system call number).

The parameters of ordinary C functions are usually passed by writing their values in
the active program stack (either the User Mode stack or the Kernel Mode stack).
Because system calls are a special kind of function that cross over from user to ker-
nel land, neither the User Mode or the Kernel Mode stacks can be used. Rather, sys-
tem call parameters are written in the CPU registers before issuing the system call.
The kernel then copies the parameters stored in the CPU registers onto the Kernel
Mode stack before invoking the system call service routine, because the latter is an
ordinary C function.

Why doesn’t the kernel copy parameters directly from the User Mode stack to the
Kernel Mode stack? First of all, working with two stacks at the same time is complex;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 10: System Calls

second, the use of registers makes the structure of the system call handler similar to
that of other exception handlers.

However, to pass parameters in registers, two conditions must be satisfied:

• The length of each parameter cannot exceed the length of a register (32 bits).*

• The number of parameters must not exceed six, besides the system call number
passed in eax, because 80 × 86 processors have a very limited number of registers.

The first condition is always true because, according to the POSIX standard, large
parameters that cannot be stored in a 32-bit register must be passed by reference. A
typical example is the settimeofday() system call, which must read a 64-bit structure.

However, system calls that require more than six parameters exist. In such cases, a
single register is used to point to a memory area in the process address space that
contains the parameter values. Of course, programmers do not have to care about
this workaround. As with every C function call, parameters are automatically saved
on the stack when the wrapper routine is invoked. This routine will find the appro-
priate way to pass the parameters to the kernel.

The registers used to store the system call number and its parameters are, in increas-
ing order, eax (for the system call number), ebx, ecx, edx, esi, edi, and ebp. As seen
before, system_call() and sysenter_entry() save the values of these registers on the
Kernel Mode stack by using the SAVE_ALL macro. Therefore, when the system call ser-
vice routine goes to the stack, it finds the return address to system_call() or to
sysenter_entry(), followed by the parameter stored in ebx (the first parameter of the
system call), the parameter stored in ecx, and so on (see the section “Saving the regis-
ters for the interrupt handler” in Chapter 4). This stack configuration is exactly the
same as in an ordinary function call, and therefore the service routine can easily refer
to its parameters by using the usual C-language constructs.

Let’s look at an example. The sys_write() service routine, which handles the write()
system call, is declared as:

int sys_write (unsigned int fd, const char * buf, unsigned int count)

The C compiler produces an assembly language function that expects to find the fd,
buf, and count parameters on top of the stack, right below the return address, in the
locations used to save the contents of the ebx, ecx, and edx registers, respectively.

In a few cases, even if the system call doesn’t use any parameters, the corresponding
service routine needs to know the contents of the CPU registers right before the sys-
tem call was issued. For example, the do_fork() function that implements fork()
needs to know the value of the registers in order to duplicate them in the child pro-
cess thread field (see the section “The thread field” in Chapter 3). In these cases, a

* We refer, as usual, to the 32-bit architecture of the 80 × 86 processors. The discussion in this section does
not apply to 64-bit architectures.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parameter Passing | 411

single parameter of type pt_regs allows the service routine to access the values saved
in the Kernel Mode stack by the SAVE_ALL macro (see the section “The do_IRQ()
function” in Chapter 4):

int sys_fork (struct pt_regs regs)

The return value of a service routine must be written into the eax register. This is
automatically done by the C compiler when a return n; instruction is executed.

Verifying the Parameters
All system call parameters must be carefully checked before the kernel attempts to
satisfy a user request. The type of check depends both on the system call and on the
specific parameter. Let’s go back to the write() system call introduced before: the fd
parameter should be a file descriptor that identifies a specific file, so sys_write()
must check whether fd really is a file descriptor of a file previously opened and
whether the process is allowed to write into it (see the section “File-Handling Sys-
tem Calls” in Chapter 1). If any of these conditions are not true, the handler must
return a negative value—in this case, the error code –EBADF.

One type of checking, however, is common to all system calls. Whenever a parame-
ter specifies an address, the kernel must check whether it is inside the process
address space. There are two possible ways to perform this check:

• Verify that the linear address belongs to the process address space and, if so, that
the memory region including it has the proper access rights.

• Verify just that the linear address is lower than PAGE_OFFSET (i.e., that it doesn’t
fall within the range of interval addresses reserved to the kernel).

Early Linux kernels performed the first type of checking. But it is quite time
consuming because it must be executed for each address parameter included in a sys-
tem call; furthermore, it is usually pointless because faulty programs are not very
common.

Therefore, starting with Version 2.2, Linux employs the second type of checking.
This is much more efficient because it does not require any scan of the process mem-
ory region descriptors. Obviously, this is a very coarse check: verifying that the lin-
ear address is smaller than PAGE_OFFSET is a necessary but not sufficient condition for
its validity. But there’s no risk in confining the kernel to this limited kind of check
because other errors will be caught later.

The approach followed is thus to defer the real checking until the last possible
moment—that is, until the Paging Unit translates the linear address into a physical
one. We will discuss in the section “Dynamic Address Checking: The Fix-up Code,”
later in this chapter, how the Page Fault exception handler succeeds in detecting
those bad addresses issued in Kernel Mode that were passed as parameters by User
Mode processes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 10: System Calls

One might wonder at this point why the coarse check is performed at all. This type
of checking is actually crucial to preserve both process address spaces and the kernel
address space from illegal accesses. We saw in Chapter 2 that the RAM is mapped
starting from PAGE_OFFSET. This means that kernel routines are able to address all
pages present in memory. Thus, if the coarse check were not performed, a User
Mode process might pass an address belonging to the kernel address space as a
parameter and then be able to read or write every page present in memory without
causing a Page Fault exception.

The check on addresses passed to system calls is performed by the access_ok()
macro, which acts on two parameters: addr and size. The macro checks the address
interval delimited by addr and addr + size – 1. It is essentially equivalent to the fol-
lowing C function:

int access_ok(const void * addr, unsigned long size)
{
 unsigned long a = (unsigned long) addr;
 if (a + size < a ||
 a + size > current_thread_info()->addr_limit.seg)
 return 0;
 return 1;
}

The function first verifies whether addr + size, the highest address to be checked, is
larger than 232–1; because unsigned long integers and pointers are represented by
the GNU C compiler (gcc) as 32-bit numbers, this is equivalent to checking for an
overflow condition. The function also checks whether addr + size exceeds the value
stored in the addr_limit.seg field of the thread_info structure of current. This field
usually has the value PAGE_OFFSET for normal processes and the value 0xffffffff for
kernel threads. The value of the addr_limit.seg field can be dynamically changed by
the get_fs and set_fs macros; this allows the kernel to bypass the security checks
made by access_ok(), so that it can invoke system call service routines, directly pass-
ing to them addresses in the kernel data segment.

The verify_area() function performs the same check as the access_ok() macro;
although this function is considered obsolete, it is still widely used in the source
code.

Accessing the Process Address Space
System call service routines often need to read or write data contained in the pro-
cess’s address space. Linux includes a set of macros that make this access easier.
We’ll describe two of them, called get_user() and put_user(). The first can be used
to read 1, 2, or 4 consecutive bytes from an address, while the second can be used to
write data of those sizes into an address.

Each function accepts two arguments, a value x to transfer and a variable ptr. The sec-
ond variable also determines how many bytes to transfer. Thus, in get_user(x,ptr),

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parameter Passing | 413

the size of the variable pointed to by ptr causes the function to expand into a __get_
user_1(), __get_user_2(), or __get_user_4() assembly language function. Let’s con-
sider one of them, __get_user_2():

__get_user_2:
 addl $1, %eax
 jc bad_get_user
 movl $0xffffe000, %edx /* or 0xfffff000 for 4-KB stacks */
 andl %esp, %edx
 cmpl 24(%edx), %eax
 jae bad_get_user
2: movzwl -1(%eax), %edx
 xorl %eax, %eax
 ret
bad_get_user:
 xorl %edx, %edx
 movl $-EFAULT, %eax
 ret

The eax register contains the address ptr of the first byte to be read. The first six
instructions essentially perform the same checks as the access_ok() macro: they
ensure that the 2 bytes to be read have addresses less than 4 GB as well as less than
the addr_limit.seg field of the current process. (This field is stored at offset 24 in the
thread_info structure of current, which appears in the first operand of the cmpl
instruction.)

If the addresses are valid, the function executes the movzwl instruction to store the
data to be read in the two least significant bytes of edx register while setting the high-
order bytes of edx to 0; then it sets a 0 return code in eax and terminates. If the
addresses are not valid, the function clears edx, sets the -EFAULT value into eax, and
terminates.

The put_user(x,ptr) macro is similar to the one discussed before, except it writes the
value x into the process address space starting from address ptr. Depending on the
size of x, it invokes either the __put_user_asm() macro (size of 1, 2, or 4 bytes) or the
__put_user_u64() macro (size of 8 bytes). Both macros return the value 0 in the eax
register if they succeed in writing the value, and -EFAULT otherwise.

Several other functions and macros are available to access the process address space
in Kernel Mode; they are listed in Table 10-1. Notice that many of them also have a
variant prefixed by two underscores (_ _). The ones without initial underscores take
extra time to check the validity of the linear address interval requested, while the
ones with the underscores bypass that check. Whenever the kernel must repeatedly
access the same memory area in the process address space, it is more efficient to
check the address once at the start and then access the process area without making
any further checks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 10: System Calls

Dynamic Address Checking: The Fix-up Code
As seen previously, access_ok() makes a coarse check on the validity of linear
addresses passed as parameters of a system call. This check only ensures that the
User Mode process is not attempting to fiddle with the kernel address space; how-
ever, the linear addresses passed as parameters still might not belong to the process
address space. In this case, a Page Fault exception will occur when the kernel tries to
use any of such bad addresses.

Before describing how the kernel detects this type of error, let’s specify the three cases
in which Page Fault exceptions may occur in Kernel Mode. These cases must be distin-
guished by the Page Fault handler, because the actions to be taken are quite different.

1. The kernel attempts to address a page belonging to the process address space,
but either the corresponding page frame does not exist or the kernel tries to
write a read-only page. In these cases, the handler must allocate and initialize a
new page frame (see the sections “Demand Paging” and “Copy On Write” in
Chapter 9).

2. The kernel addresses a page belonging to its address space, but the correspond-
ing Page Table entry has not yet been initialized (see the section “Handling Non-
contiguous Memory Area Accesses” in Chapter 9). In this case, the kernel must
properly set up some entries in the Page Tables of the current process.

3. Some kernel functions include a programming bug that causes the exception to
be raised when that program is executed; alternatively, the exception might be
caused by a transient hardware error. When this occurs, the handler must per-
form a kernel oops (see the section “Handling a Faulty Address Inside the Address
Space” in Chapter 9).

4. The case introduced in this chapter: a system call service routine attempts to
read or write into a memory area whose address has been passed as a system call
parameter, but that address does not belong to the process address space.

The Page Fault handler can easily recognize the first case by determining whether the
faulty linear address is included in one of the memory regions owned by the process.

Table 10-1. Functions and macros that access the process address space

Function Action

get_user __get_user Reads an integer value from user space (1, 2, or 4 bytes)

put_user __put_user Writes an integer value to user space (1, 2, or 4 bytes)

copy_from_user __copy_from_user Copies a block of arbitrary size from user space

copy_to_user __copy_to_user Copies a block of arbitrary size to user space

strncpy_from_user __strncpy_from_user Copies a null-terminated string from user space

strlen_user strnlen_user Returns the length of a null-terminated string in user space

clear_user __clear_user Fills a memory area in user space with zeros

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parameter Passing | 415

It is also able to detect the second case by checking whether the corresponding mas-
ter kernel Page Table entry includes a proper non-null entry that maps the address.
Let’s now explain how the handler distinguishes the remaining two cases.

The Exception Tables
The key to determining the source of a Page Fault lies in the narrow range of calls
that the kernel uses to access the process address space. Only the small group of
functions and macros described in the previous section are used to access this
address space; thus, if the exception is caused by an invalid parameter, the instruc-
tion that caused it must be included in one of the functions or else be generated by
expanding one of the macros. The number of the instructions that address user space
is fairly small.

Therefore, it does not take much effort to put the address of each kernel instruction
that accesses the process address space into a structure called the exception table. If
we succeed in doing this, the rest is easy. When a Page Fault exception occurs in Ker-
nel Mode, the do_page_fault() handler examines the exception table: if it includes
the address of the instruction that triggered the exception, the error is caused by a
bad system call parameter; otherwise, it is caused by a more serious bug.

Linux defines several exception tables. The main exception table is automatically
generated by the C compiler when building the kernel program image. It is stored
in the __ex_table section of the kernel code segment, and its starting and ending
addresses are identified by two symbols produced by the C compiler: __start___
ex_table and __stop___ex_table.

Moreover, each dynamically loaded module of the kernel (see Appendix B) includes
its own local exception table. This table is automatically generated by the C com-
piler when building the module image, and it is loaded into memory when the mod-
ule is inserted in the running kernel.

Each entry of an exception table is an exception_table_entry structure that has two
fields:

insn
The linear address of an instruction that accesses the process address space

fixup
The address of the assembly language code to be invoked when a Page Fault
exception triggered by the instruction located at insn occurs

The fixup code consists of a few assembly language instructions that solve the prob-
lem triggered by the exception. As we will see later in this section, the fix usually con-
sists of inserting a sequence of instructions that forces the service routine to return an
error code to the User Mode process. These instructions, which are usually defined in
the same macro or function that accesses the process address space, are placed by the
C compiler into a separate section of the kernel code segment called .fixup.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 10: System Calls

The search_exception_tables() function is used to search for a specified address in
all exception tables: if the address is included in a table, the function returns a pointer
to the corresponding exception_table_entry structure; otherwise, it returns NULL.
Thus the Page Fault handler do_page_fault() executes the following statements:

if ((fixup = search_exception_tables(regs->eip))) {
 regs->eip = fixup->fixup;
 return 1;
}

The regs->eip field contains the value of the eip register saved on the Kernel Mode
stack when the exception occurred. If the value in the register (the instruction
pointer) is in an exception table, do_page_fault() replaces the saved value with the
address found in the entry returned by search_exception_tables(). Then the Page
Fault handler terminates and the interrupted program resumes with execution of the
fixup code.

Generating the Exception Tables and the Fixup Code
The GNU Assembler .section directive allows programmers to specify which sec-
tion of the executable file contains the code that follows. As we will see in
Chapter 20, an executable file includes a code segment, which in turn may be subdi-
vided into sections. Thus, the following assembly language instructions add an entry
into an exception table; the "a" attribute specifies that the section must be loaded
into memory together with the rest of the kernel image:

.section _ _ex_table, "a"
 .long faulty_instruction_address, fixup_code_address

.previous

The .previous directive forces the assembler to insert the code that follows into the
section that was active when the last .section directive was encountered.

Let’s consider again the __get_user_1(), __get_user_2(), and __get_user_4() func-
tions mentioned before. The instructions that access the process address space are
those labeled as 1, 2, and 3:

__get_user_1:
 [...]
1: movzbl (%eax), %edx
 [...]
__get_user_2:
 [...]
2: movzwl -1(%eax), %edx
 [...]
__get_user_4:
 [...]
3: movl -3(%eax), %edx
 [...]
bad_get_user:
 xorl %edx, %edx

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parameter Passing | 417

 movl $-EFAULT, %eax
 ret
.section __ex_table,"a"
 .long 1b, bad_get_user
 .long 2b, bad_get_user
 .long 3b, bad_get_user
.previous

Each exception table entry consists of two labels. The first one is a numeric label
with a b suffix to indicate that the label is “backward;” in other words, it appears in a
previous line of the program. The fixup code is common to the three functions and is
labeled as bad_get_user. If a Page Fault exception is generated by the instructions at
label 1, 2, or 3, the fixup code is executed. It simply returns an –EFAULT error code to
the process that issued the system call.

Other kernel functions that act in the User Mode address space use the fixup code
technique. Consider, for instance, the strlen_user(string) macro. This macro
returns either the length of a null-terminated string passed as a parameter in a sys-
tem call or the value 0 on error. The macro essentially yields the following assembly
language instructions:

 movl $0, %eax
 movl $0x7fffffff, %ecx
 movl %ecx, %ebx
 movl string, %edi
0: repne; scasb
 subl %ecx, %ebx
 movl %ebx, %eax
1:
.section .fixup,"ax"
2: xorl %eax, %eax
 jmp 1b
.previous
.section _ _ex_table,"a"
 .long 0b, 2b
.previous

The ecx and ebx registers are initialized with the 0x7fffffff value, which represents
the maximum allowed length for the string in the User Mode address space. The
repne;scasb assembly language instructions iteratively scan the string pointed to by
the edi register, looking for the value 0 (the end of string \0 character) in eax.
Because scasb decreases the ecx register at each iteration, the eax register ultimately
stores the total number of bytes scanned in the string (that is, the length of the
string).

The fixup code of the macro is inserted into the .fixup section. The "ax" attributes
specify that the section must be loaded into memory and that it contains executable
code. If a Page Fault exception is generated by the instructions at label 0, the fixup
code is executed; it simply loads the value 0 in eax—thus forcing the macro to return
a 0 error code instead of the string length—and then jumps to the 1 label, which cor-
responds to the instruction following the macro.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 10: System Calls

The second .section directive adds an entry containing the address of the repne;
scasb instruction and the address of the corresponding fixup code in the _ _ex_table
section.

Kernel Wrapper Routines
Although system calls are used mainly by User Mode processes, they can also be
invoked by kernel threads, which cannot use library functions. To simplify the decla-
rations of the corresponding wrapper routines, Linux defines a set of seven macros
called _syscall0 through _syscall6.

In the name of each macro, the numbers 0 through 6 correspond to the number of
parameters used by the system call (excluding the system call number). The macros
are used to declare wrapper routines that are not already included in the libc stan-
dard library (for instance, because the Linux system call is not yet supported by the
library); however, they cannot be used to define wrapper routines for system calls
that have more than six parameters (excluding the system call number) or for system
calls that yield nonstandard return values.

Each macro requires exactly 2 + 2 × n parameters, with n being the number of
parameters of the system call. The first two parameters specify the return type and
the name of the system call; each additional pair of parameters specifies the type and
the name of the corresponding system call parameter. Thus, for instance, the wrap-
per routine of the fork() system call may be generated by:

_syscall0(int,fork)

while the wrapper routine of the write() system call may be generated by:

_syscall3(int,write,int,fd,const char *,buf,unsigned int,count)

In the latter case, the macro yields the following code:

int write(int fd,const char * buf,unsigned int count)
{
 long __res;
 asm("int $0x80"
 : "=a" (__res)
 : "0" (__NR_write), "b" ((long)fd),
 "c" ((long)buf), "d" ((long)count));
 if ((unsigned long)__res >= (unsigned long)-129) {
 errno = -__res;
 __res = -1;
 }
 return (int) __res;
}

The __NR_write macro is derived from the second parameter of _syscall3; it expands
into the system call number of write(). When compiling the preceding function, the
following assembly language code is produced:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Kernel Wrapper Routines | 419

write:
 pushl %ebx ; push ebx into stack
 movl 8(%esp), %ebx ; put first parameter in ebx
 movl 12(%esp), %ecx ; put second parameter in ecx
 movl 16(%esp), %edx ; put third parameter in edx
 movl $4, %eax ; put __NR_write in eax
 int $0x80 ; invoke system call
 cmpl $-125, %eax ; check return code
 jbe .L1 ; if no error, jump
 negl %eax ; complement the value of eax
 movl %eax, errno ; put result in errno
 movl $-1, %eax ; set eax to -1
.L1: popl %ebx ; pop ebx from stack
 ret ; return to calling program

Notice how the parameters of the write() function are loaded into the CPU regis-
ters before the int $0x80 instruction is executed. The value returned in eax must be
interpreted as an error code if it lies between –1 and –129 (the kernel assumes that
the largest error code defined in include/generic/errno.h is 129). If this is the case, the
wrapper routine stores the value of –eax in errno and returns the value –1; other-
wise, it returns the value of eax.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

420

Chapter 11‘CHAPTER 11

Signals

Signals were introduced by the first Unix systems to allow interactions between User
Mode processes; the kernel also uses them to notify processes of system events. Sig-
nals have been around for 30 years with only minor changes.

The first sections of this chapter examine in detail how signals are handled by the
Linux kernel, then we discuss the system calls that allow processes to exchange signals.

The Role of Signals
A signal is a very short message that may be sent to a process or a group of pro-
cesses. The only information given to the process is usually a number identifying the
signal; there is no room in standard signals for arguments, a message, or other
accompanying information.

A set of macros whose names start with the prefix SIG is used to identify signals; we
have already made a few references to them in previous chapters. For instance, the
SIGCHLD macro was mentioned in the section “The clone(), fork(), and vfork() Sys-
tem Calls” in Chapter 3. This macro, which expands into the value 17 in Linux,
yields the identifier of the signal that is sent to a parent process when a child stops or
terminates. The SIGSEGV macro, which expands into the value 11, was mentioned in
the section “Page Fault Exception Handler” in Chapter 9; it yields the identifier of
the signal that is sent to a process when it makes an invalid memory reference.

Signals serve two main purposes:

• To make a process aware that a specific event has occurred

• To cause a process to execute a signal handler function included in its code

Of course, the two purposes are not mutually exclusive, because often a process
must react to some event by executing a specific routine.

Table 11-1 lists the first 31 signals handled by Linux 2.6 for the 80 × 86 architec-
ture (some signal numbers, such those associated with SIGCHLD or SIGSTOP, are

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Role of Signals | 421

architecture-dependent; furthermore, some signals such as SIGSTKFLT are defined
only for specific architectures). The meanings of the default actions are described
in the next section.

Table 11-1. The first 31 signals in Linux/i386

Signal name Default action Comment POSIX

1 SIGHUP Terminate Hang up controlling terminal or process Yes

2 SIGINT Terminate Interrupt from keyboard Yes

3 SIGQUIT Dump Quit from keyboard Yes

4 SIGILL Dump Illegal instruction Yes

5 SIGTRAP Dump Breakpoint for debugging No

6 SIGABRT Dump Abnormal termination Yes

6 SIGIOT Dump Equivalent to SIGABRT No

7 SIGBUS Dump Bus error No

8 SIGFPE Dump Floating-point exception Yes

9 SIGKILL Terminate Forced-process termination Yes

10 SIGUSR1 Terminate Available to processes Yes

11 SIGSEGV Dump Invalid memory reference Yes

12 SIGUSR2 Terminate Available to processes Yes

13 SIGPIPE Terminate Write to pipe with no readers Yes

14 SIGALRM Terminate Real-timerclock Yes

15 SIGTERM Terminate Process termination Yes

16 SIGSTKFLT Terminate Coprocessor stack error No

17 SIGCHLD Ignore Child process stopped or terminated, or got signal if
traced

Yes

18 SIGCONT Continue Resume execution, if stopped Yes

19 SIGSTOP Stop Stop process execution Yes

20 SIGTSTP Stop Stop process issued from tty Yes

21 SIGTTIN Stop Background process requires input Yes

22 SIGTTOU Stop Background process requires output Yes

23 SIGURG Ignore Urgent condition on socket No

24 SIGXCPU Dump CPU time limit exceeded No

25 SIGXFSZ Dump File size limit exceeded No

26 SIGVTALRM Terminate Virtual timer clock No

27 SIGPROF Terminate Profile timer clock No

28 SIGWINCH Ignore Window resizing No

29 SIGIO Terminate I/O now possible No

29 SIGPOLL Terminate Equivalent to SIGIO No

30 SIGPWR Terminate Power supply failure No

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 11: Signals

Besides the regular signals described in this table, the POSIX standard has intro-
duced a new class of signals denoted as real-time signals; their signal numbers range
from 32 to 64 on Linux. They mainly differ from regular signals because they are
always queued so that multiple signals sent will be received. On the other hand, reg-
ular signals of the same kind are not queued: if a regular signal is sent many times in
a row, just one of them is delivered to the receiving process. Although the Linux ker-
nel does not use real-time signals, it fully supports the POSIX standard by means of
several specific system calls.

A number of system calls allow programmers to send signals and determine how
their processes respond to the signals they receive. Table 11-2 summarizes these
calls; their behavior is described in detail in the later section “System Calls Related to
Signal Handling.”

An important characteristic of signals is that they may be sent at any time to a pro-
cess whose state is usually unpredictable. Signals sent to a process that is not cur-
rently executing must be saved by the kernel until that process resumes execution.
Blocking a signal (described later) requires that delivery of the signal be held off until
it is later unblocked, which exacerbates the problem of signals being raised before
they can be delivered.

31 SIGSYS Dump Bad system call No

31 SIGUNUSED Dump Equivalent to SIGSYS No

Table 11-2. The most significant system calls related to signals

System call Description

kill() Send a signal to a thread group

tkill() Send a signal to a process

tgkill() Send a signal to a process in a specific thread group

sigaction() Change the action associated with a signal

signal() Similar to sigaction()

sigpending() Check whether there are pending signals

sigprocmask() Modify the set of blocked signals

sigsuspend() Wait for a signal

rt_sigaction() Change the action associated with a real-time signal

rt_sigpending() Check whether there are pending real-time signals

rt_sigprocmask() Modify the set of blocked real-time signals

rt_sigqueueinfo() Send a real-time signal to a thread group

rt_sigsuspend() Wait for a real-time signal

rt_sigtimedwait() Similar to rt_sigsuspend()

Table 11-1. The first 31 signals in Linux/i386 (continued)

Signal name Default action Comment POSIX

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Role of Signals | 423

Therefore, the kernel distinguishes two different phases related to signal transmission:

Signal generation
The kernel updates a data structure of the destination process to represent that a
new signal has been sent.

Signal delivery
The kernel forces the destination process to react to the signal by changing its
execution state, by starting the execution of a specified signal handler, or both.

Each signal generated can be delivered once, at most. Signals are consumable
resources: once they have been delivered, all process descriptor information that
refers to their previous existence is canceled.

Signals that have been generated but not yet delivered are called pending signals. At
any time, only one pending signal of a given type may exist for a process; additional
pending signals of the same type to the same process are not queued but simply dis-
carded. Real-time signals are different, though: there can be several pending signals
of the same type.

In general, a signal may remain pending for an unpredictable amount of time. The
following factors must be taken into consideration:

• Signals are usually delivered only to the currently running process (that is, to the
current process).

• Signals of a given type may be selectively blocked by a process (see the later sec-
tion “Modifying the Set of Blocked Signals”). In this case, the process does not
receive the signal until it removes the block.

• When a process executes a signal-handler function, it usually masks the corre-
sponding signal—i.e., it automatically blocks the signal until the handler termi-
nates. A signal handler therefore cannot be interrupted by another occurrence of
the handled signal, and the function doesn’t need to be reentrant.

Although the notion of signals is intuitive, the kernel implementation is rather com-
plex. The kernel must:

• Remember which signals are blocked by each process.

• When switching from Kernel Mode to User Mode, check whether a signal for a
process has arrived. This happens at almost every timer interrupt (roughly every
millisecond).

• Determine whether the signal can be ignored. This happens when all of the fol-
lowing conditions are fulfilled:

— The destination process is not traced by another process (the PT_PTRACED flag
in the process descriptor ptrace field is equal to 0).*

* If a process receives a signal while it is being traced, the kernel stops the process and notifies the tracing pro-
cess by sending a SIGCHLD signal to it. The tracing process may, in turn, resume execution of the traced pro-
cess by means of a SIGCONT signal.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 11: Signals

— The signal is not blocked by the destination process.

— The signal is being ignored by the destination process (either because the
process explicitly ignored it or because the process did not change the
default action of the signal and that action is “ignore”).

• Handle the signal, which may require switching the process to a handler func-
tion at any point during its execution and restoring the original execution con-
text after the function returns.

Moreover, Linux must take into account the different semantics for signals adopted
by BSD and System V; furthermore, it must comply with the rather cumbersome
POSIX requirements.

Actions Performed upon Delivering a Signal
There are three ways in which a process can respond to a signal:

1. Explicitly ignore the signal.

2. Execute the default action associated with the signal (see Table 11-1). This
action, which is predefined by the kernel, depends on the signal type and may be
any one of the following:

Terminate
The process is terminated (killed).

Dump
The process is terminated (killed) and a core file containing its execution
context is created, if possible; this file may be used for debug purposes.

Ignore
The signal is ignored.

Stop
The process is stopped—i.e., put in the TASK_STOPPED state (see the section
“Process State” in Chapter 3).

Continue
If the process was stopped (TASK_STOPPED), it is put into the TASK_RUNNING
state.

3. Catch the signal by invoking a corresponding signal-handler function.

Notice that blocking a signal is different from ignoring it. A signal is not delivered as
long as it is blocked; it is delivered only after it has been unblocked. An ignored sig-
nal is always delivered, and there is no further action.

The SIGKILL and SIGSTOP signals cannot be ignored, caught, or blocked, and their
default actions must always be executed. Therefore, SIGKILL and SIGSTOP allow a user

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Role of Signals | 425

with appropriate privileges to terminate and to stop, respectively, every process,*

regardless of the defenses taken by the program it is executing.

A signal is fatal for a given process if delivering the signal causes the kernel to kill the
process. The SIGKILL signal is always fatal; moreover, each signal whose default
action is “Terminate” and which is not caught by a process is also fatal for that pro-
cess. Notice, however, that a signal caught by a process and whose corresponding
signal-handler function terminates the process is not fatal, because the process chose
to terminate itself rather than being killed by the kernel.

POSIX Signals and Multithreaded Applications
The POSIX 1003.1 standard has some stringent requirements for signal handling of
multithreaded applications:

• Signal handlers must be shared among all threads of a multithreaded application;
however, each thread must have its own mask of pending and blocked signals.

• The kill() and sigqueue() POSIX library functions (see the later section “Sys-
tem Calls Related to Signal Handling”) must send signals to whole multi-
threaded applications, not to a specific thread. The same holds for all signals
(such as SIGCHLD, SIGINT, or SIGQUIT) generated by the kernel.

• Each signal sent to a multithreaded application will be delivered to just one
thread, which is arbitrarily chosen by the kernel among the threads that are not
blocking that signal.

• If a fatal signal is sent to a multithreaded application, the kernel will kill all
threads of the application—not just the thread to which the signal has been
delivered.

In order to comply with the POSIX standard, the Linux 2.6 kernel implements a
multithreaded application as a set of lightweight processes belonging to the same
thread group (see the section “Processes, Lightweight Processes, and Threads” in
Chapter 3).

In this chapter the term “thread group” denotes any thread group, even if it is com-
posed by a single (conventional) process. For instance, when we state that kill() can
send a signal to a thread group, we imply that this system call can send a signal to a
conventional process, too. We will use the term “process” to denote either a conven-
tional process or a lightweight process—that is, a specific member of a thread group.

Furthermore, a pending signal is private if it has been sent to a specific process; it is
shared if it has been sent to a whole thread group.

* There are two exceptions: it is not possible to send a signal to process 0 (swapper), and signals sent to process
1 (init) are always discarded unless they are caught. Therefore, process 0 never dies, while process 1 dies only
when the init program terminates.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 11: Signals

Data Structures Associated with Signals
For each process in the system, the kernel must keep track of what signals are cur-
rently pending or masked; the kernel must also keep track of how every thread group
is supposed to handle every signal. To do this, the kernel uses several data structures
accessible from the process descriptor. The most significant ones are shown in
Figure 11-1.

The fields of the process descriptor related to signal handling are listed in Table 11-3.

Figure 11-1. The most significant data structures related to signal handling

Table 11-3. Process descriptor fields related to signal handling

Type Name Description

struct signal_struct * signal Pointer to the process’s signal descriptor

struct sighand_struct * sighand Pointer to the process’s signal handler descriptor

sigset_t blocked Mask of blocked signals

sigset_t real_blocked Temporary mask of blocked signals (used by the
rt_sigtimedwait() system call)

struct sigpending pending Data structure storing the private pending signals

unsigned long sas_ss_sp Address of alternative signal handler stack

pending

sighand

struct
task_struct

struct
sigpending

list

signal

struct
sigqueue

count

siglock

action

Process
descriptor

Signal
handler
descriptor

0
1

63

struct
k_sigaction

struct
sighand_struct

sa_handler

sa_flags

sa_mask

struct
sigqueue

Private pending
signal queue

signal

struct
signal_struct

count

shared_pending

Signal
descriptor

struct
sigpending

list

signal
Shared pending
signal queue

struct
sigqueue

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Role of Signals | 427

The blocked field stores the signals currently masked out by the process. It is a
sigset_t array of bits, one for each signal type:

typedef struct {
 unsigned long sig[2];
} sigset_t;

Because each unsigned long number consists of 32 bits, the maximum number of sig-
nals that may be declared in Linux is 64 (the _NSIG macro specifies this value). No sig-
nal can have number 0, so the signal number corresponds to the index of the
corresponding bit in a sigset_t variable plus one. Numbers between 1 and 31 corre-
spond to the signals listed in Table 11-1, while numbers between 32 and 64 corre-
spond to real-time signals.

The signal descriptor and the signal handler descriptor

The signal field of the process descriptor points to a signal descriptor, a signal_
struct structure that keeps track of the shared pending signals. Actually, the signal
descriptor also includes fields not strictly related to signal handling, such as the rlim
per-process resource limit array (see the section “Process Resource Limits” in
Chapter 3), or the pgrp and session fields, which store the PIDs of the group leader
and of the session leader of the process, respectively (see the section “Relationships
Among Processes” in Chapter 3). In fact, as mentioned in the section “The clone(),
fork(), and vfork() System Calls” in Chapter 3, the signal descriptor is shared by all
processes belonging to the same thread group—that is, all processes created by
invoking the clone() system call with the CLONE_THREAD flag set—thus the signal
descriptor includes the fields that must be identical for every process in the same
thread group.

The fields of a signal descriptor somewhat related to signal handling are shown in
Table 11-4.

size_t sas_ss_size Size of alternative signal handler stack

int (*) (void *) notifier Pointer to a function used by a device driver to block
some signals of the process

void * notifier_data Pointer to data that might be used by the notifier
function (previous field of table)

sigset_t * notifier_mask Bit mask of signals blocked by a device driver
through a notifier function

Table 11-4. The fields of the signal descriptor related to signal handling

Type Name Description

atomic_t count Usage counter of the signal descriptor

atomic_t live Number of live processes in the thread group

Table 11-3. Process descriptor fields related to signal handling (continued)

Type Name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 11: Signals

Besides the signal descriptor, every process refers also to a signal handler descriptor,
which is a sighand_struct structure describing how each signal must be handled by
the thread group. Its fields are shown in Table 11-5.

As mentioned in the section “The clone(), fork(), and vfork() System Calls” in
Chapter 3, the signal handler descriptor may be shared by several processes by
invoking the clone() system call with the CLONE_SIGHAND flag set; the count field in
this descriptor specifies the number of processes that share the structure. In a POSIX
multithreaded application, all lightweight processes in the thread group refer to the
same signal descriptor and to the same signal handler descriptor.

The sigaction data structure

Some architectures assign properties to a signal that are visible only to the kernel.
Thus, the properties of a signal are stored in a k_sigaction structure, which contains
both the properties hidden from the User Mode process and the more familiar
sigaction structure that holds all the properties a User Mode process can see. Actu-
ally, on the 80 × 86 platform, all signal properties are visible to User Mode processes.

wait_queue_head_t wait_chldexit Wait queue for the processes sleeping in await4()
system call

struct task_struct * curr_target Descriptor of the last process in the thread group
that received a signal

struct sigpending shared_pending Data structure storing the shared pending signals

int group_exit_code Process termination code for the thread group

struct task_struct * group_exit_task Used when killing a whole thread group

int notify_count Used when killing a whole thread group

int group_stop_count Used when stopping a whole thread group

unsigned int flags Flags used when delivering signals that modify the
status of the process

Table 11-5. The fields of the signal handler descriptor

Type Name Description

atomic_t count Usage counter of the signal handler descriptor

struct k_sigaction [64] action Array of structures specifying the actions to be performed upon
delivering the signals

spinlock_t siglock Spin lock protecting both the signal descriptor and the signal
handler descriptor

Table 11-4. The fields of the signal descriptor related to signal handling (continued)

Type Name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Role of Signals | 429

Thus the k_sigaction structure simply reduces to a single sa structure of type
sigaction, which includes the following fields:*

sa_handler
This field specifies the type of action to be performed; its value can be a pointer
to the signal handler, SIG_DFL (that is, the value 0) to specify that the default
action is performed, or SIG_IGN (that is, the value 1) to specify that the signal is
ignored.

sa_flags
This set of flags specifies how the signal must be handled; some of them are
listed in Table 11-6.†

sa_mask
This sigset_t variable specifies the signals to be masked when running the sig-
nal handler.

The pending signal queues

As we have seen in Table 11-2 earlier in the chapter, there are several system calls
that can generate a signal: some of them—kill() and rt_sigqueueinfo()—send a
signal to a whole thread group, while others—tkill() and tgkill()—send a signal
to a specific process.

* The sigaction structure used by User Mode applications to pass parameters to the signal() and sigaction()
system calls is slightly different from the structure used by the kernel, although it stores essentially the same
information.

† For historical reasons, these flags have the same prefix “SA_” as the flags of the irqaction descriptor (see
Table 4-7 in Chapter 4); nevertheless there is no relation between the two sets of flags.

Table 11-6. Flags specifying how to handle a signal

Flag Name Description

SA_NOCLDSTOP Applies only to SIGCHLD; do not send SIGCHLD to the parent when the process is stopped

SA_NOCLDWAIT Applies only to SIGCHLD; do not create a zombie when the process terminates

SA_SIGINFO Provide additional information to the signal handler (see the later section “Changing a Signal
Action”)

SA_ONSTACK Use an alternative stack for the signal handler (see the later section “Catching the Signal”)

SA_RESTART Interrupted system calls are automatically restarted (see the later section “Reexecution of System
Calls”)

SA_NODEFER, SA_
NOMASK

Do not mask the signal while executing the signal handler

SA_RESETHAND,
SA_ONESHOT

Reset to default action after executing the signal handler

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 11: Signals

Thus, in order to keep track of what signals are currently pending, the kernel associ-
ates two pending signal queues to each process:

• The shared pending signal queue, rooted at the shared_pending field of the signal
descriptor, stores the pending signals of the whole thread group.

• The private pending signal queue, rooted at the pending field of the process
descriptor, stores the pending signals of the specific (lightweight) process.

A pending signal queue consists of a sigpending data structure, which is defined as
follows:

struct sigpending {
 struct list_head list;
 sigset_t signal;
}

The signal field is a bit mask specifying the pending signals, while the list field is
the head of a doubly linked list containing sigqueue data structures; the fields of this
structure are shown in Table 11-7.

The siginfo_t data structure is a 128-byte data structure that stores information
about an occurrence of a specific signal; it includes the following fields:

si_signo
The signal number

si_errno
The error code of the instruction that caused the signal to be raised, or 0 if there
was no error

si_code
A code identifying who raised the signal (see Table 11-8)

Table 11-7. The fields of the sigqueue data structure

Type Name Description

struct list_head list Links for the pending signal queue’s list

spinlock_t * lock Pointer to the siglock field in the signal handler descriptor corresponding to
the pending signal

int flags Flags of the sigqueue data structure

siginfo_t info Describes the event that raised the signal

struct
user_struct *

user Pointer to the per-user data structure of the process’s owner (see the section
“The clone(), fork(), and vfork() System Calls” in Chapter 3)

Table 11-8. The most significant signal sender codes

Code Name Sender

SI_USER kill() and raise() (see the later section “System Calls Related to Signal Handling”)

SI_KERNEL Generic kernel function

SI_QUEUE sigqueue() (see the later section “System Calls Related to Signal Handling”)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Role of Signals | 431

_sifields
A union storing information depending on the type of signal. For instance, the
siginfo_t data structure relative to an occurrence of the SIGKILL signal records
the PID and the UID of the sender process here; conversely, the data structure
relative to an occurrence of the SIGSEGV signal stores the memory address whose
access caused the signal to be raised.

Operations on Signal Data Structures
Several functions and macros are used by the kernel to handle signals. In the follow-
ing description, set is a pointer to a sigset_t variable, nsig is the number of a signal,
and mask is an unsigned long bit mask.

sigemptyset(set) and sigfillset(set)
Sets the bits in the sigset_t variable to 0 or 1, respectively.

sigaddset(set,nsig) and sigdelset(set,nsig)
Sets the bit of the sigset_t variable corresponding to signal nsig to 1 or 0,
respectively. In practice, sigaddset() reduces to:

set->sig[(nsig - 1) / 32] |= 1UL << ((nsig - 1) % 32);

and sigdelset() to:
set->sig[(nsig - 1) / 32] &= ~(1UL << ((nsig - 1) % 32));

sigaddsetmask(set,mask) and sigdelsetmask(set,mask)
Sets all the bits of the sigset_t variable whose corresponding bits of mask are on
1 or 0, respectively. They can be used only with signals that are between 1 and
32. The corresponding functions reduce to:

set->sig[0] |= mask;

and to:
set->sig[0] &= ~mask;

sigismember(set,nsig)
Returns the value of the bit of the sigset_t variable corresponding to the signal
nsig. In practice, this function reduces to:

return 1 & (set->sig[(nsig-1) / 32] >> ((nsig-1) % 32));

sigmask(nsig)
Yields the bit index of the signal nsig. In other words, if the kernel needs to set,
clear, or test a bit in an element of sigset_t that corresponds to a particular sig-
nal, it can derive the proper bit through this macro.

SI_TIMER Timer expiration

SI_ASYNCIO Asynchronous I/O completion

SI_TKILL tkill() and tgkill() (see the later section “System Calls Related to Signal Handling”)

Table 11-8. The most significant signal sender codes (continued)

Code Name Sender

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 11: Signals

sigandsets(d,s1,s2), sigorsets(d,s1,s2), and signandsets(d,s1,s2)
Performs a logical AND, a logical OR, and a logical NAND, respectively,
between the sigset_t variables to which s1 and s2 point; the result is stored in
the sigset_t variable to which d points.

sigtestsetmask(set,mask)
Returns the value 1 if any of the bits in the sigset_t variable that correspond to
the bits set to 1 in mask is set; it returns 0 otherwise. It can be used only with sig-
nals that have a number between 1 and 32.

siginitset(set,mask)
Initializes the low bits of the sigset_t variable corresponding to signals
between 1 and 32 with the bits contained in mask, and clears the bits correspond-
ing to signals between 33 and 63.

siginitsetinv(set,mask)
Initializes the low bits of the sigset_t variable corresponding to signals
between 1 and 32 with the complement of the bits contained in mask, and sets
the bits corresponding to signals between 33 and 63.

signal_pending(p)
Returns the value 1 (true) if the process identified by the *p process descriptor has
nonblocked pending signals, and returns the value 0 (false) if it doesn’t. The func-
tion is implemented as a simple check on the TIF_SIGPENDING flag of the process.

recalc_sigpending_tsk(t) and recalc_sigpending()
The first function checks whether there are pending signals either for the process
identified by the process descriptor at *t (by looking at the t->pending->signal
field) or for the thread group to which the process belongs (by looking at the t->
signal->shared_pending->signal field). The function then sets accordingly the
TIF_SIGPENDING flag in t->thread_info->flags. The recalc_sigpending() func-
tion is equivalent to recalc_sigpending_tsk(current).

rm_from_queue(mask,q)
Removes from the pending signal queue q the pending signals corresponding to
the bit mask mask.

flush_sigqueue(q)
Removes from the pending signal queue q all pending signals.

flush_signals(t)
Deletes all signals sent to the process identified by the process descriptor at *t.
This is done by clearing the TIF_SIGPENDING flag in t->thread_info->flags and
invoking twice flush_sigqueue() on the t->pending and t->signal->shared_
pending queues.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating a Signal | 433

Generating a Signal
Many kernel functions generate signals: they accomplish the first phase of signal han-
dling—described earlier in the section “The Role of Signals”—by updating one or
more process descriptors as needed. They do not directly perform the second phase
of delivering the signal but, depending on the type of signal and the state of the desti-
nation processes, may wake up some processes and force them to receive the signal.

When a signal is sent to a process, either from the kernel or from another process,
the kernel generates it by invoking one of the functions listed in Table 11-9.

All functions in Table 11-9 end up invoking the specific_send_sig_info() function
described in the next section.

When a signal is sent to a whole thread group, either from the kernel or from
another process, the kernel generates it by invoking one of the functions listed in
Table 11-10.

Table 11-9. Kernel functions that generate a signal for a process

Name Description

send_sig() Sends a signal to a single process

send_sig_info() Like send_sig(), with extended information in a siginfo_t structure

force_sig() Sends a signal that cannot be explicitly ignored or blocked by the process

force_sig_info() Like force_sig(), with extended information in a siginfo_t structure

force_sig_specific() Like force_sig(), but optimized for SIGSTOP and SIGKILL signals

sys_tkill() System call handler of tkill() (see the later section “System Calls Related to Signal Han-
dling”)

sys_tgkill() System call handler of tgkill()

Table 11-10. Kernel functions that generate a signal for a thread group

Name Description

send_group_sig_info() Sends a signal to a single thread group identified by the process descriptor of one of
its members

kill_pg() Sends a signal to all thread groups in a process group (see the section “Process
Management” in Chapter 1)

kill_pg_info() Like kill_pg(), with extended information in a siginfo_t structure

kill_proc() Sends a signal to a single thread group identified by the PID of one of its members

kill_proc_info() Like kill_proc(), with extended information in a siginfo_t structure

sys_kill() System call handler of kill() (see the later section “System Calls Related to Sig-
nal Handling”)

sys_rt_sigqueueinfo() System call handler of rt_sigqueueinfo()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 11: Signals

All functions in Table 11-10 end up invoking the group_send_sig_info() function,
which is described in the later section “The group_send_sig_info() Function.”

The specific_send_sig_info() Function
The specific_send_sig_info() function sends a signal to a specific process. It acts on
three parameters:

sig
The signal number.

info
Either the address of a siginfo_t table or one of three special values: 0 means
that the signal has been sent by a User Mode process, 1 means that it has been
sent by the kernel, and 2 means that is has been sent by the kernel and the sig-
nal is SIGSTOP or SIGKILL.

t
A pointer to the descriptor of the destination process.

The specific_send_sig_info() function must be invoked with local interrupts dis-
abled and the t->sighand->siglock spin lock already acquired. The function exe-
cutes the following steps:

1. Checks whether the process ignores the signal; in the affirmative case, returns 0
(signal not generated). The signal is ignored when all three conditions for ignor-
ing a signal are satisfied, that is:

• The process is not being traced (PT_PTRACED flag in t->ptrace clear).

• The signal is not blocked (sigismember(&t->blocked, sig) returns 0).

• The signal is either explicitly ignored (the sa_handler field of t->sighand->
action[sig-1] is equal to SIG_IGN) or implicitly ignored (the sa_handler field
is equal to SIG_DFL and the signal is SIGCONT, SIGCHLD, SIGWINCH, or SIGURG).

2. Checks whether the signal is non-real-time (sig<32) and another occurrence of
the same signal is already pending in the private pending signal queue of the pro-
cess (sigismember(&t->pending.signal,sig) returns 1): in the affirmative case,
nothing has to be done, thus returns 0.

3. Invokes send_signal(sig, info, t, &t->pending) to add the signal to the set of
pending signals of the process; this function is described in detail in the next
section.

4. If send_signal() successfully terminated and the signal is not blocked
(sigismember(&t->blocked,sig) returns 0), invokes the signal_wake_up() func-
tion to notify the process about the new pending signal. In turn, this function
executes the following steps:

a. Sets the TIF_SIGPENDING flags in t->thread_info->flags.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating a Signal | 435

b. Invokes try_to_wake_up()—see the section “The try_to_wake_up() Func-
tion” in Chapter 7—to awake the process if it is either in TASK_
INTERRUPTIBLE state, or in TASK_STOPPED state and the signal is SIGKILL.

c. If try_to_wake_up() returned 0, the process was already runnable: if so, it
checks whether the process is already running on another CPU and, in this
case, sends an interprocessor interrupt to that CPU to force a reschedule of
the current process (see the section “Interprocessor Interrupt Handling” in
Chapter 4). Because each process checks the existence of pending signals
when returning from the schedule() function, the interprocessor interrupt
ensures that the destination process quickly notices the new pending signal.

5. Returns 1 (the signal has been successfully generated).

The send_signal() Function
The send_signal() function inserts a new item in a pending signal queue. It receives
as its parameters the signal number sig, the address info of a siginfo_t data struc-
ture (or a special code, see the description of specific_send_sig_info() in the previ-
ous section), the address t of the descriptor of the target process, and the address
signals of the pending signal queue.

The function executes the following steps:

1. If the value of info is 2, the signal is either SIGKILL or SIGSTOP and it has been
generated by the kernel via the force_sig_specific() function: in this case, it
jumps to step 9. The action corresponding to these signals is immediately
enforced by the kernel, thus the function may skip adding the signal to the pend-
ing signal queue.

2. If the number of pending signals of the process’s owner (t->user->sigpending) is
smaller than the current process’s resource limit (t->signal->rlim[RLIMIT_
SIGPENDING].rlim_cur), the function allocates a sigqueue data structure for the
new occurrence of the signal:

q = kmem_cache_alloc(sigqueue_cachep, GFP_ATOMIC);

3. If the number of pending signals of the process’s owner is too high or the mem-
ory allocation in the previous step failed, it jumps to step 9.

4. Increases the number of pending signals of the owner (t->user->sigpending) and
the reference counter of the per-user data structure pointed to by t->user.

5. Adds the sigqueue data structure in the pending signal queue signals:
list_add_tail(&q->list, &signals->list);

6. Fills the siginfo_t table inside the sigqueue data structure:
if ((unsigned long)info == 0) {
 q->info.si_signo = sig;
 q->info.si_errno = 0;
 q->info.si_code = SI_USER;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 11: Signals

 q->info._sifields._kill._pid = current->pid;
 q->info._sifields._kill._uid = current->uid;
} else if ((unsigned long)info == 1) {
 q->info.si_signo = sig;
 q->info.si_errno = 0;
 q->info.si_code = SI_KERNEL;
 q->info._sifields._kill._pid = 0;
 q->info._sifields._kill._uid = 0;
} else
 copy_siginfo(&q->info, info);

The copy_siginfo() function copies the siginfo_t table passed by the caller.

7. Sets the bit corresponding to the signal in the bit mask of the queue:
sigaddset(&signals->signal, sig);

8. Returns 0: the signal has been successfully appended to the pending signal
queue.

9. Here, an item will not be added to the signal pending queue, because there are
already too many pending signals, or there is no free memory for the sigqueue
data structure, or the signal is immediately enforced by the kernel. If the signal is
real-time and was sent through a kernel function that is explicitly required to
queue it, the function returns the error code -EAGAIN:

if (sig>=32 && info && (unsigned long) info != 1 &&
 info->si_code != SI_USER)
 return -EAGAIN;

10. Sets the bit corresponding to the signal in the bit mask of the queue:
sigaddset(&signals->signal, sig);

11. Returns 0: even if the signal has not been appended to the queue, the corre-
sponding bit has been set in the bit mask of pending signals.

It is important to let the destination process receive the signal even if there is no
room for the corresponding item in the pending signal queue. Suppose, for instance,
that a process is consuming too much memory. The kernel must ensure that the
kill() system call succeeds even if there is no free memory; otherwise, the system
administrator doesn’t have any chance to recover the system by terminating the
offending process.

The group_send_sig_info() Function
The group_send_sig_info() function sends a signal to a whole thread group. It acts
on three parameters: a signal number sig, the address info of a siginfo_t table—or
alternatively the special values 0, 1, or 2, as explained in the earlier section “The
specific_send_sig_info() Function”—and the address p of a process descriptor.

The function essentially executes the following steps:

1. Checks that the parameter sig is correct:
if (sig < 0 || sig > 64)
 return -EINVAL;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating a Signal | 437

2. If the signal is being sent by a User Mode process, it checks whether the opera-
tion is allowed. The signal is delivered only if at least one of the following condi-
tions holds:

• The owner of the sending process has the proper capability (usually, this
simply means the signal was issued by the system administrator; see
Chapter 20).

• The signal is SIGCONT and the destination process is in the same login ses-
sion of the sending process.

• Both processes belong to the same user.

If the User Mode process is not allowed to send the signal, the function returns the
value -EPERM.

3. If the sig parameter has the value 0, it returns immediately without generating
any signal:

if (!sig || !p->sighand)
 return 0;

Because 0 is not a valid signal number, it is used to allow the sending process to
check whether it has the required privileges to send a signal to the destination
thread group. The function also returns if the destination process is being killed,
indicated by checking whether its signal handler descriptor has been released.

4. Acquires the p->sighand->siglock spin lock and disables local interrupts.

5. Invokes the handle_stop_signal() function, which checks for some types of sig-
nals that might nullify other pending signals for the destination thread group.
The latter function executes the following steps:

a. If the thread group is being killed (SIGNAL_GROUP_EXIT flag in the flags field
of the signal descriptor set), it returns.

b. If sig is a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal, the function invokes
the rm_from_queue() function to remove the SIGCONT signal from the shared
pending signal queue p->signal->shared_pending and from the private
queues of all members of the thread group.

c. If sig is SIGCONT, it invokes the rm_from_queue() function to remove any
SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signal from the shared pending sig-
nal queue p->signal->shared_pending; then, removes the same signals from
the private pending signal queues of the processes belonging to the thread
group, and awakens them:

rm_from_queue(0x003c0000, &p->signal->shared_pending);
t = p;
do {
 rm_from_queue(0x003c0000, &t->pending);
 try_to_wake_up(t, TASK_STOPPED, 0);
 t = next_thread(t);
} while (t != p);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 11: Signals

The mask 0x003c0000 selects the four stop signals. At each iteration, the
next_thread macro returns the descriptor address of a different lightweight
process in the thread group (see the section “Relationships Among Pro-
cesses” in Chapter 3).*

6. Checks whether the thread group ignores the signal; if so, returns the value 0
(success). The signal is ignored when all three conditions for ignoring a signal
that are mentioned in the earlier section “The Role of Signals” are satisfied (see
also step 1 in the earlier section “The specific_send_sig_info() Function”).

7. Checks whether the signal is non-real-time and another occurrence of the same
signal is already pending in the shared pending signal queue of the thread group:
if so, nothing has to be done, thus returns the value 0 (success):

if (sig<32 && sigismember(&p->signal->shared_pending.signal,sig))
 return 0;

8. Invokes send_signal() to append the signal to the shared pending signal queue
(see the previous section “The send_signal() Function”). If send_signal()
returns a nonzero error code, it terminates while returning the same value.

9. Invokes the _ _group_complete_signal() function to wake up one lightweight
process in the thread group (see below).

10. Releases the p->sighand->siglock spin lock and enables local interrupts.

11. Returns 0 (success).

The _ _group_complete_signal() function scans the processes in the thread group,
looking for a process that can receive the new signal. A process may be selected if it
satisfies all the following conditions:

• The process does not block the signal.

• The process is not in state EXIT_ZOMBIE, EXIT_DEAD, TASK_TRACED, or TASK_STOPPED
(as an exception, the process can be in the TASK_TRACED or TASK_STOPPED states if
the signal is SIGKILL).

• The process is not being killed—that is, its PF_EXITING flag is not set.

• Either the process is currently in execution on a CPU, or its TIF_SIGPENDING flag
is not already set. (In fact, there is no point in awakening a process that has
pending signals: in general, this operation has been already performed by the
kernel control path that set the TIF_SIGPENDING flag. On the other hand, if a pro-
cess is currently in execution, it should be notified of the new pending signal.)

A thread group might include many processes that satisfy the above conditions. The
function selects one of them as follows:

* The actual code is more complicated than the fragment just shown, because handle_stop_signal() also takes
care of the unusual case of the SIGCONT signal being caught, as well as of the race conditions due to a SIGCONT
signal occurring while all processes in the thread group are being stopped.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivering a Signal | 439

• If the process identified by p—the descriptor address passed as parameter of the
group_send_sig_info() function—satisfies all the prior rules and can thus receive
the signal, the function selects it.

• Otherwise, the function searches for a suitable process by scanning the mem-
bers of the thread group, starting from the process that received the last thread
group’s signal (p->signal->curr_target).

If _ _group_complete_signal() succeeds in finding a suitable process, it sets up the
delivery of the signal to the selected process. First, the function checks whether the
signal is fatal: in this case, the whole thread group is killed by sending SIGKILL signals
to each lightweight process in the group. Otherwise, if the signal is not fatal, the func-
tion invokes the signal_wake_up() function to notify the selected process that it has a
new pending signal (see step 4 in the earlier section “The specific_send_sig_info()
Function”).

Delivering a Signal
We assume that the kernel noticed the arrival of a signal and invoked one of the
functions mentioned in the previous sections to prepare the process descriptor of the
process that is supposed to receive the signal. But in case that process was not run-
ning on the CPU at that moment, the kernel deferred the task of delivering the sig-
nal. We now turn to the activities that the kernel performs to ensure that pending
signals of a process are handled.

As mentioned in the section “Returning from Interrupts and Exceptions” in
Chapter 4, the kernel checks the value of the TIF_SIGPENDING flag of the process
before allowing the process to resume its execution in User Mode. Thus, the kernel
checks for the existence of pending signals every time it finishes handling an inter-
rupt or an exception.

To handle the nonblocked pending signals, the kernel invokes the do_signal() func-
tion, which receives two parameters:

regs
The address of the stack area where the User Mode register contents of the cur-
rent process are saved.

oldset
The address of a variable where the function is supposed to save the bit mask
array of blocked signals. It is NULL if there is no need to save the bit mask array.

Our description of the do_signal() function will focus on the general mechanism of
signal delivery; the actual code is burdened with lots of details dealing with race con-
ditions and other special cases—such as freezing the system, generating core dumps,
stopping and killing a whole thread group, and so on. We will quietly skip all these
details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 11: Signals

As already mentioned, the do_signal() function is usually only invoked when the
CPU is going to return in User Mode. For that reason, if an interrupt handler invokes
do_signal(), the function simply returns:

if ((regs->xcs & 3) != 3)
 return 1;

If the oldset parameter is NULL, the function initializes it with the address of the
current->blocked field:

if (!oldset)
 oldset = ¤t->blocked;

The heart of the do_signal() function consists of a loop that repeatedly invokes the
dequeue_signal() function until no nonblocked pending signals are left in both the
private and shared pending signal queues. The return code of dequeue_signal() is
stored in the signr local variable. If its value is 0, it means that all pending signals
have been handled and do_signal() can finish. As long as a nonzero value is
returned, a pending signal is waiting to be handled. dequeue_signal() is invoked
again after do_signal() handles the current signal.

The dequeue_signal() considers first all signals in the private pending signal queue,
starting from the lowest-numbered signal, then the signals in the shared queue. It
updates the data structures to indicate that the signal is no longer pending and
returns its number. This task involves clearing the corresponding bit in current->
pending.signal or current->signal->shared_pending.signal, and invoking recalc_
sigpending() to update the value of the TIF_SIGPENDING flag.

Let’s see how the do_signal() function handles each pending signal whose number is
returned by dequeue_signal(). First, it checks whether the current receiver process is
being monitored by some other process; in this case, do_signal() invokes do_notify_
parent_cldstop() and schedule() to make the monitoring process aware of the sig-
nal handling.

Then do_signal() loads the ka local variable with the address of the k_sigaction data
structure of the signal to be handled:

ka = ¤t->sig->action[signr-1];

Depending on the contents, three kinds of actions may be performed: ignoring the
signal, executing a default action, or executing a signal handler.

When a delivered signal is explicitly ignored, the do_signal() function simply con-
tinues with a new execution of the loop and therefore considers another pending sig-
nal:

if (ka->sa.sa_handler == SIG_IGN)
 continue;

In the following two sections we will describe how a default action and a signal han-
dler are executed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivering a Signal | 441

Executing the Default Action for the Signal
If ka->sa.sa_handler is equal to SIG_DFL, do_signal() must perform the default
action of the signal. The only exception comes when the receiving process is init, in
which case the signal is discarded as described in the earlier section “Actions Per-
formed upon Delivering a Signal”:

if (current->pid == 1)
 continue;

For other processes, the signals whose default action is “ignore” are also easily
handled:

if (signr==SIGCONT || signr==SIGCHLD ||
 signr==SIGWINCH || signr==SIGURG)
 continue;

The signals whose default action is “stop” may stop all processes in the thread
group. To do this, do_signal() sets their states to TASK_STOPPED and then invokes the
schedule() function (see the section “The schedule() Function” in Chapter 7):

if (signr==SIGSTOP || signr==SIGTSTP ||
 signr==SIGTTIN || signr==SIGTTOU) {
 if (signr != SIGSTOP &&
 is_orphaned_pgrp(current->signal->pgrp))
 continue;
 do_signal_stop(signr);
}

The difference between SIGSTOP and the other signals is subtle: SIGSTOP always stops
the thread group, while the other signals stop the thread group only if it is not in an
“orphaned process group.” The POSIX standard specifies that a process group is not
orphaned as long as there is a process in the group that has a parent in a different
process group but in the same session. Thus, if the parent process dies but the user
who started the process is still logged in, the process group is not orphaned.

The do_signal_stop() function checks whether current is the first process being
stopped in the thread group. If so, it activates a “group stop”: essentially, the func-
tion sets the group_stop_count field in the signal descriptor to a positive value, and
awakens each process in the thread group. Each such process, in turn, looks at this
field to recognize that a group stop is in progress, changes its state to TASK_STOPPED,
and invokes schedule(). The do_signal_stop() function also sends a SIGCHLD signal
to the parent process of the thread group leader, unless the parent has set the SA_
NOCLDSTOP flag of SIGCHLD.

The signals whose default action is “dump” may create a core file in the process
working directory; this file lists the complete contents of the process’s address space
and CPU registers. After do_signal() creates the core file, it kills the thread group.
The default action of the remaining 18 signals is “terminate,” which consists of sim-
ply killing the thread group. To kill the whole thread group, the function invokes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 11: Signals

do_group_exit(), which executes a clean “group exit” procedure (see the section
“Process Termination” in Chapter 3).

Catching the Signal
If a handler has been established for the signal, the do_signal() function must
enforce its execution. It does this by invoking handle_signal():

handle_signal(signr, &info, &ka, oldset, regs);
if (ka->sa.sa_flags & SA_ONESHOT)
 ka->sa.sa_handler = SIG_DFL;
return 1;

If the received signal has the SA_ONESHOT flag set, it must be reset to its default action,
so that further occurrences of the same signal will not trigger again the execution of
the signal handler. Notice how do_signal() returns after having handled a single sig-
nal. Other pending signals won’t be considered until the next invocation of do_
signal(). This approach ensures that real-time signals will be dealt with in the
proper order.

Executing a signal handler is a rather complex task because of the need to juggle
stacks carefully while switching between User Mode and Kernel Mode. We explain
exactly what is entailed here:

Signal handlers are functions defined by User Mode processes and included in the
User Mode code segment. The handle_signal() function runs in Kernel Mode while
signal handlers run in User Mode; this means that the current process must first exe-
cute the signal handler in User Mode before being allowed to resume its “normal”
execution. Moreover, when the kernel attempts to resume the normal execution of
the process, the Kernel Mode stack no longer contains the hardware context of the
interrupted program, because the Kernel Mode stack is emptied at every transition
from User Mode to Kernel Mode.

An additional complication is that signal handlers may invoke system calls. In this
case, after the service routine executes, control must be returned to the signal han-
dler instead of to the normal flow of code of the interrupted program.

The solution adopted in Linux consists of copying the hardware context saved in the
Kernel Mode stack onto the User Mode stack of the current process. The User Mode
stack is also modified in such a way that, when the signal handler terminates, the
sigreturn() system call is automatically invoked to copy the hardware context back
on the Kernel Mode stack and to restore the original content of the User Mode stack.

Figure 11-2 illustrates the flow of execution of the functions involved in catching a
signal. A nonblocked signal is sent to a process. When an interrupt or exception
occurs, the process switches into Kernel Mode. Right before returning to User Mode,
the kernel executes the do_signal() function, which in turn handles the signal (by
invoking handle_signal()) and sets up the User Mode stack (by invoking setup_
frame() or setup_rt_frame()). When the process switches again to User Mode, it

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivering a Signal | 443

starts executing the signal handler, because the handler’s starting address was forced
into the program counter. When that function terminates, the return code placed on
the User Mode stack by the setup_frame() or setup_rt_frame() function is exe-
cuted. This code invokes the sigreturn() or the rt_sigreturn() system call; the cor-
responding service routines copy the hardware context of the normal program to the
Kernel Mode stack and restore the User Mode stack back to its original state (by
invoking restore_sigcontext()). When the system call terminates, the normal pro-
gram can thus resume its execution.

Let’s now examine in detail how this scheme is carried out.

Setting up the frame

To properly set the User Mode stack of the process, the handle_signal() function
invokes either setup_frame() (for signals that do not require a siginfo_t table; see
the section “System Calls Related to Signal Handling” later in this chapter) or setup_
rt_frame() (for signals that do require a siginfo_t table). To choose among these
two functions, the kernel checks the value of the SA_SIGINFO flag in the sa_flags field
of the sigaction table associated with the signal.

The setup_frame() function receives four parameters, which have the following
meanings:

sig
Signal number

ka
Address of the k_sigaction table associated with the signal

oldset
Address of a bit mask array of blocked signals

Figure 11-2. Catching a signal

Normal
program

flow

Signal
handler

Return code
on the stack

do_signal()

handle_signal()

setup_frame()

system_call()

sys_sigreturn()

restore_sigcontext()

User Mode Kernel Mode

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 11: Signals

regs
Address in the Kernel Mode stack area where the User Mode register contents
are saved

The setup_frame() function pushes onto the User Mode stack a data structure called
a frame, which contains the information needed to handle the signal and to ensure
the correct return to the sys_sigreturn() function. A frame is a sigframe table that
includes the following fields (see Figure 11-3):

pretcode
Return address of the signal handler function; it points to the code at the _ _
kernel_sigreturn label (see below).

sig
The signal number; this is the parameter required by the signal handler.

sc
Structure of type sigcontext containing the hardware context of the User Mode
process right before switching to Kernel Mode (this information is copied from
the Kernel Mode stack of current). It also contains a bit array that specifies the
blocked regular signals of the process.

fpstate
Structure of type _fpstate that may be used to store the floating point registers
of the User Mode process (see the section “Saving and Loading the FPU, MMX,
and XMM Registers” in Chapter 3).

extramask
Bit array that specifies the blocked real-time signals.

retcode
8-byte code issuing a sigreturn() system call. In earlier versions of Linux, this
code was effectively executed to return from the signal handler; in Linux 2.6,
however, it is used only as a signature, so that debuggers can recognize the sig-
nal stack frame.

Figure 11-3. Frame on the User Mode stack

pretcode

sig

sc

fpstate

extramask

retcode

Signal handler’s return address

Signal handler’s parameter (sig #)

Process hardware context

Floating-point registers

Blocked real-time signals

Signal frame signature

Previous stack contents

__kernel_sigreturn:
 popl %eax
 movl $119, %eax
 int $0x80

vsyscall page
User Mode Stack

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivering a Signal | 445

The setup_frame() function starts by invoking get_sigframe() to compute the first
memory location of the frame. That memory location is usually* in the User Mode
stack, so the function returns the value:

(regs->esp - sizeof(struct sigframe)) & 0xfffffff8

Because stacks grow toward lower addresses, the initial address of the frame is
obtained by subtracting its size from the address of the current stack top and align-
ing the result to a multiple of 8.

The returned address is then verified by means of the access_ok macro; if it is valid,
the function repeatedly invokes __put_user() to fill all the fields of the frame. The
pretcode field in the frame is initialized to &_ _kernel_sigreturn, the address of some
glue code placed in the vsyscall page (see the section “Issuing a System Call via the
sysenter Instruction” in Chapter 10).

Once this is done, the function modifies the regs area of the Kernel Mode stack, thus
ensuring that control is transferred to the signal handler when current resumes its
execution in User Mode:

regs->esp = (unsigned long) frame;
regs->eip = (unsigned long) ka->sa.sa_handler;
regs->eax = (unsigned long) sig;
regs->edx = regs->ecx = 0;
regs->xds = regs->xes = regs->xss = __USER_DS;
regs->xcs = __USER_CS;

The setup_frame() function terminates by resetting the segmentation registers saved
on the Kernel Mode stack to their default value. Now the information needed by the
signal handler is on the top of the User Mode stack.

The setup_rt_frame() function is similar to setup_frame(), but it puts on the User
Mode stack an extended frame (stored in the rt_sigframe data structure) that also
includes the content of the siginfo_t table associated with the signal. Moreover, this
function sets the pretcode field so that it points to the _ _kernel_rt_sigreturn code in
the vsyscall page.

Evaluating the signal flags

After setting up the User Mode stack, the handle_signal() function checks the val-
ues of the flags associated with the signal. If the signal does not have the SA_NODEFER
flag set, the signals in the sa_mask field of the sigaction table must be blocked dur-
ing the execution of the signal handler:

if (!(ka->sa.sa_flags & SA_NODEFER)) {
 spin_lock_irq(¤t->sighand->siglock);

* Linux allows processes to specify an alternative stack for their signal handlers by invoking the signaltstack(
) system call; this feature is also required by the X/Open standard. When an alternative stack is present, the
get_sigframe() function returns an address inside that stack. We don’t discuss this feature further, because
it is conceptually similar to regular signal handling.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 11: Signals

 sigorsets(¤t->blocked, ¤t->blocked, &ka->sa.sa_mask);
 sigaddset(¤t->blocked, sig);
 recalc_sigpending(current);
 spin_unlock_irq(¤t->sighand->siglock);
}

As described earlier, the recalc_sigpending() function checks whether the process
has nonblocked pending signals and sets its TIF_SIGPENDING flag accordingly.

The function returns then to do_signal(), which also returns immediately.

Starting the signal handler

When do_signal() returns, the current process resumes its execution in User Mode.
Because of the preparation by setup_frame() described earlier, the eip register points
to the first instruction of the signal handler, while esp points to the first memory
location of the frame that has been pushed on top of the User Mode stack. As a
result, the signal handler is executed.

Terminating the signal handler

When the signal handler terminates, the return address on top of the stack points to
the code in the vsyscall page referenced by the pretcode field of the frame:

_ _kernel_sigreturn:
 popl %eax
 movl $__NR_sigreturn, %eax
 int $0x80

Therefore, the signal number (that is, the sig field of the frame) is discarded from the
stack; the sigreturn() system call is then invoked.

The sys_sigreturn() function computes the address of the pt_regs data structure
regs, which contains the hardware context of the User Mode process (see the sec-
tion “Parameter Passing” in Chapter 10). From the value stored in the esp field, it
can thus derive and check the frame address inside the User Mode stack:

frame = (struct sigframe *)(regs.esp - 8);
if (verify_area(VERIFY_READ, frame, sizeof(*frame)) {
 force_sig(SIGSEGV, current);
 return 0;
}

Then the function copies the bit array of signals that were blocked before invoking
the signal handler from the sc field of the frame to the blocked field of current. As a
result, all signals that have been masked for the execution of the signal handler are
unblocked. The recalc_sigpending() function is then invoked.

The sys_sigreturn() function must at this point copy the process hardware context
from the sc field of the frame to the Kernel Mode stack and remove the frame from

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivering a Signal | 447

the User Mode stack; it performs these two tasks by invoking the restore_
sigcontext() function.

If the signal was sent by a system call such as rt_sigqueueinfo() that required a
siginfo_t table to be associated with the signal, the mechanism is similar. The
pretcode field of the extended frame points to the __kernel_rt_sigreturn code in the
vsyscall page, which in turn invokes the rt_sigreturn() system call; the correspond-
ing sys_rt_sigreturn() service routine copies the process hardware context from the
extended frame to the Kernel Mode stack and restores the original User Mode stack
content by removing the extended frame from it.

Reexecution of System Calls
The request associated with a system call cannot always be immediately satisfied by
the kernel; when this happens, the process that issued the system call is put in a
TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state.

If the process is put in a TASK_INTERRUPTIBLE state and some other process sends a sig-
nal to it, the kernel puts it in the TASK_RUNNING state without completing the system
call (see the section “Returning from Interrupts and Exceptions” in Chapter 4). The
signal is delivered to the process while switching back to User Mode. When this hap-
pens, the system call service routine does not complete its job, but returns an EINTR,
ERESTARTNOHAND, ERESTART_RESTARTBLOCK, ERESTARTSYS, or ERESTARTNOINTR error code.

In practice, the only error code a User Mode process can get in this situation is EINTR,
which means that the system call has not been completed. (The application program-
mer may check this code and decide whether to reissue the system call.) The remain-
ing error codes are used internally by the kernel to specify whether the system call
may be reexecuted automatically after the signal handler termination.

Table 11-11 lists the error codes related to unfinished system calls and their impact
for each of the three possible signal actions. The terms that appear in the entries are
defined in the following list:

Terminate
The system call will not be automatically reexecuted; the process will resume its
execution in User Mode at the instruction following the int $0x80 or sysenter
one and the eax register will contain the -EINTR value.

Reexecute
The kernel forces the User Mode process to reload the eax register with the sys-
tem call number and to reexecute the int $0x80 or sysenter instruction; the pro-
cess is not aware of the reexecution and the error code is not passed to it.

Depends
The system call is reexecuted only if the SA_RESTART flag of the delivered signal is
set; otherwise, the system call terminates with a -EINTR error code.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 11: Signals

When delivering a signal, the kernel must be sure that the process really issued a sys-
tem call before attempting to reexecute it. This is where the orig_eax field of the regs
hardware context plays a critical role. Let’s recall how this field is initialized when
the interrupt or exception handler starts:

Interrupt
The field contains the IRQ number associated with the interrupt minus 256 (see
the section “Saving the registers for the interrupt handler” in Chapter 4).

0x80 exception (also sysenter)
The field contains the system call number (see the section “Entering and Exiting
a System Call” in Chapter 10).

Other exceptions
The field contains the value –1 (see the section “Saving the Registers for the
Exception Handler” in Chapter 4).

Therefore, a nonnegative value in the orig_eax field means that the signal has woken
up a TASK_INTERRUPTIBLE process that was sleeping in a system call. The service rou-
tine recognizes that the system call was interrupted, and thus returns one of the pre-
viously mentioned error codes.

Restarting a system call interrupted by a non-caught signal

If the signal is explicitly ignored or if its default action is enforced, do_signal() ana-
lyzes the error code of the system call to decide whether the unfinished system call
must be automatically reexecuted, as specified in Table 11-11. If the call must be
restarted, the function modifies the regs hardware context so that, when the process
is back in User Mode, eip points either to the int $0x80 instruction or to the
sysenter instruction, and eax contains the system call number:

if (regs->orig_eax >= 0) {
 if (regs->eax == -ERESTARTNOHAND || regs->eax == -ERESTARTSYS ||
 regs->eax == -ERESTARTNOINTR) {
 regs->eax = regs->orig_eax;
 regs->eip -= 2;
 }
 if (regs->eax == -ERESTART_RESTARTBLOCK) {

Table 11-11. Reexecution of system calls

Signal
Action

Error codes and their impact on system call execution

EINTR ERESTARTSYS
ERESTARTNOHAND
ERESTART_RESTARTBLOCKa

a The ERESTARTNOHAND and ERESTART_RESTARTBLOCK error codes differ on the mechanism used to restart the system call (see
below).

ERESTARTNOINTR

Default Terminate Reexecute Reexecute Reexecute

Ignore Terminate Reexecute Reexecute Reexecute

Catch Terminate Depends Terminate Reexecute

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivering a Signal | 449

 regs->eax = _ _NR_restart_syscall;
 regs->eip -= 2;
 }
}

The regs->eax field is filled with the return code of a system call service routine (see
the section “Entering and Exiting a System Call” in Chapter 10). Notice that both the
int $0x80 and sysreturn instructions are two bytes long so the function subtracts 2
from eip in order to set it to the instruction that triggers the system call.

The error code ERESTART_RESTARTBLOCK is special, because the eax register is set to the
number of the restart_syscall() system call; thus, the User Mode process does not
restart the same system call that was interrupted by the signal. This error code is only
used by time-related system calls that, when restarted, should adjust their User Mode
parameters. A typical example is the nanosleep() system call (see the section “An
Application of Dynamic Timers: the nanosleep() System Call” in Chapter 6): sup-
pose that a process invokes it to pause the execution for 20 milliseconds, and that a
signal occurs 10 milliseconds later. If the system call would be restarted as usual, the
total delay time would exceed 30 milliseconds.

Instead, the service routine of the nanosleep() system call fills the restart_block field
in the current’s thread_info structure with the address of a special service routine to
be used when restarting, and returns -ERESTART_RESTARTBLOCK if interrupted. The sys_
restart_syscall() service routine just executes the special nanosleep()’s service rou-
tine, which adjusts the delay to consider the time elapsed between the invocation of
the original system call and its restarting.

Restarting a system call for a caught signal

If the signal is caught, handle_signal() analyzes the error code and, possibly, the SA_
RESTART flag of the sigaction table to decide whether the unfinished system call must
be reexecuted:

if (regs->orig_eax >= 0) {
 switch (regs->eax) {
 case -ERESTART_RESTARTBLOCK:
 case -ERESTARTNOHAND:
 regs->eax = -EINTR;
 break;
 case -ERESTARTSYS:
 if (!(ka->sa.sa_flags & SA_RESTART)) {
 regs->eax = -EINTR;
 break;
 }
 /* fallthrough */
 case -ERESTARTNOINTR:
 regs->eax = regs->orig_eax;
 regs->eip -= 2;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 11: Signals

If the system call must be restarted, handle_signal() proceeds exactly as do_signal();
otherwise, it returns an –EINTR error code to the User Mode process.

System Calls Related to Signal Handling
As stated in the introduction of this chapter, programs running in User Mode are
allowed to send and receive signals. This means that a set of system calls must be
defined to allow these kinds of operations. Unfortunately, for historical reasons, sev-
eral system calls exist that serve essentially the same purpose. As a result, some of
these system calls are never invoked. For instance, sys_sigaction() and sys_rt_
sigaction() are almost identical, so the sigaction() wrapper function included in
the C library ends up invoking sys_rt_sigaction() instead of sys_sigaction(). We
will describe some of the most significant system calls in the following sections.

The kill() System Call
The kill(pid,sig) system call is commonly used to send signals to conventional pro-
cesses or multithreaded applications; its corresponding service routine is the sys_
kill() function. The integer pid parameter has several meanings, depending on its
numerical value:

pid > 0
The sig signal is sent to the thread group of the process whose PID is equal to
pid.

pid = 0
The sig signal is sent to all thread groups of the processes in the same process
group as the calling process.

pid = –1
The signal is sent to all processes, except swapper (PID 0), init (PID 1), and
current.

pid < –1
The signal is sent to all thread groups of the processes in the process group –pid.

The sys_kill() function sets up a minimal siginfo_t table for the signal, and then
invokes kill_something_info():

info.si_signo = sig;
info.si_errno = 0;
info.si_code = SI_USER;
info._sifields._kill._pid = current->tgid;
info._sifields._kill._uid = current->uid;
return kill_something_info(sig, &info, pid);

The kill_something_info() function, in turn, invokes either kill_proc_info() (to
send the signal to a single thread group via group_send_sig_info()), or kill_pg_info()
(to scan all processes in the destination process group and invoke send_sig_info() for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Calls Related to Signal Handling | 451

each of them), or repeatedly group_send_sig_info() for each process in the system (if
pid is -1).

The kill() system call is able to send every signal, even the so-called real-time signals
that have numbers ranging from 32 to 64. However, as we saw in the earlier section
“Generating a Signal,” the kill() system call does not ensure that a new element is
added to the pending signal queue of the destination process, so multiple instances of
pending signals can be lost. Real-time signals should be sent by means of a system call
such as rt_sigqueueinfo() (see the later section “System Calls for Real-Time Signals”).

System V and BSD Unix variants also have a killpg() system call, which is able to
explicitly send a signal to a group of processes. In Linux, the function is imple-
mented as a library function that uses the kill() system call. Another variation is
raise(), which sends a signal to the current process (that is, to the process execut-
ing the function). In Linux, raise() is implemented as a library function.

The tkill() and tgkill() System Calls
The tkill() and tgkill() system calls send a signal to a specific process in a thread
group. The pthread_kill() function of every POSIX-compliant pthread library
invokes either of them to send a signal to a specific lightweight process.

The tkill() system call expects two parameters: the PID pid of the process to be sig-
naled and the signal number sig. The sys_tkill() service routine fills a siginfo
table, gets the process descriptor address, makes some permission checks (such as
those in step 2 in the section “The group_send_sig_info() Function”), and invokes
specific_send_sig_info() to send the signal.

The tgkill() system call differs from tkill() because it has a third parameter: the
thread group ID (tgid) of the thread group that includes the process to be signaled.
The sys_tgkill() service routine performs exactly the same operations as sys_tkill(
), but also checks that the process being signaled actually belongs to the thread
group tgid. This additional check solves a race condition that occurs when a signal is
sent to a process that is being killed: if another multithreaded application is creating
lightweight processes fast enough, the signal could be delivered to the wrong pro-
cess. The tgkill() system call solves the problem, because the thread group ID is
never changed during the life span of a multithreaded application.

Changing a Signal Action
The sigaction(sig,act,oact) system call allows users to specify an action for a sig-
nal; of course, if no signal action is defined, the kernel executes the default action
associated with the delivered signal.

The corresponding sys_sigaction() service routine acts on two parameters: the sig
signal number and the act table of type old_sigaction that specifies the new action.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 11: Signals

A third oact optional output parameter may be used to get the previous action asso-
ciated with the signal. (The old_sigaction data structure contains the same fields as
the sigaction structure described in the earlier section “Data Structures Associated
with Signals,” but in a different order.)

The function checks first whether the act address is valid. Then it fills the sa_
handler, sa_flags, and sa_mask fields of a new_ka local variable of type k_sigaction
with the corresponding fields of *act:

__get_user(new_ka.sa.sa_handler, &act->sa_handler);
__get_user(new_ka.sa.sa_flags, &act->sa_flags);
__get_user(mask, &act->sa_mask);
siginitset(&new_ka.sa.sa_mask, mask);

The function invokes do_sigaction() to copy the new new_ka table into the entry at
the sig-1 position of current->sig->action (the number of the signal is one higher
than the position in the array because there is no zero signal):

k = ¤t->sig->action[sig-1];
if (act) {
 *k = *act;
 sigdelsetmask(&k->sa.sa_mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
 if (k->sa.sa_handler == SIG_IGN || (k->sa.sa_handler == SIG_DFL &&
 (sig==SIGCONT || sig==SIGCHLD || sig==SIGWINCH || sig==SIGURG))) {
 rm_from_queue(sigmask(sig), ¤t->signal->shared_pending);
 t = current;
 do {
 rm_from_queue(sigmask(sig), ¤t->pending);
 recalc_sigpending_tsk(t);
 t = next_thread(t);
 } while (t != current);
 }
}

The POSIX standard requires that setting a signal action to either SIG_IGN or SIG_DFL
when the default action is “ignore” causes every pending signal of the same type to
be discarded. Moreover, notice that no matter what the requested masked signals are
for the signal handler, SIGKILL and SIGSTOP are never masked.

The sigaction() system call also allows the user to initialize the sa_flags field in the
sigaction table. We listed the values allowed for this field and the related meanings
in Table 11-6 (earlier in this chapter).

Older System V Unix variants offered the signal() system call, which is still widely
used by programmers. Recent C libraries implement signal() by means of rt_
sigaction(). However, Linux still supports older C libraries and offers the sys_
signal() service routine:

new_sa.sa.sa_handler = handler;
new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
ret = do_sigaction(sig, &new_sa, &old_sa);
return ret ? ret : (unsigned long)old_sa.sa.sa_handler;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Calls Related to Signal Handling | 453

Examining the Pending Blocked Signals
The sigpending() system call allows a process to examine the set of pending blocked
signals—i.e., those that have been raised while blocked. The corresponding sys_
sigpending() service routine acts on a single parameter, set, namely, the address of a
user variable where the array of bits must be copied:

sigorsets(&pending, ¤t->pending.signal,
 ¤t->signal->shared_pending.signal);
sigandsets(&pending, ¤t->blocked, &pending);
copy_to_user(set, &pending, 4);

Modifying the Set of Blocked Signals
The sigprocmask() system call allows processes to modify the set of blocked signals;
it applies only to regular (non-real-time) signals. The corresponding sys_
sigprocmask() service routine acts on three parameters:

oset
Pointer in the process address space to a bit array where the previous bit mask
must be stored.

set
Pointer in the process address space to the bit array containing the new bit mask.

how
Flag that may have one of the following values:

SIG_BLOCK
The *set bit mask array specifies the signals that must be added to the bit
mask array of blocked signals.

SIG_UNBLOCK
The *set bit mask array specifies the signals that must be removed from the
bit mask array of blocked signals.

SIG_SETMASK
The *set bit mask array specifies the new bit mask array of blocked signals.

The function invokes copy_from_user() to copy the value pointed to by the set
parameter into the new_set local variable and copies the bit mask array of standard
blocked signals of current into the old_set local variable. It then acts as the how flag
specifies on these two variables:

if (copy_from_user(&new_set, set, sizeof(*set)))
 return -EFAULT;
new_set &= ~(sigmask(SIGKILL)|sigmask(SIGSTOP));
old_set = current->blocked.sig[0];
if (how == SIG_BLOCK)
 sigaddsetmask(¤t->blocked, new_set);
else if (how == SIG_UNBLOCK)
 sigdelsetmask(¤t->blocked, new_set);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 11: Signals

else if (how == SIG_SETMASK)
 current->blocked.sig[0] = new_set;
else
 return -EINVAL;
recalc_sigpending(current);
if (oset && copy_to_user(oset, &old_set, sizeof(*oset)))
 return -EFAULT;
return 0;

Suspending the Process
The sigsuspend() system call puts the process in the TASK_INTERRUPTIBLE state, after
having blocked the standard signals specified by a bit mask array to which the mask
parameter points. The process will wake up only when a nonignored, nonblocked
signal is sent to it.

The corresponding sys_sigsuspend() service routine executes these statements:

mask &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
saveset = current->blocked;
siginitset(¤t->blocked, mask);
recalc_sigpending(current);
regs->eax = -EINTR;
while (1) {
 current->state = TASK_INTERRUPTIBLE;
 schedule();
 if (do_signal(regs, &saveset))
 return -EINTR;
}

The schedule() function selects another process to run. When the process that
issued the sigsuspend() system call is executed again, sys_sigsuspend() invokes the
do_signal() function to deliver the signal that has awakened the process. If that
function returns the value 1, the signal is not ignored. Therefore the system call ter-
minates by returning the error code -EINTR.

The sigsuspend() system call may appear redundant, because the combined execu-
tion of sigprocmask() and sleep() apparently yields the same result. But this is not
true: because processes can be interleaved at any time, one must be conscious that
invoking a system call to perform action A followed by another system call to per-
form action B is not equivalent to invoking a single system call that performs action
A and then action B.

In this particular case, sigprocmask() might unblock a signal that is delivered before
invoking sleep(). If this happens, the process might remain in a TASK_INTERRUPTIBLE
state forever, waiting for the signal that was already delivered. On the other hand,
the sigsuspend() system call does not allow signals to be sent after unblocking and
before the schedule() invocation, because other processes cannot grab the CPU dur-
ing that time interval.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Calls Related to Signal Handling | 455

System Calls for Real-Time Signals
Because the system calls previously examined apply only to standard signals, addi-
tional system calls must be introduced to allow User Mode processes to handle real-
time signals.

Several system calls for real-time signals (rt_sigaction(), rt_sigpending(), rt_
sigprocmask(), and rt_sigsuspend()) are similar to those described earlier and won’t
be discussed further. For the same reason, we won’t discuss two other system calls
that deal with queues of real-time signals:

rt_sigqueueinfo()
Sends a real-time signal so that it is added to the shared pending signal queue of
the destination process. Usually invoked through the sigqueue() standard
library function.

rt_sigtimedwait()
Dequeues a blocked pending signal without delivering it and returns the signal
number to the caller; if no blocked signal is pending, suspends the current pro-
cess for a fixed amount of time. Usually invoked through the sigwaitinfo() and
sigtimedwait() standard library functions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

456

Chapter 12CHAPTER 12

The Virtual Filesystem

One of Linux’s keys to success is its ability to coexist comfortably with other sys-
tems. You can transparently mount disks or partitions that host file formats used by
Windows, other Unix systems, or even systems with tiny market shares like the
Amiga. Linux manages to support multiple filesystem types in the same way other
Unix variants do, through a concept called the Virtual Filesystem.

The idea behind the Virtual Filesystem is to put a wide range of information in the
kernel to represent many different types of filesystems; there is a field or function to
support each operation provided by all real filesystems supported by Linux. For each
read, write, or other function called, the kernel substitutes the actual function that
supports a native Linux filesystem, the NTFS filesystem, or whatever other filesys-
tem the file is on.

This chapter discusses the aims, structure, and implementation of Linux’s Virtual
Filesystem. It focuses on three of the five standard Unix file types—namely, regular
files, directories, and symbolic links. Device files are covered in Chapter 13, while
pipes are discussed in Chapter 19. To show how a real filesystem works, Chapter 18
covers the Second Extended Filesystem that appears on nearly all Linux systems.

The Role of the Virtual Filesystem (VFS)
The Virtual Filesystem (also known as Virtual Filesystem Switch or VFS) is a kernel
software layer that handles all system calls related to a standard Unix filesystem. Its
main strength is providing a common interface to several kinds of filesystems.

For instance, let’s assume that a user issues the shell command:

$ cp /floppy/TEST /tmp/test

where /floppy is the mount point of an MS-DOS diskette and /tmp is a normal Second
Extended Filesystem (Ext2) directory. The VFS is an abstraction layer between the
application program and the filesystem implementations (see Figure 12-1(a)).
Therefore, the cp program is not required to know the filesystem types of /floppy/
TEST and /tmp/test. Instead, cp interacts with the VFS by means of generic system

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Role of the Virtual Filesystem (VFS) | 457

calls known to anyone who has done Unix programming (see the section “File-Han-
dling System Calls” in Chapter 1); the code executed by cp is shown in
Figure 12-1(b).

Filesystems supported by the VFS may be grouped into three main classes:

Disk-based filesystems
These manage memory space available in a local disk or in some other device
that emulates a disk (such as a USB flash drive). Some of the well-known disk-
based filesystems supported by the VFS are:

• Filesystems for Linux such as the widely used Second Extended Filesystem
(Ext2), the recent Third Extended Filesystem (Ext3), and the Reiser Filesys-
tems (ReiserFS)*

• Filesystems for Unix variants such as sysv filesystem (System V, Coherent,
Xenix), UFS (BSD, Solaris, NEXTSTEP), MINIX filesystem, and VERITAS
VxFS (SCO UnixWare)

• Microsoft filesystems such as MS-DOS, VFAT (Windows 95 and later
releases), and NTFS (Windows NT 4 and later releases)

• ISO9660 CD-ROM filesystem (formerly High Sierra Filesystem) and Univer-
sal Disk Format (UDF) DVD filesystem

• Other proprietary filesystems such as IBM’s OS/2 (HPFS), Apple’s Macin-
tosh (HFS), Amiga’s Fast Filesystem (AFFS), and Acorn Disk Filing System
(ADFS)

Figure 12-1. VFS role in a simple file copy operation

* Although these filesystems owe their birth to Linux, they have been ported to several other operating systems.

inf = open("/floppy/TEST", O_RDONLY, 0);
outf = open("/tmp/test",
 O_WRONLY|O_CREAT|O_TRUNC, 0600);
do {
 i = read(inf, buf, 4096);
 write(outf, buf, i);
} while (i);
close(outf);
close(inf);

(a) (b)

Ext2 MS-DOS

VFS

cp

/tmp/test /floppy/TEST

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 12: The Virtual Filesystem

• Additional journaling filesystems originating in systems other than Linux
such as IBM’s JFS and SGI’s XFS

Network filesystems
These allow easy access to files included in filesystems belonging to other net-
worked computers. Some well-known network filesystems supported by the VFS
are NFS, Coda, AFS (Andrew filesystem), CIFS (Common Internet File System,
used in Microsoft Windows), and NCP (Novell’s NetWare Core Protocol).

Special filesystems
These do not manage disk space, either locally or remotely. The /proc filesys-
tem is a typical example of a special filesystem (see the later section “Special
Filesystems”).

In this book, we describe in detail the Ext2 and Ext3 filesystems only (see
Chapter 18); the other filesystems are not covered for lack of space.

As mentioned in the section “An Overview of the Unix Filesystem” in Chapter 1,
Unix directories build a tree whose root is the / directory. The root directory is con-
tained in the root filesystem, which in Linux, is usually of type Ext2 or Ext3. All other
filesystems can be “mounted” on subdirectories of the root filesystem.*

A disk-based filesystem is usually stored in a hardware block device such as a hard
disk, a floppy, or a CD-ROM. A useful feature of Linux’s VFS allows it to handle vir-
tual block devices such as /dev/loop0, which may be used to mount filesystems stored
in regular files. As a possible application, a user may protect her own private filesys-
tem by storing an encrypted version of it in a regular file.

The first Virtual Filesystem was included in Sun Microsystems’s SunOS in 1986.
Since then, most Unix filesystems include a VFS. Linux’s VFS, however, supports the
widest range of filesystems.

The Common File Model
The key idea behind the VFS consists of introducing a common file model capable of
representing all supported filesystems. This model strictly mirrors the file model pro-
vided by the traditional Unix filesystem. This is not surprising, because Linux wants
to run its native filesystem with minimum overhead. However, each specific filesys-
tem implementation must translate its physical organization into the VFS’s common
file model.

* When a filesystem is mounted on a directory, the contents of the directory in the parent filesystem are no
longer accessible, because every pathname, including the mount point, will refer to the mounted filesystem.
However, the original directory’s content shows up again when the filesystem is unmounted. This somewhat
surprising feature of Unix filesystems is used by system administrators to hide files; they simply mount a file-
system on the directory containing the files to be hidden.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Role of the Virtual Filesystem (VFS) | 459

For instance, in the common file model, each directory is regarded as a file, which
contains a list of files and other directories. However, several non-Unix disk-based
filesystems use a File Allocation Table (FAT), which stores the position of each file in
the directory tree. In these filesystems, directories are not files. To stick to the VFS’s
common file model, the Linux implementations of such FAT-based filesystems must
be able to construct on the fly, when needed, the files corresponding to the directo-
ries. Such files exist only as objects in kernel memory.

More essentially, the Linux kernel cannot hardcode a particular function to handle
an operation such as read() or ioctl(). Instead, it must use a pointer for each oper-
ation; the pointer is made to point to the proper function for the particular filesys-
tem being accessed.

Let’s illustrate this concept by showing how the read() shown in Figure 12-1 would
be translated by the kernel into a call specific to the MS-DOS filesystem. The applica-
tion’s call to read() makes the kernel invoke the corresponding sys_read() service
routine, like every other system call. The file is represented by a file data structure
in kernel memory, as we’ll see later in this chapter. This data structure contains a
field called f_op that contains pointers to functions specific to MS-DOS files, includ-
ing a function that reads a file. sys_read() finds the pointer to this function and
invokes it. Thus, the application’s read() is turned into the rather indirect call:

file->f_op->read(...);

Similarly, the write() operation triggers the execution of a proper Ext2 write func-
tion associated with the output file. In short, the kernel is responsible for assigning
the right set of pointers to the file variable associated with each open file, and then
for invoking the call specific to each filesystem that the f_op field points to.

One can think of the common file model as object-oriented, where an object is a soft-
ware construct that defines both a data structure and the methods that operate on it.
For reasons of efficiency, Linux is not coded in an object-oriented language such as
C++. Objects are therefore implemented as plain C data structures with some fields
pointing to functions that correspond to the object’s methods.

The common file model consists of the following object types:

The superblock object
Stores information concerning a mounted filesystem. For disk-based filesystems,
this object usually corresponds to a filesystem control block stored on disk.

The inode object
Stores general information about a specific file. For disk-based filesystems, this
object usually corresponds to a file control block stored on disk. Each inode
object is associated with an inode number, which uniquely identifies the file
within the filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 12: The Virtual Filesystem

The file object
Stores information about the interaction between an open file and a process.
This information exists only in kernel memory during the period when a process
has the file open.

The dentry object
Stores information about the linking of a directory entry (that is, a particular
name of the file) with the corresponding file. Each disk-based filesystem stores
this information in its own particular way on disk.

Figure 12-2 illustrates with a simple example how processes interact with files. Three
different processes have opened the same file, two of them using the same hard link.
In this case, each of the three processes uses its own file object, while only two den-
try objects are required—one for each hard link. Both dentry objects refer to the
same inode object, which identifies the superblock object and, together with the lat-
ter, the common disk file.

Besides providing a common interface to all filesystem implementations, the VFS has
another important role related to system performance. The most recently used den-
try objects are contained in a disk cache named the dentry cache, which speeds up
the translation from a file pathname to the inode of the last pathname component.

Generally speaking, a disk cache is a software mechanism that allows the kernel to
keep in RAM some information that is normally stored on a disk, so that further
accesses to that data can be quickly satisfied without a slow access to the disk itself.

Notice how a disk cache differs from a hardware cache or a memory cache, neither of
which has anything to do with disks or other devices. A hardware cache is a fast

Figure 12-2. Interaction between processes and VFS objects

Process 1 File object

Process 2 File object

Process 3 File object

disk file Superblock
object

inode
object

dentry
object

dentry
object

dentry cache

fd
f_dentry
d_inode
i_sb

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Role of the Virtual Filesystem (VFS) | 461

static RAM that speeds up requests directed to the slower dynamic RAM (see the
section “Hardware Cache” in Chapter 2). A memory cache is a software mechanism
introduced to bypass the Kernel Memory Allocator (see the section “The Slab Alloca-
tor” in Chapter 8).

Beside the dentry cache and the inode cache, Linux uses other disk caches. The most
important one, called the page cache, is described in detail in Chapter 15.

System Calls Handled by the VFS
Table 12-1 illustrates the VFS system calls that refer to filesystems, regular files,
directories, and symbolic links. A few other system calls handled by the VFS, such as
ioperm(), ioctl(), pipe(), and mknod(), refer to device files and pipes. These are dis-
cussed in later chapters. A last group of system calls handled by the VFS, such as
socket(), connect(), and bind(), refer to sockets and are used to implement net-
working. Some of the kernel service routines that correspond to the system calls
listed in Table 12-1 are discussed either in this chapter or in Chapter 18.

Table 12-1. Some system calls handled by the VFS

System call name Description

mount() umount() umount2() Mount/unmount filesystems

sysfs() Get filesystem information

statfs() fstatfs() statfs64() fstatfs64()
ustat()

Get filesystem statistics

chroot() pivot_root() Change root directory

chdir() fchdir() getcwd() Manipulate current directory

mkdir() rmdir() Create and destroy directories

getdents() getdents64() readdir() link()
unlink() rename() lookup_dcookie()

Manipulate directory entries

readlink() symlink() Manipulate soft links

chown() fchown() lchown() chown16()
fchown16() lchown16()

Modify file owner

chmod() fchmod() utime() Modify file attributes

stat() fstat() lstat() access() oldstat()
oldfstat() oldlstat() stat64() lstat64()
fstat64()

Read file status

open() close() creat() umask() Open, close, and create files

dup() dup2() fcntl() fcntl64() Manipulate file descriptors

select() poll() Wait for events on a set of file descriptors

truncate() ftruncate() truncate64()
ftruncate64()

Change file size

lseek() _llseek() Change file pointer

read() write() readv() writev() sendfile()
sendfile64() readahead()

Carry out file I/O operations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 12: The Virtual Filesystem

We said earlier that the VFS is a layer between application programs and specific file-
systems. However, in some cases, a file operation can be performed by the VFS itself,
without invoking a lower-level procedure. For instance, when a process closes an
open file, the file on disk doesn’t usually need to be touched, and hence the VFS sim-
ply releases the corresponding file object. Similarly, when the lseek() system call
modifies a file pointer, which is an attribute related to the interaction between an
opened file and a process, the VFS needs to modify only the corresponding file object
without accessing the file on disk, and therefore it does not have to invoke a specific
filesystem procedure. In some sense, the VFS could be considered a “generic” filesys-
tem that relies, when necessary, on specific ones.

VFS Data Structures
Each VFS object is stored in a suitable data structure, which includes both the object
attributes and a pointer to a table of object methods. The kernel may dynamically
modify the methods of the object and, hence, it may install specialized behavior for
the object. The following sections explain the VFS objects and their interrelation-
ships in detail.

Superblock Objects
A superblock object consists of a super_block structure whose fields are described in
Table 12-2.

io_setup() io_submit() io_getevents()
io_cancel() io_destroy()

Asynchronous I/O (allows multiple outstanding
read and write requests)

pread64() pwrite64() Seek file and access it

mmap() mmap2() munmap() madvise() mincore()
remap_file_pages()

Handle file memory mapping

fdatasync() fsync() sync() msync() Synchronize file data

flock() Manipulate file lock

setxattr() lsetxattr() fsetxattr() getxattr()
lgetxattr() fgetxattr() listxattr() llistxattr()
flistxattr() removexattr() lremovexattr()
fremovexattr()

Manipulate file extended attributes

Table 12-2. The fields of the superblock object

Type Field Description

struct list_head s_list Pointers for superblock list

dev_t s_dev Device identifier

Table 12-1. Some system calls handled by the VFS (continued)

System call name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

VFS Data Structures | 463

unsigned long s_blocksize Block size in bytes

unsigned long s_old_blocksize Block size in bytes as reported by the underlying
block device driver

unsigned char s_blocksize_bits Block size in number of bits

unsigned char s_dirt Modified (dirty) flag

unsigned long long s_maxbytes Maximum size of the files

struct
file_system_type *

s_type Filesystem type

struct
super_operations *

s_op Superblock methods

struct dquot_operations * dq_op Disk quota handling methods

struct
quotactl_ops *

s_qcop Disk quota administration methods

struct
export_operations *

s_export_op Export operations used by network filesystems

unsigned long s_flags Mount flags

unsigned long s_magic Filesystem magic number

struct dentry * s_root Dentry object of the filesystem’s root directory

struct rw_semaphore s_umount Semaphore used for unmounting

struct semaphore s_lock Superblock semaphore

int s_count Reference counter

int s_syncing Flag indicating that inodes of the superblock are
being synchronized

int s_need_sync_fs Flag used when synchronizing the superblock’s
mounted filesystem

atomic_t s_active Secondary reference counter

void * s_security Pointer to superblock security structure

struct
xattr_handler **

s_xattr Pointer to superblock extended attribute structure

struct list_head s_inodes List of all inodes

struct list_head s_dirty List of modified inodes

struct list_head s_io List of inodes waiting to be written to disk

struct hlist_head s_anon List of anonymous dentries for handling remote net-
work filesystems

struct list_head s_files List of file objects

struct block_device * s_bdev Pointer to the block device driver descriptor

struct list_head s_instances Pointers for a list of superblock objects of a given
filesystem type (see the later section “Filesystem
Type Registration”)

Table 12-2. The fields of the superblock object (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 12: The Virtual Filesystem

All superblock objects are linked in a circular doubly linked list. The first element of
this list is represented by the super_blocks variable, while the s_list field of the
superblock object stores the pointers to the adjacent elements in the list. The sb_lock
spin lock protects the list against concurrent accesses in multiprocessor systems.

The s_fs_info field points to superblock information that belongs to a specific file-
system; for instance, as we’ll see later in Chapter 18, if the superblock object refers to
an Ext2 filesystem, the field points to an ext2_sb_info structure, which includes the
disk allocation bit masks and other data of no concern to the VFS common file
model.

In general, data pointed to by the s_fs_info field is information from the disk dupli-
cated in memory for reasons of efficiency. Each disk-based filesystem needs to access
and update its allocation bitmaps in order to allocate or release disk blocks. The VFS
allows these filesystems to act directly on the s_fs_info field of the superblock in
memory without accessing the disk.

This approach leads to a new problem, however: the VFS superblock might end up
no longer synchronized with the corresponding superblock on disk. It is thus neces-
sary to introduce an s_dirt flag, which specifies whether the superblock is dirty—
that is, whether the data on the disk must be updated. The lack of synchronization
leads to the familiar problem of a corrupted filesystem when a site’s power goes
down without giving the user the chance to shut down a system cleanly. As we’ll see
in the section “Writing Dirty Pages to Disk” in Chapter 15, Linux minimizes this
problem by periodically copying all dirty superblocks to disk.

The methods associated with a superblock are called superblock operations. They are
described by the super_operations structure whose address is included in the s_op field.

Each specific filesystem can define its own superblock operations. When the VFS
needs to invoke one of them, say read_inode(), it executes the following:

sb->s_op->read_inode(inode);

struct quota_info s_dquot Descriptor for disk quota

int s_frozen Flag used when freezing the filesystem (forcing it to
a consistent state)

wait_queue_head_t s_wait_unfrozen Wait queue where processes sleep until the filesys-
tem is unfrozen

char[] s_id Name of the block device containing the superblock

void * s_fs_info Pointer to superblock information of a specific file-
system

struct semaphore s_vfs_rename_sem Semaphore used by VFS when renaming files across
directories

u32 s_time_gran Timestamp’s granularity (in nanoseconds)

Table 12-2. The fields of the superblock object (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

VFS Data Structures | 465

where sb stores the address of the superblock object involved. The read_inode field
of the super_operations table contains the address of the suitable function, which is
therefore directly invoked.

Let’s briefly describe the superblock operations, which implement higher-level oper-
ations like deleting files or mounting disks. They are listed in the order they appear
in the super_operations table:

alloc_inode(sb)
Allocates space for an inode object, including the space required for filesystem-
specific data.

destroy_inode(inode)
Destroys an inode object, including the filesystem-specific data.

read_inode(inode)
Fills the fields of the inode object passed as the parameter with the data on disk;
the i_ino field of the inode object identifies the specific filesystem inode on the
disk to be read.

dirty_inode(inode)
Invoked when the inode is marked as modified (dirty). Used by filesystems such
as ReiserFS and Ext3 to update the filesystem journal on disk.

write_inode(inode, flag)
Updates a filesystem inode with the contents of the inode object passed as the
parameter; the i_ino field of the inode object identifies the filesystem inode on
disk that is concerned. The flag parameter indicates whether the I/O operation
should be synchronous.

put_inode(inode)
Invoked when the inode is released—its reference counter is decreased—to per-
form filesystem-specific operations.

drop_inode(inode)
Invoked when the inode is about to be destroyed—that is, when the last user
releases the inode; filesystems that implement this method usually make use of
generic_drop_inode(). This function removes every reference to the inode from
the VFS data structures and, if the inode no longer appears in any directory,
invokes the delete_inode superblock method to delete the inode from the filesys-
tem.

delete_inode(inode)
Invoked when the inode must be destroyed. Deletes the VFS inode in memory
and the file data and metadata on disk.

put_super(super)
Releases the superblock object passed as the parameter (because the correspond-
ing filesystem is unmounted).

write_super(super)
Updates a filesystem superblock with the contents of the object indicated.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 12: The Virtual Filesystem

sync_fs(sb, wait)
Invoked when flushing the filesystem to update filesystem-specific data struc-
tures on disk (used by journaling filesystems).

write_super_lockfs(super)
Blocks changes to the filesystem and updates the superblock with the contents of
the object indicated. This method is invoked when the filesystem is frozen, for
instance by the Logical Volume Manager (LVM) driver.

unlockfs(super)
Undoes the block of filesystem updates achieved by the write_super_lockfs
superblock method.

statfs(super, buf)
Returns statistics on a filesystem by filling the buf buffer.

remount_fs(super, flags, data)
Remounts the filesystem with new options (invoked when a mount option must
be changed).

clear_inode(inode)
Invoked when a disk inode is being destroyed to perform filesystem-specific
operations.

umount_begin(super)
Aborts a mount operation because the corresponding unmount operation has
been started (used only by network filesystems).

show_options(seq_file, vfsmount)
Used to display the filesystem-specific options

quota_read(super, type, data, size, offset)
Used by the quota system to read data from the file that specifies the limits for
this filesystem.*

quota_write(super, type, data, size, offset)
Used by the quota system to write data into the file that specifies the limits for
this filesystem.

The preceding methods are available to all possible filesystem types. However, only a
subset of them applies to each specific filesystem; the fields corresponding to unim-
plemented methods are set to NULL. Notice that no get_super method to read a super-
block is defined—how could the kernel invoke a method of an object yet to be read
from disk? We’ll find an equivalent get_sb method in another object describing the
filesystem type (see the later section “Filesystem Type Registration”).

* The quota system defines for each user and/or group limits on the amount of space that can be used on a
given filesystem (see the quotactl() system call.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

VFS Data Structures | 467

Inode Objects
All information needed by the filesystem to handle a file is included in a data struc-
ture called an inode. A filename is a casually assigned label that can be changed, but
the inode is unique to the file and remains the same as long as the file exists. An
inode object in memory consists of an inode structure whose fields are described in
Table 12-3.

Table 12-3. The fields of the inode object

Type Field Description

struct hlist_node i_hash Pointers for the hash list

struct list_head i_list Pointers for the list that describes the inode’s cur-
rent state

struct list_head i_sb_list Pointers for the list of inodes of the superblock

struct list_head i_dentry The head of the list of dentry objects referencing
this inode

unsigned long i_ino inode number

atomic_t i_count Usage counter

umode_t i_mode File type and access rights

unsigned int i_nlink Number of hard links

uid_t i_uid Owner identifier

gid_t i_gid Group identifier

dev_t i_rdev Real device identifier

loff_t i_size File length in bytes

struct timespec i_atime Time of last file access

struct timespec i_mtime Time of last file write

struct timespec i_ctime Time of last inode change

unsigned int i_blkbits Block size in number of bits

unsigned long i_blksize Block size in bytes

unsigned long i_version Version number, automatically increased after each
use

unsigned long i_blocks Number of blocks of the file

unsigned short i_bytes Number of bytes in the last block of the file

unsigned char i_sock Nonzero if file is a socket

spinlock_t i_lock Spin lock protecting some fields of the inode

struct semaphore i_sem inode semaphore

struct rw_semaphore i_alloc_sem Read/write semaphore protecting against race
conditions in direct I/O file operations

struct inode_operations * i_op inode operations

struct file_operations * i_fop Default file operations

struct super_block * i_sb Pointer to superblock object

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 12: The Virtual Filesystem

Each inode object duplicates some of the data included in the disk inode—for
instance, the number of blocks allocated to the file. When the value of the i_state
field is equal to I_DIRTY_SYNC, I_DIRTY_DATASYNC, or I_DIRTY_PAGES, the inode is
dirty—that is, the corresponding disk inode must be updated. The I_DIRTY macro
can be used to check the value of these three flags at once (see later for details).
Other values of the i_state field are I_LOCK (the inode object is involved in an I/O
transfer), I_FREEING (the inode object is being freed), I_CLEAR (the inode object con-
tents are no longer meaningful), and I_NEW (the inode object has been allocated but
not yet filled with data read from the disk inode).

Each inode object always appears in one of the following circular doubly linked lists
(in all cases, the pointers to the adjacent elements are stored in the i_list field):

• The list of valid unused inodes, typically those mirroring valid disk inodes and not
currently used by any process. These inodes are not dirty and their i_count field is
set to 0. The first and last elements of this list are referenced by the next and prev
fields, respectively, of the inode_unused variable. This list acts as a disk cache.

struct file_lock * i_flock Pointer to file lock list

struct address_space * i_mapping Pointer to an address_space object (see
Chapter 15)

struct address_space i_data address_space object of the file

struct dquot * [] i_dquot inode disk quotas

struct list_head i_devices Pointers for a list of inodes relative to a specific
character or block device (see Chapter 13)

struct pipe_inode_info * i_pipe Used if the file is a pipe (see Chapter 19)

struct block_device * i_bdev Pointer to the block device driver

struct cdev * i_cdev Pointer to the character device driver

int i_cindex Index of the device file within a group of minor
numbers

__u32 i_generation inode version number (used by some filesystems)

unsigned long i_dnotify_mask Bit mask of directory notify events

struct dnotify_struct * i_dnotify Used for directory notifications

unsigned long i_state inode state flags

unsigned long dirtied_when Dirtying time (in ticks) of the inode

unsigned int i_flags Filesystem mount flags

atomic_t i_writecount Usage counter for writing processes

void * i_security Pointer to inode’s security structure

void * u.generic_ip Pointer to private data

seqcount_t i_size_seqcount Sequence counter used in SMP systems to get con-
sistent values for i_size

Table 12-3. The fields of the inode object (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

VFS Data Structures | 469

• The list of in-use inodes, that is, those mirroring valid disk inodes and used by
some process. These inodes are not dirty and their i_count field is positive. The
first and last elements are referenced by the inode_in_use variable.

• The list of dirty inodes. The first and last elements are referenced by the s_dirty
field of the corresponding superblock object.

Each of the lists just mentioned links the i_list fields of the proper inode objects.

Moreover, each inode object is also included in a per-filesystem doubly linked circu-
lar list headed at the s_inodes field of the superblock object; the i_sb_list field of
the inode object stores the pointers for the adjacent elements in this list.

Finally, the inode objects are also included in a hash table named inode_hashtable.
The hash table speeds up the search of the inode object when the kernel knows both
the inode number and the address of the superblock object corresponding to the file-
system that includes the file. Because hashing may induce collisions, the inode object
includes an i_hash field that contains a backward and a forward pointer to other
inodes that hash to the same position; this field creates a doubly linked list of those
inodes.

The methods associated with an inode object are also called inode operations. They
are described by an inode_operations structure, whose address is included in the i_op
field. Here are the inode operations in the order they appear in the inode_operations
table:

create(dir, dentry, mode, nameidata)
Creates a new disk inode for a regular file associated with a dentry object in
some directory.

lookup(dir, dentry, nameidata)
Searches a directory for an inode corresponding to the filename included in a
dentry object.

link(old_dentry, dir, new_dentry)
Creates a new hard link that refers to the file specified by old_dentry in the direc-
tory dir; the new hard link has the name specified by new_dentry.

unlink(dir, dentry)
Removes the hard link of the file specified by a dentry object from a directory.

symlink(dir, dentry, symname)
Creates a new inode for a symbolic link associated with a dentry object in some
directory.

mkdir(dir, dentry, mode)
Creates a new inode for a directory associated with a dentry object in some
directory.

rmdir(dir, dentry)
Removes from a directory the subdirectory whose name is included in a dentry
object.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 12: The Virtual Filesystem

mknod(dir, dentry, mode, rdev)
Creates a new disk inode for a special file associated with a dentry object in
some directory. The mode and rdev parameters specify, respectively, the file type
and the device’s major and minor numbers.

rename(old_dir, old_dentry, new_dir, new_dentry)
Moves the file identified by old_entry from the old_dir directory to the new_dir
one. The new filename is included in the dentry object that new_dentry points to.

readlink(dentry, buffer, buflen)
Copies into a User Mode memory area specified by buffer the file pathname cor-
responding to the symbolic link specified by the dentry.

follow_link(inode, nameidata)
Translates a symbolic link specified by an inode object; if the symbolic link is a
relative pathname, the lookup operation starts from the directory specified in the
second parameter.

put_link(dentry, nameidata)
Releases all temporary data structures allocated by the follow_link method to
translate a symbolic link.

truncate(inode)
Modifies the size of the file associated with an inode. Before invoking this
method, it is necessary to set the i_size field of the inode object to the required
new size.

permission(inode, mask, nameidata)
Checks whether the specified access mode is allowed for the file associated with
inode.

setattr(dentry, iattr)
Notifies a “change event” after touching the inode attributes.

getattr(mnt, dentry, kstat)
Used by some filesystems to read inode attributes.

setxattr(dentry, name, value, size, flags)
Sets an “extended attribute” of an inode (extended attributes are stored on disk
blocks outside of any inode).

getxattr(dentry, name, buffer, size)
Gets an extended attribute of an inode.

listxattr(dentry, buffer, size)
Gets the whole list of extended attribute names.

removexattr(dentry, name)
Removes an extended attribute of an inode.

The methods just listed are available to all possible inodes and filesystem types.
However, only a subset of them applies to a specific inode and filesystem; the fields
corresponding to unimplemented methods are set to NULL.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

VFS Data Structures | 471

File Objects
A file object describes how a process interacts with a file it has opened. The object is
created when the file is opened and consists of a file structure, whose fields are
described in Table 12-4. Notice that file objects have no corresponding image on
disk, and hence no “dirty” field is included in the file structure to specify that the
file object has been modified.

The main information stored in a file object is the file pointer—the current position
in the file from which the next operation will take place. Because several processes
may access the same file concurrently, the file pointer must be kept in the file object
rather than the inode object.

File objects are allocated through a slab cache named filp, whose descriptor address
is stored in the filp_cachep variable. Because there is a limit on the number of file
objects that can be allocated, the files_stat variable specifies in the max_files field

Table 12-4. The fields of the file object

Type Field Description

struct list_head f_list Pointers for generic file object list

struct dentry * f_dentry dentry object associated with the file

struct vfsmount * f_vfsmnt Mounted filesystem containing the file

struct file_operations * f_op Pointer to file operation table

atomic_t f_count File object’s reference counter

unsigned int f_flags Flags specified when opening the file

mode_t f_mode Process access mode

int f_error Error code for network write operation

loff_t f_pos Current file offset (file pointer)

struct fown_struct f_owner Data for I/O event notification via signals

unsigned int f_uid User’s UID

unsigned int f_gid User group ID

struct file_ra_state f_ra File read-ahead state (see Chapter 16)

size_t f_maxcount Maximum number of bytes that can be read or written with a
single operation (currently set to 231–1)

unsigned long f_version Version number, automatically increased after each use

void * f_security Pointer to file object’s security structure

void * private_data Pointer to data specific for a filesystem or a device driver

struct list_head f_ep_links Head of the list of event poll waiters for this file

spinlock_t f_ep_lock Spin lock protecting the f_ep_links list

struct address_space * f_mapping Pointer to file’s address space object (see Chapter 15)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 12: The Virtual Filesystem

the maximum number of allocatable file objects—i.e., the maximum number of files
that can be accessed at the same time in the system.*

“In use” file objects are collected in several lists rooted at the superblocks of the
owning filesystems. Each superblock object stores in the s_files field the head of a
list of file objects; thus, file objects of files belonging to different filesystems are
included in different lists. The pointers to the previous and next element in the list
are stored in the f_list field of the file object. The files_lock spin lock protects the
superblock s_files lists against concurrent accesses in multiprocessor systems.

The f_count field of the file object is a reference counter: it counts the number of
processes that are using the file object (remember that lightweight processes created
with the CLONE_FILES flag share the table that identifies the open files, thus they use
the same file objects). The counter is also increased when the file object is used by
the kernel itself—for instance, when the object is inserted in a list, or when a dup()
system call has been issued.

When the VFS must open a file on behalf of a process, it invokes the get_empty_filp(
) function to allocate a new file object. The function invokes kmem_cache_alloc() to
get a free file object from the filp cache, then it initializes the fields of the object as
follows:

memset(f, 0, sizeof(*f));
INIT_LIST_HEAD(&f->f_ep_links);
spin_lock_init(&f->f_ep_lock);
atomic_set(&f->f_count, 1);
f->f_uid = current->fsuid;
f->f_gid = current->fsgid;
f->f_owner.lock = RW_LOCK_UNLOCKED;
INIT_LIST_HEAD(&f->f_list);
f->f_maxcount = INT_MAX;

As we explained earlier in the section “The Common File Model,” each filesystem
includes its own set of file operations that perform such activities as reading and writ-
ing a file. When the kernel loads an inode into memory from disk, it stores a pointer
to these file operations in a file_operations structure whose address is contained in
the i_fop field of the inode object. When a process opens the file, the VFS initializes
the f_op field of the new file object with the address stored in the inode so that fur-
ther calls to file operations can use these functions. If necessary, the VFS may later
modify the set of file operations by storing a new value in f_op.

The following list describes the file operations in the order in which they appear in
the file_operations table:

* The files_init() function, executed during kernel initialization, sets the max_files field to one-tenth of the
available RAM in kilobytes, but the system administrator can tune this parameter by writing into the /proc/
sys/fs/file-max file. Moreover, the superuser can always get a file object, even if max_files file objects have
already been allocated.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

VFS Data Structures | 473

llseek(file, offset, origin)
Updates the file pointer.

read(file, buf, count, offset)
Reads count bytes from a file starting at position *offset; the value *offset
(which usually corresponds to the file pointer) is then increased.

aio_read(req, buf, len, pos)
Starts an asynchronous I/O operation to read len bytes into buf from file posi-
tion pos (introduced to support the io_submit() system call).

write(file, buf, count, offset)
Writes count bytes into a file starting at position *offset; the value *offset
(which usually corresponds to the file pointer) is then increased.

aio_write(req, buf, len, pos)
Starts an asynchronous I/O operation to write len bytes from buf to file position
pos.

readdir(dir, dirent, filldir)
Returns the next directory entry of a directory in dirent; the filldir parameter
contains the address of an auxiliary function that extracts the fields in a direc-
tory entry.

poll(file, poll_table)
Checks whether there is activity on a file and goes to sleep until something hap-
pens on it.

ioctl(inode, file, cmd, arg)
Sends a command to an underlying hardware device. This method applies only
to device files.

unlocked_ioctl(file, cmd, arg)
Similar to the ioctl method, but it does not take the big kernel lock (see the sec-
tion “The Big Kernel Lock” in Chapter 5). It is expected that all device drivers
and all filesystems will implement this new method instead of the ioctl method.

compat_ioctl(file, cmd, arg)
Method used to implement the ioctl() 32-bit system call by 64-bit kernels.

mmap(file, vma)
Performs a memory mapping of the file into a process address space (see the sec-
tion “Memory Mapping” in Chapter 16).

open(inode, file)
Opens a file by creating a new file object and linking it to the corresponding
inode object (see the section “The open() System Call” later in this chapter).

flush(file)
Called when a reference to an open file is closed. The actual purpose of this
method is filesystem-dependent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 12: The Virtual Filesystem

release(inode, file)
Releases the file object. Called when the last reference to an open file is closed—
that is, when the f_count field of the file object becomes 0.

fsync(file, dentry, flag)
Flushes the file by writing all cached data to disk.

aio_fsync(req, flag)
Starts an asynchronous I/O flush operation.

fasync(fd, file, on)
Enables or disables I/O event notification by means of signals.

lock(file, cmd, file_lock)
Applies a lock to the file (see the section “File Locking” later in this chapter).

readv(file, vector, count, offset)
Reads bytes from a file and puts the results in the buffers described by vector;
the number of buffers is specified by count.

writev(file, vector, count, offset)
Writes bytes into a file from the buffers described by vector; the number of buff-
ers is specified by count.

sendfile(in_file, offset, count, file_send_actor, out_file)
Transfers data from in_file to out_file (introduced to support the sendfile()
system call).

sendpage(file, page, offset, size, pointer, fill)
Transfers data from file to the page cache’s page; this is a low-level method
used by sendfile() and by the networking code for sockets.

get_unmapped_area(file, addr, len, offset, flags)
Gets an unused address range to map the file.

check_flags(flags)
Method invoked by the service routine of the fcntl() system call to perform
additional checks when setting the status flags of a file (F_SETFL command). Cur-
rently used only by the NFS network filesystem.

dir_notify(file, arg)
Method invoked by the service routine of the fcntl() system call when establish-
ing a directory change notification (F_NOTIFY command). Currently used only by
the Common Internet File System (CIFS) network filesystem.

flock(file, flag, lock)
Used to customize the behavior of the flock() system call. No official Linux file-
system makes use of this method.

The methods just described are available to all possible file types. However, only a
subset of them apply to a specific file type; the fields corresponding to unimple-
mented methods are set to NULL.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

VFS Data Structures | 475

dentry Objects
We mentioned in the section “The Common File Model” that the VFS considers
each directory a file that contains a list of files and other directories. We will discuss
in Chapter 18 how directories are implemented on a specific filesystem. Once a
directory entry is read into memory, however, it is transformed by the VFS into a
dentry object based on the dentry structure, whose fields are described in Table 12-5.
The kernel creates a dentry object for every component of a pathname that a process
looks up; the dentry object associates the component to its corresponding inode. For
example, when looking up the /tmp/test pathname, the kernel creates a dentry object
for the / root directory, a second dentry object for the tmp entry of the root direc-
tory, and a third dentry object for the test entry of the /tmp directory.

Notice that dentry objects have no corresponding image on disk, and hence no field
is included in the dentry structure to specify that the object has been modified. Den-
try objects are stored in a slab allocator cache whose descriptor is dentry_cache; den-
try objects are thus created and destroyed by invoking kmem_cache_alloc() and kmem_
cache_free().

Table 12-5. The fields of the dentry object

Type Field Description

atomic_t d_count Dentry object usage counter

unsigned int d_flags Dentry cache flags

spinlock_t d_lock Spin lock protecting the dentry object

struct inode * d_inode Inode associated with filename

struct dentry * d_parent Dentry object of parent directory

struct qstr d_name Filename

struct list_head d_lru Pointers for the list of unused dentries

struct list_head d_child For directories, pointers for the list of directory den-
tries in the same parent directory

struct list_head d_subdirs For directories, head of the list of subdirectory den-
tries

struct list_head d_alias Pointers for the list of dentries associated with the
same inode (alias)

unsigned long d_time Used by d_revalidate method

struct dentry_operations* d_op Dentry methods

struct super_block * d_sb Superblock object of the file

void * d_fsdata Filesystem-dependent data

struct rcu_head d_rcu The RCU descriptor used when reclaiming the dentry
object (see the section “Read-Copy Update (RCU)” in
Chapter 5)

struct dcookie_struct * d_cookie Pointer to structure used by kernel profilers

struct hlist_node d_hash Pointer for list in hash table entry

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 12: The Virtual Filesystem

Each dentry object may be in one of four states:

Free
The dentry object contains no valid information and is not used by the VFS. The
corresponding memory area is handled by the slab allocator.

Unused
The dentry object is not currently used by the kernel. The d_count usage counter
of the object is 0, but the d_inode field still points to the associated inode. The
dentry object contains valid information, but its contents may be discarded if
necessary in order to reclaim memory.

In use
The dentry object is currently used by the kernel. The d_count usage counter is
positive, and the d_inode field points to the associated inode object. The dentry
object contains valid information and cannot be discarded.

Negative
The inode associated with the dentry does not exist, either because the corre-
sponding disk inode has been deleted or because the dentry object was created
by resolving a pathname of a nonexistent file. The d_inode field of the dentry
object is set to NULL, but the object still remains in the dentry cache, so that fur-
ther lookup operations to the same file pathname can be quickly resolved. The
term “negative” is somewhat misleading, because no negative value is involved.

The methods associated with a dentry object are called dentry operations; they are
described by the dentry_operations structure, whose address is stored in the d_op
field. Although some filesystems define their own dentry methods, the fields are usu-
ally NULL and the VFS replaces them with default functions. Here are the methods, in
the order they appear in the dentry_operations table:

d_revalidate(dentry, nameidata)
Determines whether the dentry object is still valid before using it for translating a
file pathname. The default VFS function does nothing, although network file-
systems may specify their own functions.

d_hash(dentry, name)
Creates a hash value; this function is a filesystem-specific hash function for the
dentry hash table. The dentry parameter identifies the directory containing the
component. The name parameter points to a structure containing both the path-
name component to be looked up and the value produced by the hash function.

int d_mounted For directories, counter for the number of filesys-
tems mounted on this dentry

unsigned char[] d_iname Space for short filename

Table 12-5. The fields of the dentry object (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

VFS Data Structures | 477

d_compare(dir, name1, name2)
Compares two filenames; name1 should belong to the directory referenced by dir.
The default VFS function is a normal string match. However, each filesystem can
implement this method in its own way. For instance, MS-DOS does not distin-
guish capital from lowercase letters.

d_delete(dentry)
Called when the last reference to a dentry object is deleted (d_count becomes 0).
The default VFS function does nothing.

d_release(dentry)
Called when a dentry object is going to be freed (released to the slab allocator).
The default VFS function does nothing.

d_iput(dentry, ino)
Called when a dentry object becomes “negative”—that is, it loses its inode. The
default VFS function invokes iput() to release the inode object.

The dentry Cache
Because reading a directory entry from disk and constructing the corresponding den-
try object requires considerable time, it makes sense to keep in memory dentry
objects that you’ve finished with but might need later. For instance, people often edit
a file and then compile it, or edit and print it, or copy it and then edit the copy. In
such cases, the same file needs to be repeatedly accessed.

To maximize efficiency in handling dentries, Linux uses a dentry cache, which con-
sists of two kinds of data structures:

• A set of dentry objects in the in-use, unused, or negative state.

• A hash table to derive the dentry object associated with a given filename and a
given directory quickly. As usual, if the required object is not included in the
dentry cache, the search function returns a null value.

The dentry cache also acts as a controller for an inode cache. The inodes in kernel
memory that are associated with unused dentries are not discarded, because the den-
try cache is still using them. Thus, the inode objects are kept in RAM and can be
quickly referenced by means of the corresponding dentries.

All the “unused” dentries are included in a doubly linked “Least Recently Used” list
sorted by time of insertion. In other words, the dentry object that was last released is
put in front of the list, so the least recently used dentry objects are always near the
end of the list. When the dentry cache has to shrink, the kernel removes elements
from the tail of this list so that the most recently used objects are preserved. The
addresses of the first and last elements of the LRU list are stored in the next and prev
fields of the dentry_unused variable of type list_head. The d_lru field of the dentry
object contains pointers to the adjacent dentries in the list.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 12: The Virtual Filesystem

Each “in use” dentry object is inserted into a doubly linked list specified by the i_dentry
field of the corresponding inode object (because each inode could be associated with
several hard links, a list is required). The d_alias field of the dentry object stores the
addresses of the adjacent elements in the list. Both fields are of type struct list_head.

An “in use” dentry object may become “negative” when the last hard link to the cor-
responding file is deleted. In this case, the dentry object is moved into the LRU list of
unused dentries. Each time the kernel shrinks the dentry cache, negative dentries
move toward the tail of the LRU list so that they are gradually freed (see the section
“Reclaiming Pages of Shrinkable Disk Caches” in Chapter 17).

The hash table is implemented by means of a dentry_hashtable array. Each element
is a pointer to a list of dentries that hash to the same hash table value. The array’s
size usually depends on the amount of RAM installed in the system; the default value
is 256 entries per megabyte of RAM. The d_hash field of the dentry object contains
pointers to the adjacent elements in the list associated with a single hash value. The
hash function produces its value from both the dentry object of the directory and the
filename.

The dcache_lock spin lock protects the dentry cache data structures against concur-
rent accesses in multiprocessor systems. The d_lookup() function looks in the hash
table for a given parent dentry object and filename; to avoid race conditions, it
makes use of a seqlock (see the section “Seqlocks” in Chapter 5). The __d_lookup()
function is similar, but it assumes that no race condition can happen, so it does not
use the seqlock.

Files Associated with a Process
We mentioned in the section “An Overview of the Unix Filesystem” in Chapter 1
that each process has its own current working directory and its own root directory.
These are only two examples of data that must be maintained by the kernel to repre-
sent the interactions between a process and a filesystem. A whole data structure of
type fs_struct is used for that purpose (see Table 12-6), and each process descriptor
has an fs field that points to the process fs_struct structure.

Table 12-6. The fields of the fs_struct structure

Type Field Description

atomic_t count Number of processes sharing this table

rwlock_t lock Read/write spin lock for the table fields

int umask Bit mask used when opening the file to set the file permissions

struct dentry * root Dentry of the root directory

struct dentry * pwd Dentry of the current working directory

struct dentry * altroot Dentry of the emulated root directory (always NULL for the 80 × 86
architecture)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

VFS Data Structures | 479

A second table, whose address is contained in the files field of the process descrip-
tor, specifies which files are currently opened by the process. It is a files_struct
structure whose fields are illustrated in Table 12-7.

The fd field points to an array of pointers to file objects. The size of the array is
stored in the max_fds field. Usually, fd points to the fd_array field of the files_
struct structure, which includes 32 file object pointers. If the process opens more
than 32 files, the kernel allocates a new, larger array of file pointers and stores its
address in the fd fields; it also updates the max_fds field.

For every file with an entry in the fd array, the array index is the file descriptor. Usu-
ally, the first element (index 0) of the array is associated with the standard input of
the process, the second with the standard output, and the third with the standard
error (see Figure 12-3). Unix processes use the file descriptor as the main file identi-
fier. Notice that, thanks to the dup(), dup2(), and fcntl() system calls, two file
descriptors may refer to the same opened file—that is, two elements of the array
could point to the same file object. Users see this all the time when they use shell
constructs such as 2>&1 to redirect the standard error to the standard output.

A process cannot use more than NR_OPEN (usually, 1,048,576) file descriptors. The
kernel also enforces a dynamic bound on the maximum number of file descriptors in

struct vfsmount * rootmnt Mounted filesystem object of the root directory

struct vfsmount * pwdmnt Mounted filesystem object of the current working directory

struct vfsmount * altrootmnt Mounted filesystem object of the emulated root directory (always
NULL for the 80 × 86 architecture)

Table 12-7. The fields of the files_struct structure

Type Field Description

atomic_t count Number of processes sharing this table

rwlock_t file_lock Read/write spin lock for the table fields

int max_fds Current maximum number of file objects

int max_fdset Current maximum number of file descriptors

int next_fd Maximum file descriptors ever allocated plus 1

struct file ** fd Pointer to array of file object pointers

fd_set * close_on_exec Pointer to file descriptors to be closed on exec()

fd_set * open_fds Pointer to open file descriptors

fd_set close_on_exec_init Initial set of file descriptors to be closed on exec()

fd_set open_fds_init Initial set of file descriptors

struct file *[] fd_array Initial array of file object pointers

Table 12-6. The fields of the fs_struct structure (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 12: The Virtual Filesystem

the signal->rlim[RLIMIT_NOFILE] structure of the process descriptor; this value is
usually 1,024, but it can be raised if the process has root privileges.

The open_fds field initially contains the address of the open_fds_init field, which is a
bitmap that identifies the file descriptors of currently opened files. The max_fdset
field stores the number of bits in the bitmap. Because the fd_set data structure
includes 1,024 bits, there is usually no need to expand the size of the bitmap. How-
ever, the kernel may dynamically expand the size of the bitmap if this turns out to be
necessary, much as in the case of the array of file objects.

The kernel provides an fget() function to be invoked when the kernel starts using a
file object. This function receives as its parameter a file descriptor fd. It returns the
address in current->files->fd[fd] (that is, the address of the corresponding file
object), or NULL if no file corresponds to fd. In the first case, fget() increases the file
object usage counter f_count by 1.

The kernel also provides an fput() function to be invoked when a kernel control
path finishes using a file object. This function receives as its parameter the address of
a file object and decreases its usage counter, f_count. Moreover, if this field becomes
0, the function invokes the release method of the file operations (if defined),
decreases the i_writecount field in the inode object (if the file was opened for writ-
ing), removes the file object from the superblock’s list, releases the file object to the
slab allocator, and decreases the usage counters of the associated dentry object and
of the filesystem descriptor (see the later section “Filesystem Mounting).

The fget_light() and fput_light() functions are faster versions of fget() and fput(
): the kernel uses them when it can safely assume that the current process already
owns the file object—that is, the process has already previously increased the file
object’s reference counter. For instance, they are used by the service routines of the

Figure 12-3. The fd array

0

1

2

3

4

fd
File object

File object

File object

stdin

stdout

stderr

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Types | 481

system calls that receive a file descriptor as an argument, because the file object’s ref-
erence counter has been increased by a previous open() system call.

Filesystem Types
The Linux kernel supports many different types of filesystems. In the following, we
introduce a few special types of filesystems that play an important role in the inter-
nal design of the Linux kernel.

Next, we’ll discuss filesystem registration—that is, the basic operation that must be
performed, usually during system initialization, before using a filesystem type. Once
a filesystem is registered, its specific functions are available to the kernel, so that type
of filesystem can be mounted on the system’s directory tree.

Special Filesystems
While network and disk-based filesystems enable the user to handle information
stored outside the kernel, special filesystems may provide an easy way for system
programs and administrators to manipulate the data structures of the kernel and to
implement special features of the operating system. Table 12-8 lists the most com-
mon special filesystems used in Linux; for each of them, the table reports its sug-
gested mount point and a short description.

Notice that a few filesystems have no fixed mount point (keyword “any” in the
table). These filesystems can be freely mounted and used by the users. Moreover,
some other special filesystems do not have a mount point at all (keyword “none” in
the table). They are not for user interaction, but the kernel can use them to easily
reuse some of the VFS layer code; for instance, we’ll see in Chapter 19 that, thanks to
the pipefs special filesystem, pipes can be treated in the same way as FIFO files.

Table 12-8. Most common special filesystems

Name Mount point Description

bdev none Block devices (see Chapter 13)

binfmt_misc any Miscellaneous executable formats (see Chapter 20)

devpts /dev/pts Pseudoterminal support (Open Group’s Unix98 standard)

eventpollfs none Used by the efficient event polling mechanism

futexfs none Used by the futex (Fast Userspace Locking) mechanism

pipefs none Pipes (see Chapter 19)

proc /proc General access point to kernel data structures

rootfs none Provides an empty root directory for the bootstrap phase

shm none IPC-shared memory regions (see Chapter 19)

mqueue any Used to implement POSIX message queues (see Chapter 19)

sockfs none Sockets

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 12: The Virtual Filesystem

Special filesystems are not bound to physical block devices. However, the kernel
assigns to each mounted special filesystem a fictitious block device that has the value
0 as major number and an arbitrary value (different for each special filesystem) as a
minor number. The set_anon_super() function is used to initialize superblocks of
special filesystems; this function essentially gets an unused minor number dev and
sets the s_dev field of the new superblock with major number 0 and minor number
dev. Another function called kill_anon_super() removes the superblock of a special
filesystem. The unnamed_dev_idr variable includes pointers to auxiliary structures that
record the minor numbers currently in use. Although some kernel designers dislike
the fictitious block device identifiers, they help the kernel to handle special filesys-
tems and regular ones in a uniform way.

We’ll see a practical example of how the kernel defines and initializes a special file-
system in the later section “Mounting a Generic Filesystem.”

Filesystem Type Registration
Often, the user configures Linux to recognize all the filesystems needed when com-
piling the kernel for his system. But the code for a filesystem actually may either be
included in the kernel image or dynamically loaded as a module (see Appendix B).
The VFS must keep track of all filesystem types whose code is currently included in
the kernel. It does this by performing filesystem type registration.

Each registered filesystem is represented as a file_system_type object whose fields
are illustrated in Table 12-9.

sysfs /sys General access point to system data (see Chapter 13)

tmpfs any Temporary files (kept in RAM unless swapped)

usbfs /proc/bus/usb USB devices

Table 12-9. The fields of the file_system_type object

Type Field Description

const char * name Filesystem name

int fs_flags Filesystem type flags

struct super_block * (*)() get_sb Method for reading a superblock

void (*)() kill_sb Method for removing a superblock

struct module * owner Pointer to the module implementing the filesystem (see
Appendix B)

struct file_system_type * next Pointer to the next element in the list of filesystem types

struct list_head fs_supers Head of a list of superblock objects having the same filesystem
type

Table 12-8. Most common special filesystems (continued)

Name Mount point Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Handling | 483

All filesystem-type objects are inserted into a singly linked list. The file_systems
variable points to the first item, while the next field of the structure points to the
next item in the list. The file_systems_lock read/write spin lock protects the whole
list against concurrent accesses.

The fs_supers field represents the head (first dummy element) of a list of superblock
objects corresponding to mounted filesystems of the given type. The backward and
forward links of a list element are stored in the s_instances field of the superblock
object.

The get_sb field points to the filesystem-type-dependent function that allocates a
new superblock object and initializes it (if necessary, by reading a disk). The kill_sb
field points to the function that destroys a superblock.

The fs_flags field stores several flags, which are listed in Table 12-10.

During system initialization, the register_filesystem() function is invoked for every
filesystem specified at compile time; the function inserts the corresponding file_
system_type object into the filesystem-type list.

The register_filesystem() function is also invoked when a module implementing a
filesystem is loaded. In this case, the filesystem may also be unregistered (by invok-
ing the unregister_filesystem() function) when the module is unloaded.

The get_fs_type() function, which receives a filesystem name as its parameter, scans
the list of registered filesystems looking at the name field of their descriptors, and
returns a pointer to the corresponding file_system_type object, if it is present.

Filesystem Handling
Like every traditional Unix system, Linux makes use of a system’s root filesystem: it is
the filesystem that is directly mounted by the kernel during the booting phase and
that holds the system initialization scripts and the most essential system programs.

Other filesystems can be mounted—either by the initialization scripts or directly by
the users—on directories of already mounted filesystems. Being a tree of directories,
every filesystem has its own root directory. The directory on which a filesystem is
mounted is called the mount point. A mounted filesystem is a child of the mounted

Table 12-10. The filesystem type flags

Name Description

FS_REQUIRES_DEV Every filesystem of this type must be located on a physical disk device.

FS_BINARY_MOUNTDATA The filesystem uses binary mount data.

FS_REVAL_DOT Always revalidate the “.” and “..” paths in the dentry cache (for network filesystems).

FS_ODD_RENAME “Rename” operations are “move” operations (for network filesystems).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 12: The Virtual Filesystem

filesystem to which the mount point directory belongs. For instance, the /proc vir-
tual filesystem is a child of the system’s root filesystem (and the system’s root filesys-
tem is the parent of /proc). The root directory of a mounted filesystem hides the
content of the mount point directory of the parent filesystem, as well as the whole
subtree of the parent filesystem below the mount point.*

Namespaces
In a traditional Unix system, there is only one tree of mounted filesystems: starting
from the system’s root filesystem, each process can potentially access every file in a
mounted filesystem by specifying the proper pathname. In this respect, Linux 2.6 is
more refined: every process might have its own tree of mounted filesystems—the so-
called namespace of the process.

Usually most processes share the same namespace, which is the tree of mounted file-
systems that is rooted at the system’s root filesystem and that is used by the init pro-
cess. However, a process gets a new namespace if it is created by the clone() system
call with the CLONE_NEWNS flag set (see the section “The clone(), fork(), and vfork()
System Calls” in Chapter 3). The new namespace is then inherited by children pro-
cesses if the parent creates them without the CLONE_NEWNS flag.

When a process mounts—or unmounts—a filesystem, it only modifies its
namespace. Therefore, the change is visible to all processes that share the same
namespace, and only to them. A process can even change the root filesystem of its
namespace by using the Linux-specific pivot_root() system call.

The namespace of a process is represented by a namespace structure pointed to by the
namespace field of the process descriptor. The fields of the namespace structure are
shown in Table 12-11.

* The root directory of a filesystem can be different from the root directory of a process: as we have seen in the
earlier section “Files Associated with a Process,” the process’s root directory is the directory corresponding
to the “/ ” pathname. By default, the process’ root directory coincides with the root directory of the system’s
root filesystem (or more precisely, with the root directory of the root filesystem in the namespace of the pro-
cess, described in the following section), but it can be changed by invoking the chroot() system call.

Table 12-11. The fields of the namespace structure

Type Field Description

atomic_t count Usage counter (how many processes share the namespace)

struct vfsmount * root Mounted filesystem descriptor for the root directory of the namespace

struct list_head list Head of list of all mounted filesystem descriptors

struct rw_semaphore sem Read/write semaphore protecting this structure

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Handling | 485

The list field is the head of a doubly linked circular list collecting all mounted file-
systems that belong to the namespace. The root field specifies the mounted filesys-
tem that represents the root of the tree of mounted filesystems of this namespace. As
we will see in the next section, mounted filesystems are represented by vfsmount
structures.

Filesystem Mounting
In most traditional Unix-like kernels, each filesystem can be mounted only once.
Suppose that an Ext2 filesystem stored in the /dev/fd0 floppy disk is mounted on /flp
by issuing the command:

mount -t ext2 /dev/fd0 /flp

Until the filesystem is unmounted by issuing a umount command, every other mount
command acting on /dev/fd0 fails.

However, Linux is different: it is possible to mount the same filesystem several times.
Of course, if a filesystem is mounted n times, its root directory can be accessed
through n mount points, one per mount operation. Although the same filesystem can
be accessed by using different mount points, it is really unique. Thus, there is only
one superblock object for all of them, no matter of how many times it has been
mounted.

Mounted filesystems form a hierarchy: the mount point of a filesystem might be a
directory of a second filesystem, which in turn is already mounted over a third file-
system, and so on.*

It is also possible to stack multiple mounts on a single mount point. Each new
mount on the same mount point hides the previously mounted filesystem, although
processes already using the files and directories under the old mount can continue to
do so. When the topmost mounting is removed, then the next lower mount is once
more made visible.

As you can imagine, keeping track of mounted filesystems can quickly become a
nightmare. For each mount operation, the kernel must save in memory the mount
point and the mount flags, as well as the relationships between the filesystem to be
mounted and the other mounted filesystems. Such information is stored in a
mounted filesystem descriptor of type vfsmount. The fields of this descriptor are shown
in Table 12-12.

* Quite surprisingly, the mount point of a filesystem might be a directory of the same filesystem, provided that
it was already mounted. For instance:
mount -t ext2 /dev/fd0 /flp; touch /flp/foo
mkdir /flp/mnt; mount -t ext2 /dev/fd0 /flp/mnt

Now, the empty foo file on the floppy filesystem can be accessed both as /flp/foo and /flp/mnt/foo.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 12: The Virtual Filesystem

The vfsmount data structures are kept in several doubly linked circular lists:

• A hash table indexed by the address of the vfsmount descriptor of the parent file-
system and the address of the dentry object of the mount point directory. The
hash table is stored in the mount_hashtable array, whose size depends on the
amount of RAM in the system. Each item of the table is the head of a circular
doubly linked list storing all descriptors that have the same hash value. The mnt_
hash field of the descriptor contains the pointers to adjacent elements in this list.

• For each namespace, a circular doubly linked list including all mounted filesys-
tem descriptors belonging to the namespace. The list field of the namespace
structure stores the head of the list, while the mnt_list field of the vfsmount
descriptor contains the pointers to adjacent elements in the list.

• For each mounted filesystem, a circular doubly linked list including all child
mounted filesystems. The head of each list is stored in the mnt_mounts field of the
mounted filesystem descriptor; moreover, the mnt_child field of the descriptor
stores the pointers to the adjacent elements in the list.

Table 12-12. The fields of the vfsmount data structure

Type Field Description

struct list_head mnt_hash Pointers for the hash table list.

struct vfsmount * mnt_parent Points to the parent filesystem on which this filesystem
is mounted.

struct dentry * mnt_mountpoint Points to the dentry of the mount point directory
where the filesystem is mounted.

struct dentry * mnt_root Points to the dentry of the root directory of this file-
system.

struct super_block * mnt_sb Points to the superblock object of this filesystem.

struct list_head mnt_mounts Head of a list including all filesystem descriptors
mounted on directories of this filesystem.

struct list_head mnt_child Pointers for the mnt_mounts list of mounted filesys-
tem descriptors.

atomic_t mnt_count Usage counter (increased to forbid filesystem unmount-
ing).

int mnt_flags Flags.

int mnt_expiry_mark Flag set to true if the filesystem is marked as expired
(the filesystem can be automatically unmounted if the
flag is set and no one is using it).

char * mnt_devname Device filename.

struct list_head mnt_list Pointers for namespace’s list of mounted filesystem
descriptors.

struct list_head mnt_fslink Pointers for the filesystem-specific expire list.

struct namespace * mnt_namespace Pointer to the namespace of the process that mounted
the filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Handling | 487

The vfsmount_lock spin lock protects the lists of mounted filesystem objects from
concurrent accesses.

The mnt_flags field of the descriptor stores the value of several flags that specify how
some kinds of files in the mounted filesystem are handled. These flags, which can be
set through options of the mount command, are listed in Table 12-13.

Here are some functions that handle the mounted filesystem descriptors:

alloc_vfsmnt(name)
Allocates and initializes a mounted filesystem descriptor

free_vfsmnt(mnt)
Frees a mounted filesystem descriptor pointed to by mnt

lookup_mnt(mnt, dentry)
Looks up a descriptor in the hash table and returns its address

Mounting a Generic Filesystem
We’ll now describe the actions performed by the kernel in order to mount a filesys-
tem. We’ll start by considering a filesystem that is going to be mounted over a direc-
tory of an already mounted filesystem (in this discussion we will refer to this new
filesystem as “generic”).

The mount() system call is used to mount a generic filesystem; its sys_mount() ser-
vice routine acts on the following parameters:

• The pathname of a device file containing the filesystem, or NULL if it is not
required (for instance, when the filesystem to be mounted is network-based)

• The pathname of the directory on which the filesystem will be mounted (the
mount point)

• The filesystem type, which must be the name of a registered filesystem

• The mount flags (permitted values are listed in Table 12-14)

• A pointer to a filesystem-dependent data structure (which may be NULL)

Table 12-13. Mounted filesystem flags

Name Description

MNT_NOSUID Forbid setuid and setgid flags in the mounted filesystem

MNT_NODEV Forbid access to device files in the mounted filesystem

MNT_NOEXEC Disallow program execution in the mounted filesystem

Table 12-14. Flags used by the mount() system call

Macro Description

MS_RDONLY Files can only be read

MS_NOSUID Forbid setuid and setgid flags

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 12: The Virtual Filesystem

The sys_mount() function copies the value of the parameters into temporary kernel
buffers, acquires the big kernel lock, and invokes the do_mount() function. Once do_
mount() returns, the service routine releases the big kernel lock and frees the tempo-
rary kernel buffers.

The do_mount() function takes care of the actual mount operation by performing the
following operations:

1. If some of the MS_NOSUID, MS_NODEV, or MS_NOEXEC mount flags are set, it clears
them and sets the corresponding flag (MNT_NOSUID, MNT_NODEV, MNT_NOEXEC) in the
mounted filesystem object.

2. Looks up the pathname of the mount point by invoking path_lookup(); this
function stores the result of the pathname lookup in the local variable nd of type
nameidata (see the later section “Pathname Lookup”).

3. Examines the mount flags to determine what has to be done. In particular:

a. If the MS_REMOUNT flag is specified, the purpose is usually to change the
mount flags in the s_flags field of the superblock object and the mounted
filesystem flags in the mnt_flags field of the mounted filesystem object. The
do_remount() function performs these changes.

b. Otherwise, it checks the MS_BIND flag. If it is specified, the user is asking to
make visible a file or directory on another point of the system directory tree.

c. Otherwise, it checks the MS_MOVE flag. If it is specified, the user is asking to
change the mount point of an already mounted filesystem. The do_move_
mount() function does this atomically.

MS_NODEV Forbid access to device files

MS_NOEXEC Disallow program execution

MS_SYNCHRONOUS Write operations on files and directories are immediate

MS_REMOUNT Remount the filesystem changing the mount flags

MS_MANDLOCK Mandatory locking allowed

MS_DIRSYNC Write operations on directories are immediate

MS_NOATIME Do not update file access time

MS_NODIRATIME Do not update directory access time

MS_BIND Create a “bind mount,” which allows making a file or directory visible at another point of the system
directory tree (option --bind of the mount command)

MS_MOVE Atomically move a mounted filesystem to another mount point (option --move of the mount com-
mand)

MS_REC Recursively create “bind mounts” for a directory subtree

MS_VERBOSE Generate kernel messages on mount errors

Table 12-14. Flags used by the mount() system call (continued)

Macro Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Handling | 489

d. Otherwise, it invokes do_new_mount(). This is the most common case. It is
triggered when the user asks to mount either a special filesystem or a regu-
lar filesystem stored in a disk partition. do_new_mount() invokes the do_kern_
mount() function passing to it the filesystem type, the mount flags, and the
block device name. This function, which takes care of the actual mount
operation and returns the address of a new mounted filesystem descriptor, is
described below. Next, do_new_mount() invokes do_add_mount(), which
essentially performs the following actions:

1. Acquires for writing the namespace->sem semaphore of the current pro-
cess, because the function is going to modify the namespace.

2. The do_kern_mount() function might put the current process to sleep;
meanwhile, another process might mount a filesystem on the very same
mount point as ours or even change our root filesystem (current->
namespace->root). Verifies that the lastly mounted filesystem on this
mount point still refers to the current’s namespace; if not, releases the
read/write semaphore and returns an error code.

3. If the filesystem to be mounted is already mounted on the mount point
specified as parameter of the system call, or if the mount point is a sym-
bolic link, it releases the read/write semaphore and returns an error
code.

4. Initializes the flags in the mnt_flags field of the new mounted filesystem
object allocated by do_kern_mount().

5. Invokes graft_tree() to insert the new mounted filesystem object in the
namespace list, in the hash table, and in the children list of the parent-
mounted filesystem.

6. Releases the namespace->sem read/write semaphore and returns.

4. Invokes path_release() to terminate the pathname lookup of the mount point
(see the later section “Pathname Lookup”) and returns 0.

The do_kern_mount() function

The core of the mount operation is the do_kern_mount() function, which checks the
filesystem type flags to determine how the mount operation is to be done. This func-
tion receives the following parameters:

fstype
The name of the filesystem type to be mounted

flags
The mount flags (see Table 12-14)

name
The pathname of the block device storing the filesystem (or the filesystem type
name for special filesystems)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 12: The Virtual Filesystem

data
Pointer to additional data to be passed to the read_super method of the
filesystem

The function takes care of the actual mount operation by performing essentially the
following operations:

1. Invokes get_fs_type() to search in the list of filesystem types and locate the
name stored in the fstype parameter; get_fs_type() returns in the local variable
type the address of the corresponding file_system_type descriptor.

2. Invokes alloc_vfsmnt() to allocate a new mounted filesystem descriptor and
stores its address in the mnt local variable.

3. Invokes the type->get_sb() filesystem-dependent function to allocate a new
superblock and to initialize it (see below).

4. Initializes the mnt->mnt_sb field with the address of the new superblock object.

5. Initializes the mnt->mnt_root field with the address of the dentry object corre-
sponding to the root directory of the filesystem, and increases the usage counter
of the dentry object.

6. Initializes the mnt->mnt_parent field with the value in mnt (for generic filesys-
tems, the proper value of mnt_parent will be set when the mounted filesystem
descriptor is inserted in the proper lists by graft_tree(); see step 3d5 of do_
mount()).

7. Initializes the mnt->mnt_namespace field with the value in current->namespace.

8. Releases the s_umount read/write semaphore of the superblock object (it was
acquired when the object was allocated in step 3).

9. Returns the address mnt of the mounted filesystem object.

Allocating a superblock object

The get_sb method of the filesystem object is usually implemented by a one-line
function. For instance, in the Ext2 filesystem the method is implemented as follows:

struct super_block * ext2_get_sb(struct file_system_type *type,
 int flags, const char *dev_name, void *data)
{
 return get_sb_bdev(type, flags, dev_name, data, ext2_fill_super);
}

The get_sb_bdev() VFS function allocates and initializes a new superblock suitable
for disk-based filesystems; it receives the address of the ext2_fill_super() function,
which reads the disk superblock from the Ext2 disk partition.

To allocate superblocks suitable for special filesystems, the VFS also provides the
get_sb_pseudo() function (for special filesystems with no mount point such as
pipefs), the get_sb_single() function (for special filesystems with single mount point

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Handling | 491

such as sysfs), and the get_sb_nodev() function (for special filesystems that can be
mounted several times such as tmpfs; see below).

The most important operations performed by get_sb_bdev() are the following:

1. Invokes open_bdev_excl() to open the block device having device file name dev_
name (see the section “Character Device Drivers” in Chapter 13).

2. Invokes sget() to search the list of superblock objects of the filesystem (type->
fs_supers, see the earlier section “Filesystem Type Registration”). If a super-
block relative to the block device is already present, the function returns its
address. Otherwise, it allocates and initializes a new superblock object, inserts it
into the filesystem list and in the global list of superblocks, and returns its
address.

3. If the superblock is not new (it was not allocated in the previous step, because
the filesystem is already mounted), it jumps to step 6.

4. Copies the value of the flags parameter into the s_flags field of the superblock
and sets the s_id, s_old_blocksize, and s_blocksize fields with the proper val-
ues for the block device.

5. Invokes the filesystem-dependent function passed as last argument to get_sb_
bdev() to access the superblock information on disk and fill the other fields of
the new superblock object.

6. Returns the address of the new superblock object.

Mounting the Root Filesystem
Mounting the root filesystem is a crucial part of system initialization. It is a fairly
complex procedure, because the Linux kernel allows the root filesystem to be stored
in many different places, such as a hard disk partition, a floppy disk, a remote filesys-
tem shared via NFS, or even a ramdisk (a fictitious block device kept in RAM).

To keep the description simple, let’s assume that the root filesystem is stored in a par-
tition of a hard disk (the most common case, after all). While the system boots, the
kernel finds the major number of the disk that contains the root filesystem in the ROOT_
DEV variable (see Appendix A). The root filesystem can be specified as a device file in
the /dev directory either when compiling the kernel or by passing a suitable “root”
option to the initial bootstrap loader. Similarly, the mount flags of the root filesystem
are stored in the root_mountflags variable. The user specifies these flags either by using
the rdev external program on a compiled kernel image or by passing a suitable root-
flags option to the initial bootstrap loader (see Appendix A).

Mounting the root filesystem is a two-stage procedure, shown in the following list:

1. The kernel mounts the special rootfs filesystem, which simply provides an empty
directory that serves as initial mount point.

2. The kernel mounts the real root filesystem over the empty directory.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 12: The Virtual Filesystem

Why does the kernel bother to mount the rootfs filesystem before the real one? Well,
the rootfs filesystem allows the kernel to easily change the real root filesystem. In
fact, in some cases, the kernel mounts and unmounts several root filesystems, one
after the other. For instance, the initial bootstrap CD of a distribution might load in
RAM a kernel with a minimal set of drivers, which mounts as root a minimal filesys-
tem stored in a ramdisk. Next, the programs in this initial root filesystem probe the
hardware of the system (for instance, they determine whether the hard disk is EIDE,
SCSI, or whatever), load all needed kernel modules, and remount the root filesystem
from a physical block device.

Phase 1: Mounting the rootfs filesystem

The first stage is performed by the init_rootfs() and init_mount_tree() functions,
which are executed during system initialization.

The init_rootfs() function registers the special filesystem type rootfs:

struct file_system_type rootfs_fs_type = {
 .name = "rootfs";
 .get_sb = rootfs_get_sb;
 .kill_sb = kill_litter_super;
};
register_filesystem(&rootfs_fs_type);

The init_mount_tree() function executes the following operations:

1. Invokes do_kern_mount() passing to it the string "rootfs" as filesystem type, and
stores the address of the mounted filesystem descriptor returned by this func-
tion in the mnt local variable. As explained in the previous section, do_kern_
mount() ends up invoking the get_sb method of the rootfs filesystem, that is, the
rootfs_get_sb() function:

struct superblock *rootfs_get_sb(struct file_system_type *fs_type,
 int flags, const char *dev_name, void *data)
{
 return get_sb_nodev(fs_type, flags|MS_NOUSER, data,
 ramfs_fill_super);
}

The get_sb_nodev() function, in turn, executes the following steps:

a. Invokes sget() to allocate a new superblock passing as parameter the
address of the set_anon_super() function (see the earlier section “Special
Filesystems”). As a result, the s_dev field of the superblock is set in the
appropriate way: major number 0, minor number different from those of
other mounted special filesystems.

b. Copies the value of the flags parameter into the s_flags field of the super-
block.

c. Invokes ramfs_fill_super() to allocate an inode object and a correspond-
ing dentry object, and to fill the superblock fields. Because rootfs is a special

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Handling | 493

filesystem that has no disk superblock, only a couple of superblock opera-
tions need to be implemented.

d. Returns the address of the new superblock.

2. Allocates a namespace object for the namespace of process 0, and inserts into it
the mounted filesystem descriptor returned by do_kern_mount():

namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
list_add(&mnt->mnt_list, &namespace->list);
namespace->root = mnt;
mnt->mnt_namespace = init_task.namespace = namespace;

3. Sets the namespace field of every other process in the system to the address of the
namespace object; also initializes the namespace->count usage counter. (By
default, all processes share the same, initial namespace.)

4. Sets the root directory and the current working directory of process 0 to the root
filesystem.

Phase 2: Mounting the real root filesystem

The second stage of the mount operation for the root filesystem is performed by the
kernel near the end of the system initialization. There are several ways to mount the
real root filesystem, according to the options selected when the kernel has been com-
piled and to the boot options passed by the kernel loader. For the sake of brevity, we
consider the case of a disk-based filesystem whose device file name has been passed
to the kernel by means of the “root” boot parameter. We also assume that no initial
special filesystem is used, except the rootfs filesystem.

The prepare_namespace() function executes the following operations:

1. Sets the root_device_name variable with the device filename obtained from the
“root” boot parameter. Also, sets the ROOT_DEV variable with the major and minor
numbers of the same device file.

2. Invokes the mount_root() function, which in turn:

a. Invokes sys_mknod() (the service routine of the mknod() system call) to cre-
ate a /dev/root device file in the rootfs initial root filesystem, having the
major and minor numbers as in ROOT_DEV.

b. Allocates a buffer and fills it with a list of filesystem type names. This list is
either passed to the kernel in the “rootfstype” boot parameter or built by
scanning the elements in the singly linked list of filesystem types.

c. Scans the list of filesystem type names built in the previous step. For each
name, it invokes sys_mount() to try to mount the given filesystem type on
the root device. Because each filesystem-specific method uses a different
magic number, all get_sb() invocations will fail except the one that
attempts to fill the superblock by using the function of the filesystem
really used on the root device. The filesystem is mounted on a directory
named /root of the rootfs filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 12: The Virtual Filesystem

d. Invokes sys_chdir("/root") to change the current directory of the process.

3. Moves the mount point of the mounted filesystem on the root directory of the
rootfs filesystem:

sys_mount(".", "/", NULL, MS_MOVE, NULL);
sys_chroot(".");

Notice that the rootfs special filesystem is not unmounted: it is only hidden under
the disk-based root filesystem.

Unmounting a Filesystem
The umount() system call is used to unmount a filesystem. The corresponding sys_
umount() service routine acts on two parameters: a filename (either a mount point
directory or a block device filename) and a set of flags. It performs the following
actions:

1. Invokes path_lookup() to look up the mount point pathname; this function
returns the results of the lookup operation in a local variable nd of type
nameidata (see next section).

2. If the resulting directory is not the mount point of a filesystem, it sets the retval
return code to -EINVAL and jumps to step 6. This check is done by verifying that
nd->mnt->mnt_root contains the address of the dentry object pointed to by nd.
dentry.

3. If the filesystem to be unmounted has not been mounted in the namespace, it
sets the retval return code to -EINVAL and jumps to step 6. (Recall that some
special filesystems have no mount point.) This check is done by invoking the
check_mnt() function on nd->mnt.

4. If the user does not have the privileges required to unmount the filesystem, it
sets the retval return code to -EPERM and jumps to step 6.

5. Invokes do_umount() passing as parameters nd.mnt (the mounted filesystem
object) and flags (the set of flags). This function performs essentially the follow-
ing operations:

a. Retrieves the address of the sb superblock object from the mnt_sb field of the
mounted filesystem object.

b. If the user asked to force the unmount operation, it interrupts any ongoing
mount operation by invoking the umount_begin superblock operation.

c. If the filesystem to be unmounted is the root filesystem and the user didn’t
ask to actually detach it, it invokes do_remount_sb() to remount the root file-
system read-only and terminates.

d. Acquires for writing the namespace->sem read/write semaphore of the cur-
rent process, and gets the vfsmount_lock spin lock.

e. If the mounted filesystem does not include mount points for any child
mounted filesystem, or if the user asked to forcibly detach the filesystem, it

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pathname Lookup | 495

invokes umount_tree() to unmount the filesystem (together with all children
filesystems).

f. Releases the vfsmount_lock spin lock and the namespace->sem read/write
semaphore of the current process.

6. Decreases the usage counters of the dentry object corresponding to the root
directory of the filesystem and of the mounted filesystem descriptor; these
counters were increased by path_lookup().

7. Returns the retval value.

Pathname Lookup
When a process must act on a file, it passes its file pathname to some VFS system
call, such as open(), mkdir(), rename(), or stat(). In this section, we illustrate how
the VFS performs a pathname lookup, that is, how it derives an inode from the corre-
sponding file pathname.

The standard procedure for performing this task consists of analyzing the pathname
and breaking it into a sequence of filenames. All filenames except the last must iden-
tify directories.

If the first character of the pathname is / , the pathname is absolute, and the search
starts from the directory identified by current->fs->root (the process root direc-
tory). Otherwise, the pathname is relative, and the search starts from the directory
identified by current->fs->pwd (the process-current directory).

Having in hand the dentry, and thus the inode, of the initial directory, the code
examines the entry matching the first name to derive the corresponding inode. Then
the directory file that has that inode is read from disk and the entry matching the sec-
ond name is examined to derive the corresponding inode. This procedure is repeated
for each name included in the path.

The dentry cache considerably speeds up the procedure, because it keeps the most
recently used dentry objects in memory. As we saw before, each such object associ-
ates a filename in a specific directory to its corresponding inode. In many cases,
therefore, the analysis of the pathname can avoid reading the intermediate directo-
ries from disk.

However, things are not as simple as they look, because the following Unix and VFS
filesystem features must be taken into consideration:

• The access rights of each directory must be checked to verify whether the pro-
cess is allowed to read the directory’s content.

• A filename can be a symbolic link that corresponds to an arbitrary pathname; in
this case, the analysis must be extended to all components of that pathname.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 12: The Virtual Filesystem

• Symbolic links may induce circular references; the kernel must take this possibil-
ity into account and break endless loops when they occur.

• A filename can be the mount point of a mounted filesystem. This situation must
be detected, and the lookup operation must continue into the new filesystem.

• Pathname lookup has to be done inside the namespace of the process that issued
the system call. The same pathname used by two processes with different
namespaces may specify different files.

Pathname lookup is performed by the path_lookup() function, which receives three
parameters:

name
A pointer to the file pathname to be resolved.

flags
The value of flags that represent how the looked-up file is going to be accessed.
The allowed values are included later in Table 12-16.

nd
The address of a nameidata data structure, which stores the results of the lookup
operation and whose fields are shown in Table 12-15.

When path_lookup() returns, the nameidata structure pointed to by nd is filled with
data pertaining to the pathname lookup operation.

The dentry and mnt fields point respectively to the dentry object and the mounted
filesystem object of the last resolved component in the pathname. These two fields
“describe” the file that is identified by the given pathname.

Because the dentry object and the mounted filesystem object returned by the path_
lookup() function in the nameidata structure represent the result of a lookup opera-
tion, both objects should not be freed until the caller of path_lookup() finishes using

Table 12-15. The fields of the nameidata data structure

Type Field Description

struct dentry * dentry Address of the dentry object

struct vfs_mount * mnt Address of the mounted filesystem object

struct qstr last Last component of the pathname (used when the LOOKUP_
PARENT flag is set)

unsigned int flags Lookup flags

int last_type Type of last component of the pathname (used when the
LOOKUP_PARENT flag is set)

unsigned int depth Current level of symbolic link nesting (see below); it must be
smaller than 6

char[] * saved_names Array of pathnames associated with nested symbolic links

union intent One-member union specifying how the file will be accessed

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pathname Lookup | 497

them. Therefore, path_lookup() increases the usage counters of both objects. If the
caller wants to release these objects, it invokes the path_release() function passing
as parameter the address of a nameidata structure.

The flags field stores the value of some flags used in the lookup operation; they are
listed in Table 12-16. Most of these flags can be set by the caller in the flags parame-
ter of path_lookup().

The path_lookup() function executes the following steps:

1. Initializes some fields of the nd parameter as follows:

a. Sets the last_type field to LAST_ROOT (this is needed if the pathname is a
slash or a sequence of slashes; see the later section “Parent Pathname
Lookup”).

b. Sets the flags field to the value of the flags parameter

c. Sets the depth field to 0.

2. Acquires for reading the current->fs->lock read/write semaphore of the current
process.

3. If the first character in the pathname is a slash (/), the lookup operation must
start from the root directory of current: the function gets the addresses of the
corresponding mounted filesystem object (current->fs->rootmnt) and dentry
object (current->fs->root), increases their usage counters, and stores the
addresses in nd->mnt and nd->dentry, respectively.

4. Otherwise, if the first character in the pathname is not a slash, the lookup opera-
tion must start from the current working directory of current: the function gets
the addresses of the corresponding mounted filesystem object (current->fs->
pwdmnt) and dentry object (current->fs->pwd), increases their usage counters,
and stores the addresses in nd->mnt and nd->dentry, respectively.

5. Releases the current->fs->lock read/write semaphore of the current process.

6. Sets the total_link_count field in the descriptor of the current process to 0 (see
the later section “Lookup of Symbolic Links”).

Table 12-16. The flags of the lookup operation

Macro Description

LOOKUP_FOLLOW If the last component is a symbolic link, interpret (follow) it

LOOKUP_DIRECTORY The last component must be a directory

LOOKUP_CONTINUE There are still filenames to be examined in the pathname

LOOKUP_PARENT Look up the directory that includes the last component of the pathname

LOOKUP_NOALT Do not consider the emulated root directory (useless in the 80x86 architecture)

LOOKUP_OPEN Intent is to open a file

LOOKUP_CREATE Intent is to create a file (if it doesn’t exist)

LOOKUP_ACCESS Intent is to check user’s permission for a file

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 12: The Virtual Filesystem

7. Invokes the link_path_walk() function to take care of the undergoing lookup
operation:

return link_path_walk(name, nd);

We are now ready to describe the core of the pathname lookup operation, namely
the link_path_walk() function. It receives as its parameters a pointer name to the
pathname to be resolved and the address nd of a nameidata data structure.

To make things a bit easier, we first describe what link_path_walk() does when
LOOKUP_PARENT is not set and the pathname does not contain symbolic links (stan-
dard pathname lookup). Next, we discuss the case in which LOOKUP_PARENT is set: this
type of lookup is required when creating, deleting, or renaming a directory entry,
that is, during a parent pathname lookup. Finally, we explain how the function
resolves symbolic links.

Standard Pathname Lookup
When the LOOKUP_PARENT flag is cleared, link_path_walk() performs the following
steps.

1. Initializes the lookup_flags local variable with nd->flags.

2. Skips all leading slashes (/) before the first component of the pathname.

3. If the remaining pathname is empty, it returns the value 0. In the nameidata data
structure, the dentry and mnt fields point to the objects relative to the last
resolved component of the original pathname.

4. If the depth field of the nd descriptor is positive, it sets the LOOKUP_FOLLOW flag in
the lookup_flags local variable (see the section “Lookup of Symbolic Links”).

5. Executes a cycle that breaks the pathname passed in the name parameter into
components (the intermediate slashes are treated as filename separators); for
each component found, the function:

a. Retrieves the address of the inode object of the last resolved component
from nd->dentry->d_inode. (In the first iteration, the inode refers to the
directory from where to start the pathname lookup.)

b. Checks that the permissions of the last resolved component stored into the
inode allow execution (in Unix, a directory can be traversed only if it is exe-
cutable). If the inode has a custom permission method, the function exe-
cutes it; otherwise, it executes the exec_permission_lite() function, which
examines the access mode stored in the i_mode inode field and the privileges
of the running process. In both cases, if the last resolved component does
not allow execution, link_path_walk() breaks out of the cycle and returns
an error code.

c. Considers the next component to be resolved. From its name, the function
computes a 32-bit hash value to be used when looking in the dentry cache
hash table.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pathname Lookup | 499

d. Skips any trailing slash (/) after the slash that terminates the name of the
component to be resolved.

e. If the component to be resolved is the last one in the original pathname, it
jumps to step 6.

f. If the name of the component is “.” (a single dot), it continues with the next
component (“.” refers to the current directory, so it has no effect inside a
pathname).

g. If the name of the component is “. .” (two dots), it tries to climb to the par-
ent directory:

1. If the last resolved directory is the process’s root directory (nd->dentry is
equal to current->fs->root and nd->mnt is equal to current->fs->
rootmnt), then climbing is not allowed: it invokes follow_mount() on the
last resolved component (see below) and continues with the next com-
ponent.

2. If the last resolved directory is the root directory of the nd->mnt filesys-
tem (nd->dentry is equal to nd->mnt->mnt_root) and the nd->mnt filesys-
tem is not mounted on top of another filesystem (nd->mnt is equal to nd-
>mnt->mnt_parent), then the nd->mnt filesystem is usually* the
namespace’s root filesystem: in this case, climbing is impossible, thus
invokes follow_mount() on the last resolved component (see below) and
continues with the next component.

3. If the last resolved directory is the root directory of the nd->mnt filesys-
tem and the nd->mnt filesystem is mounted on top of another filesystem,
a filesystem switch is required. So, the function sets nd->dentry to nd->
mnt->mnt_mountpoint, and nd->mnt to nd->mnt->mnt_parent, then restarts
step 5g (recall that several filesystems can be mounted on the same
mount point).

4. If the last resolved directory is not the root directory of a mounted file-
system, then the function must simply climb to the parent directory: it
sets nd->dentry to nd->dentry->d_parent, invokes follow_mount() on the
parent directory, and continues with the next component.

The follow_mount() function checks whether nd->dentry is a mount point
for some filesystem (nd->dentry->d_mounted is greater than zero); in this
case, it invokes lookup_mnt() to search the root directory of the mounted
filesystem in the dentry cache, and updates nd->dentry and nd->mnt with the
object addresses corresponding to the mounted filesystem; then, it repeats
the whole operation (there can be several filesystems mounted on the same
mount point). Essentially, invoking the follow_mount() function when

* This case can also occur for network filesystems disconnected from the namespace’s directory tree.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 12: The Virtual Filesystem

climbing to the parent directory is required because the process could start
the pathname lookup from a directory included in a filesystem hidden by
another filesystem mounted over the parent directory.

h. The component name is neither “.” nor “. .”, so the function must look it
up in the dentry cache. If the low-level filesystem has a custom d_hash den-
try method, the function invokes it to modify the hash value already com-
puted in step 5c.

i. Sets the LOOKUP_CONTINUE flag in nd->flags to denote that there is a next com-
ponent to be analyzed.

j. Invokes do_lookup() to derive the dentry object associated with a given par-
ent directory (nd->dentry) and filename (the pathname component being
resolved). The function essentially invokes _ _d_lookup() first to search the
dentry object of the component in the dentry cache. If no such object exists,
do_lookup() invokes real_lookup(). This latter function reads the directory
from disk by executing the lookup method of the inode, creates a new den-
try object and inserts it in the dentry cache, then creates a new inode object
and inserts it into the inode cache.* At the end of this step, the dentry and
mnt fields of the next local variable will point, respectively, to the dentry
object and the mounted filesystem object of the component name to be
resolved in this cycle.

k. Invokes the follow_mount() function to check whether the component just
resolved (next.dentry) refers to a directory that is a mount point for some
filesystem (next.dentry->d_mounted is greater than zero). follow_mount()
updates next.dentry and next.mnt so that they point to the dentry object
and mounted filesystem object of the upmost filesystem mounted on the
directory specified by this pathname component (see step 5g).

l. Checks whether the component just resolved refers to a symbolic link (next.
dentry->d_inode has a custom follow_link method). We’ll deal with this
case in the later section “Lookup of Symbolic Links.”

m. Checks whether the component just resolved refers to a directory (next.dentry-
>d_inode has a custom lookup method). If not, returns the error -ENOTDIR,
because the component is in the middle of the original pathname.

n. Sets nd->dentry to next.dentry and nd->mnt to next.mnt, then continues with
the next component of the pathname.

6. Now all components of the original pathname are resolved except the last one.
Clears the LOOKUP_CONTINUE flag in nd->flags.

* In a few cases, the function might find the required inode already in the inode cache. This happens when the
pathname component is the last one and it does not refer to a directory, the corresponding file has several
hard links, and finally the file has been recently accessed through a hard link different from the one used in
this pathname.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pathname Lookup | 501

7. If the pathname has a trailing slash, it sets the LOOKUP_FOLLOW and LOOKUP_
DIRECTORY flags in the lookup_flags local variable to force the last component to
be interpreted by later functions as a directory name.

8. Checks the value of the LOOKUP_PARENT flag in the lookup_flags variable. In the
following, we assume that the flag is set to 0, and we postpone the opposite case
to the next section.

9. If the name of the last component is “.” (a single dot), terminates the execution
and returns the value 0 (no error). In the nameidata structure that nd points to,
the dentry and mnt fields refer to the objects relative to the next-to-last compo-
nent of the pathname (each component “.” has no effect inside a pathname).

10. If the name of the last component is “. .” (two dots), it tries to climb to the par-
ent directory:

a. If the last resolved directory is the process’s root directory (nd->dentry is
equal to current->fs->root and nd->mnt is equal to current->fs->rootmnt), it
invokes follow_mount() on the next-to-last component and terminates the
execution and returns the value 0 (no error). nd->dentry and nd->mnt refer to
the objects relative to the next-to-last component of the pathname—that is,
to the root directory of the process.

b. If the last resolved directory is the root directory of the nd->mnt filesystem
(nd->dentry is equal to nd->mnt->mnt_root) and the nd->mnt filesystem is not
mounted on top of another filesystem (nd->mnt is equal to nd->mnt->mnt_
parent), then climbing is impossible, thus invokes follow_mount() on the
next-to-last component and terminates the execution and returns the value 0
(no error).

c. If the last resolved directory is the root directory of the nd->mnt filesystem
and the nd->mnt filesystem is mounted on top of another filesystem, it sets
nd->dentry to nd->mnt->mnt_mountpoint and nd->mnt to nd->mnt->mnt_parent,
then restarts step 10.

d. If the last resolved directory is not the root directory of a mounted filesys-
tem, it sets nd->dentry to nd->dentry->d_parent, invokes follow_mount() on
the parent directory, and terminates the execution and returns the value 0
(no error). nd->dentry and nd->mnt refer to the objects relative to the compo-
nent preceding the next-to-last component of the pathname.

11. The name of the last component is neither “.” nor “. .”, so the function must
look it up in the dentry cache. If the low-level filesystem has a custom d_hash
dentry method, the function invokes it to modify the hash value already com-
puted in step 5c.

12. Invokes do_lookup() to derive the dentry object associated with the parent direc-
tory and the filename (see step 5j). At the end of this step, the next local variable
contains the pointers to both the dentry and the mounted filesystem descriptor
relative to the last component name.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 12: The Virtual Filesystem

13. Invokes follow_mount() to check whether the last component is a mount point
for some filesystem and, if this is the case, to update the next local variable with
the addresses of the dentry object and mounted filesystem object relative to the
root directory of the upmost mounted filesystem.

14. Checks whether the LOOKUP_FOLLOW flag is set in lookup_flags and the inode
object next.dentry->d_inode has a custom follow_link method. If this is the
case, the component is a symbolic link that must be interpreted, as described in
the later section “Lookup of Symbolic Links.”

15. The component is not a symbolic link or the symbolic link should not be inter-
preted. Sets the nd->mnt and nd->dentry fields with the value stored in next.mnt
and next.dentry, respectively. The final dentry object is the result of the whole
lookup operation.

16. Checks whether nd->dentry->d_inode is NULL. This happens when there is no
inode associated with the dentry object, usually because the pathname refers to a
nonexistent file. In this case, the function returns the error code -ENOENT.

17. There is an inode associated with the last component of the pathname. If the
LOOKUP_DIRECTORY flag is set in lookup_flags, it checks that the inode has a cus-
tom lookup method—that is, it is a directory. If not, the function returns the
error code -ENOTDIR.

18. Returns the value 0 (no error). nd->dentry and nd->mnt refer to the last compo-
nent of the pathname.

Parent Pathname Lookup
In many cases, the real target of a lookup operation is not the last component of the
pathname, but the next-to-last one. For example, when a file is created, the last com-
ponent denotes the filename of the not yet existing file, and the rest of the pathname
specifies the directory in which the new link must be inserted. Therefore, the lookup
operation should fetch the dentry object of the next-to-last component. For another
example, unlinking a file identified by the pathname /foo/bar consists of removing
bar from the directory foo. Thus, the kernel is really interested in accessing the direc-
tory foo rather than bar.

The LOOKUP_PARENT flag is used whenever the lookup operation must resolve the
directory containing the last component of the pathname, rather than the last com-
ponent itself.

When the LOOKUP_PARENT flag is set, the link_path_walk() function also sets up the
last and last_type fields of the nameidata data structure. The last field stores the
name of the last component in the pathname. The last_type field identifies the type
of the last component; it may be set to one of the values shown in Table 12-17.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pathname Lookup | 503

The LAST_ROOT flag is the default value set by path_lookup() when the whole path-
name lookup operation starts (see the description at the beginning of the section
“Pathname Lookup”). If the pathname turns out to be simply “/ ”, the kernel does
not change the initial value of the last_type field.

The remaining values of the last_type field are set by link_path_walk() when the
LOOKUP_PARENT flag is set; in this case, the function performs the same steps described
in the previous section up to step 8. From step 8 onward, however, the lookup oper-
ation for the last component of the pathname is different:

1. Sets nd->last to the name of the last component.

2. Initializes nd->last_type to LAST_NORM.

3. If the name of the last component is “.” (a single dot), it sets nd->last_type to
LAST_DOT.

4. If the name of the last component is “. .” (two dots), it sets nd->last_type to
LAST_DOTDOT.

5. Returns the value 0 (no error).

As you can see, the last component is not interpreted at all. Thus, when the function
terminates, the dentry and mnt fields of the nameidata data structure point to the
objects relative to the directory that includes the last component.

Lookup of Symbolic Links
Recall that a symbolic link is a regular file that stores a pathname of another file. A
pathname may include symbolic links, and they must be resolved by the kernel.

For example, if /foo/bar is a symbolic link pointing to (containing the pathname) ../dir,
the pathname /foo/bar/file must be resolved by the kernel as a reference to the file /dir/
file. In this example, the kernel must perform two different lookup operations. The
first one resolves /foo/bar: when the kernel discovers that bar is the name of a sym-
bolic link, it must retrieve its content and interpret it as another pathname. The sec-
ond pathname operation starts from the directory reached by the first operation and
continues until the last component of the symbolic link pathname has been resolved.
Next, the original lookup operation resumes from the dentry reached in the second
one and with the component following the symbolic link in the original pathname.

Table 12-17. The values of the last_type field in the nameidata data structure

Value Description

LAST_NORM Last component is a regular filename

LAST_ROOT Last component is “/ ” (that is, the entire pathname is “/ ”)

LAST_DOT Last component is “.”

LAST_DOTDOT Last component is “. .”

LAST_BIND Last component is a symbolic link into a special filesystem

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 12: The Virtual Filesystem

To further complicate the scenario, the pathname included in a symbolic link may
include other symbolic links. You might think that the kernel code that resolves the
symbolic links is hard to understand, but this is not true; the code is actually quite
simple because it is recursive.

However, untamed recursion is intrinsically dangerous. For instance, suppose that a
symbolic link points to itself. Of course, resolving a pathname including such a sym-
bolic link may induce an endless stream of recursive invocations, which in turn
quickly leads to a kernel stack overflow. The link_count field in the descriptor of the
current process is used to avoid the problem: the field is increased before each recur-
sive execution and decreased right after. If a sixth nested lookup operation is
attempted, the whole lookup operation terminates with an error code. Therefore, the
level of nesting of symbolic links can be at most 5.

Furthermore, the total_link_count field in the descriptor of the current process
keeps track of how many symbolic links (even nonnested) were followed in the origi-
nal lookup operation. If this counter reaches the value 40, the lookup operation
aborts. Without this counter, a malicious user could create a pathological pathname
including many consecutive symbolic links that freeze the kernel in a very long
lookup operation.

This is how the code basically works: once the link_path_walk() function retrieves
the dentry object associated with a component of the pathname, it checks whether
the corresponding inode object has a custom follow_link method (see step 5l and
step 14 in the section “Standard Pathname Lookup”). If so, the inode is a symbolic
link that must be interpreted before proceeding with the lookup operation of the
original pathname.

In this case, the link_path_walk() function invokes do_follow_link(), passing to it
the address dentry of the dentry object of the symbolic link and the address nd of the
nameidata data structure. In turn, do_follow_link() performs the following steps:

1. Checks that current->link_count is less than 5; otherwise, it returns the error
code -ELOOP.

2. Checks that current->total_link_count is less than 40; otherwise, it returns the
error code -ELOOP.

3. Invokes cond_resched() to perform a process switch if required by the current
process (flag TIF_NEED_RESCHED in the thread_info descriptor of the current pro-
cess set).

4. Increases current->link_count, current->total_link_count, and nd->depth.

5. Updates the access time of the inode object associated with the symbolic link to
be resolved.

6. Invokes the filesystem-dependent function that implements the follow_link
method passing to it the dentry and nd parameters. This function extracts the
pathname stored in the symbolic link’s inode, and saves this pathname in the
proper entry of the nd->saved_names array.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementations of VFS System Calls | 505

7. Invokes the _ _vfs_follow_link() function passing to it the address nd and the
address of the pathname in the nd->saved_names array (see below).

8. If defined, executes the put_link method of the inode object, thus releasing the
temporary data structures allocated by the follow_link method.

9. Decreases the current->link_count and nd->depth fields.

10. Returns the error code returned by the _ _vfs_follow_link() function (0 for no
error).

In turn, the _ _vfs_follow_link() does essentially the following:

1. Checks whether the first character of the pathname stored in the symbolic link is
a slash: in this case an absolute pathname has been found, so there is no need to
keep in memory any information about the previous path. If so, invokes path_
release() on the nameidata structure, thus releasing the objects resulting from
the previous lookup steps; then, the function sets the dentry and mnt fields of the
nameidata data structure to the current process root directory.

2. Invokes link_path_walk() to resolve the symbolic link pathname, passing to it as
parameters the pathname and nd.

3. Returns the value taken from link_path_walk().

When do_follow_link() finally terminates, it has set the dentry field of the next local
variable with the address of the dentry object referred to by the symbolic link to the
original execution of link_path_walk(). The link_path_walk() function can then pro-
ceed with the next step.

Implementations of VFS System Calls
For the sake of brevity, we cannot discuss the implementation of all the VFS system
calls listed in Table 12-1. However, it could be useful to sketch out the implementa-
tion of a few system calls, in order to show how VFS’s data structures interact.

Let’s reconsider the example proposed at the beginning of this chapter: a user issues
a shell command that copies the MS-DOS file /floppy/TEST to the Ext2 file /tmp/test.
The command shell invokes an external program such as cp, which we assume exe-
cutes the following code fragment:

inf = open("/floppy/TEST", O_RDONLY, 0);
outf = open("/tmp/test", O_WRONLY | O_CREAT | O_TRUNC, 0600);
do {
 len = read(inf, buf, 4096);
 write(outf, buf, len);
} while (len);
close(outf);
close(inf);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 12: The Virtual Filesystem

Actually, the code of the real cp program is more complicated, because it must also
check for possible error codes returned by each system call. In our example, we
focus our attention on the “normal” behavior of a copy operation.

The open() System Call
The open() system call is serviced by the sys_open() function, which receives as its
parameters the pathname filename of the file to be opened, some access mode flags
flags, and a permission bit mask mode if the file must be created. If the system call
succeeds, it returns a file descriptor—that is, the index assigned to the new file in the
current->files->fd array of pointers to file objects; otherwise, it returns –1.

In our example, open() is invoked twice; the first time to open /floppy/TEST for read-
ing (O_RDONLY flag) and the second time to open /tmp/test for writing (O_WRONLY flag).
If /tmp/test does not already exist, it is created (O_CREAT flag) with exclusive read and
write access for the owner (octal 0600 number in the third parameter).

Conversely, if the file already exists, it is rewritten from scratch (O_TRUNC flag).
Table 12-18 lists all flags of the open() system call.

Let’s describe the operation of the sys_open() function. It performs the following
steps:

Table 12-18. The flags of the open() system call

Flag name Description

O_RDONLY Open for reading

O_WRONLY Open for writing

O_RDWR Open for both reading and writing

O_CREAT Create the file if it does not exist

O_EXCL With O_CREAT, fail if the file already exists

O_NOCTTY Never consider the file as a controlling terminal

O_TRUNC Truncate the file (remove all existing contents)

O_APPEND Always write at end of the file

O_NONBLOCK No system calls will block on the file

O_NDELAY Same as O_NONBLOCK

O_SYNC Synchronous write (block until physical write terminates)

FASYNC I/O event notification via signals

O_DIRECT Direct I/O transfer (no kernel buffering)

O_LARGEFILE Large file (size greater than 2 GB)

O_DIRECTORY Fail if file is not a directory

O_NOFOLLOW Do not follow a trailing symbolic link in pathname

O_NOATIME Do not update the inode’s last access time

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementations of VFS System Calls | 507

1. Invokes getname() to read the file pathname from the process address space.

2. Invokes get_unused_fd() to find an empty slot in current->files->fd. The corre-
sponding index (the new file descriptor) is stored in the fd local variable.

3. Invokes the filp_open() function, passing as parameters the pathname, the
access mode flags, and the permission bit mask. This function, in turn, executes
the following steps:

a. Copies the access mode flags into namei_flags, but encodes the access mode
flags O_RDONLY, O_WRONLY, and O_RDWR with a special format: the bit at index 0
(lowest-order) of namei_flags is set only if the file access requires read privi-
leges; similarly, the bit at index 1 is set only if the file access requires write
privileges. Notice that it is not possible to specify in the open() system call
that a file access does not require either read or write privileges; this makes
sense, however, in a pathname lookup operation involving symbolic links.

b. Invokes open_namei(), passing to it the pathname, the modified access mode
flags, and the address of a local nameidata data structure. The function per-
forms the lookup operation in the following manner:

• If O_CREAT is not set in the access mode flags, starts the lookup opera-
tion with the LOOKUP_PARENT flag not set and the LOOKUP_OPEN flag set.
Moreover, the LOOKUP_FOLLOW flag is set only if O_NOFOLLOW is cleared,
while the LOOKUP_DIRECTORY flag is set only if the O_DIRECTORY flag is set.

• If O_CREAT is set in the access mode flags, starts the lookup operation
with the LOOKUP_PARENT, LOOKUP_OPEN, and LOOKUP_CREATE flags set. Once
the path_lookup() function successfully returns, checks whether the
requested file already exists. If not, allocates a new disk inode by invok-
ing the create method of the parent inode.

The open_namei() function also executes several security checks on the file
located by the lookup operation. For instance, the function checks whether
the inode associated with the dentry object found really exists, whether it is
a regular file, and whether the current process is allowed to access it accord-
ing to the access mode flags. Also, if the file is opened for writing, the func-
tion checks that the file is not locked by other processes.

c. Invokes the dentry_open() function, passing to it the addresses of the den-
try object and the mounted filesystem object located by the lookup opera-
tion, and the access mode flags. In turn, this function:

1. Allocates a new file object.

2. Initializes the f_flags and f_mode fields of the file object according to
the access mode flags passed to the open() system call.

3. Initializes the f_dentry and f_vfsmnt fields of the file object according to
the addresses of the dentry object and the mounted filesystem object
passed as parameters.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

508 | Chapter 12: The Virtual Filesystem

4. Sets the f_op field to the contents of the i_fop field of the correspond-
ing inode object. This sets up all the methods for future file operations.

5. Inserts the file object into the list of opened files pointed to by the s_
files field of the filesystem’s superblock.

6. If the open method of the file operations is defined, the function invokes
it.

7. Invokes file_ra_state_init() to initialize the read-ahead data struc-
tures (see Chapter 16).

8. If the O_DIRECT flag is set, it checks whether direct I/O operations can be
performed on the file (see Chapter 16).

9. Returns the address of the file object.

d. Returns the address of the file object.

4. Sets current->files->fd[fd] to the address of the file object returned by dentry_
open().

5. Returns fd.

The read() and write() System Calls
Let’s return to the code in our cp example. The open() system calls return two file
descriptors, which are stored in the inf and outf variables. Then the program starts a
loop: at each iteration, a portion of the /floppy/TEST file is copied into a local buffer
(read() system call), and then the data in the local buffer is written into the /tmp/test
file (write() system call).

The read() and write() system calls are quite similar. Both require three parame-
ters: a file descriptor fd, the address buf of a memory area (the buffer containing the
data to be transferred), and a number count that specifies how many bytes should be
transferred. Of course, read() transfers the data from the file into the buffer, while
write() does the opposite. Both system calls return either the number of bytes that
were successfully transferred or –1 to signal an error condition.

A return value less than count does not mean that an error occurred. The kernel is
always allowed to terminate the system call even if not all requested bytes were trans-
ferred, and the user application must accordingly check the return value and reissue,
if necessary, the system call. Typically, a small value is returned when reading from a
pipe or a terminal device, when reading past the end of the file, or when the system
call is interrupted by a signal. The end-of-file condition (EOF) can easily be recog-
nized by a zero return value from read(). This condition will not be confused with
an abnormal termination due to a signal, because if read() is interrupted by a signal
before a data is read, an error occurs.

The read or write operation always takes place at the file offset specified by the cur-
rent file pointer (field f_pos of the file object). Both system calls update the file
pointer by adding the number of transferred bytes to it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementations of VFS System Calls | 509

In short, both sys_read() (the read()’s service routine) and sys_write() (the
write()’s service routine) perform almost the same steps:

1. Invokes fget_light() to derive from fd the address file of the corresponding
file object (see the earlier section “Files Associated with a Process”).

2. If the flags in file->f_mode do not allow the requested access (read or write oper-
ation), it returns the error code -EBADF.

3. If the file object does not have a read() or aio_read() (write() or aio_write())
file operation, it returns the error code -EINVAL.

4. Invokes access_ok() to perform a coarse check on the buf and count parameters
(see the section “Verifying the Parameters” in Chapter 10).

5. Invokes rw_verify_area() to check whether there are conflicting mandatory
locks for the file portion to be accessed. If so, it returns an error code, or puts the
current process to sleep if the lock has been requested with a F_SETLKW com-
mand (see the section “File Locking” later in this chapter).

6. If defined, it invokes either the file->f_op->read or file->f_op->write method
to transfer the data; otherwise, invokes either the file->f_op->aio_read or file-
>f_op->aio_write method. All these methods, which are discussed in
Chapter 16, return the number of bytes that were actually transferred. As a side
effect, the file pointer is properly updated.

7. Invokes fput_light() to release the file object.

8. Returns the number of bytes actually transferred.

The close() System Call
The loop in our example code terminates when the read() system call returns the
value 0—that is, when all bytes of /floppy/TEST have been copied into /tmp/test. The
program can then close the open files, because the copy operation has completed.

The close() system call receives as its parameter fd, which is the file descriptor of the
file to be closed. The sys_close() service routine performs the following operations:

1. Gets the file object address stored in current->files->fd[fd]; if it is NULL, returns
an error code.

2. Sets current->files->fd[fd] to NULL. Releases the file descriptor fd by clearing
the corresponding bits in the open_fds and close_on_exec fields of current->
files (see Chapter 20 for the Close on Execution flag).

3. Invokes filp_close(), which performs the following operations:

a. Invokes the flush method of the file operations, if defined.

b. Releases all mandatory locks on the file, if any (see next section).

c. Invokes fput() to release the file object.

4. Returns 0 or an error code. An error code can be raised by the flush method or
by an error in a previous write operation on the file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 12: The Virtual Filesystem

File Locking
When a file can be accessed by more than one process, a synchronization problem
occurs. What happens if two processes try to write in the same file location? Or
again, what happens if a process reads from a file location while another process is
writing into it?

In traditional Unix systems, concurrent accesses to the same file location produce
unpredictable results. However, Unix systems provide a mechanism that allows the
processes to lock a file region so that concurrent accesses may be easily avoided.

The POSIX standard requires a file-locking mechanism based on the fcntl() system
call. It is possible to lock an arbitrary region of a file (even a single byte) or to lock
the whole file (including data appended in the future). Because a process can choose
to lock only a part of a file, it can also hold multiple locks on different parts of the
file.

This kind of lock does not keep out another process that is ignorant of locking. Like
a semaphore used to protect a critical region in code, the lock is considered “advi-
sory” because it doesn’t work unless other processes cooperate in checking the exist-
ence of a lock before accessing the file. Therefore, POSIX’s locks are known as
advisory locks.

Traditional BSD variants implement advisory locking through the flock() system
call. This call does not allow a process to lock a file region, only the whole file. Tradi-
tional System V variants provide the lockf() library function, which is simply an
interface to fcntl().

More importantly, System V Release 3 introduced mandatory locking: the kernel
checks that every invocation of the open(), read(), and write() system calls does
not violate a mandatory lock on the file being accessed. Therefore, mandatory locks
are enforced even between noncooperative processes.*

Whether processes use advisory or mandatory locks, they can use both shared read
locks and exclusive write locks. Several processes may have read locks on some file
region, but only one process can have a write lock on it at the same time. Moreover,
it is not possible to get a write lock when another process owns a read lock for the
same file region, and vice versa.

* Oddly enough, a process may still unlink (delete) a file even if some other process owns a mandatory lock
on it! This perplexing situation is possible because when a process deletes a file hard link, it does not modify
its contents, but only the contents of its parent directory.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

File Locking | 511

Linux File Locking
Linux supports all types of file locking: advisory and mandatory locks, plus the fcntl()
and flock() system calls (lockf() is implemented as a standard library function).

The expected behavior of the flock() system call in every Unix-like operating sys-
tem is to produce advisory locks only, without regard for the MS_MANDLOCK mount
flag. In Linux, however, a special kind of flock()’s mandatory lock is used to sup-
port some proprietary network filesystems. It is the so-called share-mode mandatory
lock; when set, no other process may open a file that would conflict with the access
mode of the lock. Use of this feature for native Unix applications is discouraged,
because the resulting source code will be nonportable.

Another kind of fcntl()-based mandatory lock called lease has been introduced in
Linux. When a process tries to open a file protected by a lease, it is blocked as usual.
However, the process that owns the lock receives a signal. Once informed, it should
first update the file so that its content is consistent, and then release the lock. If the
owner does not do this in a well-defined time interval (tunable by writing a number
of seconds into /proc/sys/fs/lease-break-time, usually 45 seconds), the lease is auto-
matically removed by the kernel and the blocked process is allowed to continue.

A process can get or release an advisory file lock on a file in two possible ways:

• By issuing the flock() system call. The two parameters of the system call are the
fd file descriptor, and a command to specify the lock operation. The lock applies
to the whole file.

• By using the fcntl() system call. The three parameters of the system call are the
fd file descriptor, a command to specify the lock operation, and a pointer to a
flock structure (see Table 12-20). A couple of fields in this structure allow the
process to specify the portion of the file to be locked. Processes can thus hold
several locks on different portions of the same file.

Both the fcntl() and the flock() system call may be used on the same file at the
same time, but a file locked through fcntl() does not appear locked to flock(), and
vice versa. This has been done on purpose in order to avoid the deadlocks occurring
when an application using a type of lock relies on a library that uses the other type.

Handling mandatory file locks is a bit more complex. Here are the steps to follow:

1. Mount the filesystem where mandatory locking is required using the -o mand
option in the mount command, which sets the MS_MANDLOCK flag in the mount()
system call. The default is to disable mandatory locking.

2. Mark the files as candidates for mandatory locking by setting their set-group bit
(SGID) and clearing the group-execute permission bit. Because the set-group bit
makes no sense when the group-execute bit is off, the kernel interprets that com-
bination as a hint to use mandatory locks instead of advisory ones.

3. Uses the fcntl() system call (see below) to get or release a file lock.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 12: The Virtual Filesystem

Handling leases is much simpler than handling mandatory locks: it is sufficient to
invoke a fcntl() system call with a F_SETLEASE or F_GETLEASE command. Another
fcntl() invocation with the F_SETSIG command may be used to change the type of
signal to be sent to the lease process holder.

Besides the checks in the read() and write() system calls, the kernel takes into con-
sideration the existence of mandatory locks when servicing all system calls that could
modify the contents of a file. For instance, an open() system call with the O_TRUNC
flag set fails if any mandatory lock exists for the file.

The following section describes the main data structure used by the kernel to handle
file locks issued by means of the flock() system call (FL_FLOCK locks) and of the
fcntl() system call (FL_POSIX locks).

File-Locking Data Structures
All type of Linux locks are represented by the same file_lock data structure whose
fields are shown in Table 12-19.

All lock_file structures that refer to the same file on disk are collected in a singly
linked list, whose first element is pointed to by the i_flock field of the inode object.
The fl_next field of the lock_file structure specifies the next element in the list.

Table 12-19. The fields of the file_lock data structure

Type Field Description

struct file_lock * fl_next Next element in list of locks associated with the
inode

struct list_head fl_link Pointers for active or blocked list

struct list_head fl_block Pointers for the lock’s waiters list

struct files_struct * fl_owner Owner’s files_struct

unsigned int fl_pid PID of the process owner

wait_queue_head_t fl_wait Wait queue of blocked processes

struct file * fl_file Pointer to file object

unsigned char fl_flags Lock flags

unsigned char fl_type Lock type

loff_t fl_start Starting offset of locked region

loff_t fl_end Ending offset of locked region

struct fasync_struct * fl_fasync Used for lease break notifications

unsigned long fl_break_time Remaining time before end of lease

struct file_lock_operations * fl_ops Pointer to file lock operations

struct lock_manager_operations * fl_mops Pointer to lock manager operations

union fl_u Filesystem-specific information

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

File Locking | 513

When a process issues a blocking system call to require an exclusive lock while there
are shared locks on the same file, the lock request cannot be satisfied immediately
and the process must be suspended. The process is thus inserted into a wait queue
pointed to by the fl_wait field of the blocked lock’s file_lock structure. Two lists
are used to distinguish lock requests that have been satisfied (active locks) from those
that cannot be satisfied right away (blocked locks).

All active locks are linked together in the “global file lock list” whose head element is
stored in the file_lock_list variable. Similarly, all blocked locks are linked together
in the “blocked list” whose head element is stored in the blocked_list variable. The
fl_link field is used to insert a lock_file structure in either one of these two lists.

Last but not least, the kernel must keep track of all blocked locks (the “waiters”)
associated with a given active lock (the “blocker”): this is the purpose of a list that
links together all waiters with respect to a given blocker. The fl_block field of the
blocker is the dummy head of the list, while the fl_block fields of the waiters store
the pointers to the adjacent elements in the list.

FL_FLOCK Locks
An FL_FLOCK lock is always associated with a file object and is thus owned by the pro-
cess that opened the file (or by all clone processes sharing the same opened file).
When a lock is requested and granted, the kernel replaces every other lock that the
process is holding on the same file object with the new lock. This happens only when
a process wants to change an already owned read lock into a write one, or vice versa.
Moreover, when a file object is being freed by the fput() function, all FL_FLOCK locks
that refer to the file object are destroyed. However, there could be other FL_FLOCK
read locks set by other processes for the same file (inode), and they still remain
active.

The flock() system call allows a process to apply or remove an advisory lock on an
open file. It acts on two parameters: the fd file descriptor of the file to be acted upon
and a cmd parameter that specifies the lock operation. A cmd parameter of LOCK_SH
requires a shared lock for reading, LOCK_EX requires an exclusive lock for writing, and
LOCK_UN releases the lock.*

Usually this system call blocks the current process if the request cannot be immedi-
ately satisfied, for instance if the process requires an exclusive lock while some other
process has already acquired the same lock. However, if the LOCK_NB flag is passed
together with the LOCK_SH or LOCK_EX operation, the system call does not block; in
other words, if the lock cannot be immediately obtained, the system call returns an
error code.

* Actually, the flock() system call can also establish share-mode mandatory locks by specifying the command
LOCK_MAND. However, we’ll not further discuss this case.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 12: The Virtual Filesystem

When the sys_flock() service routine is invoked, it performs the following steps:

1. Checks whether fd is a valid file descriptor; if not, returns an error code. Gets
the address filp of the corresponding file object.

2. Checks that the process has read and/or write permission on the open file; if not,
returns an error code.

3. Gets a new file_lock object lock and initializes it in the appropriate way: the fl_
type field is set according to the value of the parameter cmd, the fl_file field is
set to the address filp of the file object, the fl_flags field is set to FL_FLOCK, the
fl_pid field is set to current->tgid, and the fl_end field is set to -1 to denote the
fact that locking refers to the whole file (and not to a portion of it).

4. If the cmd parameter does not include the LOCK_NB bit, it adds to the fl_flags field
the FL_SLEEP flag.

5. If the file has a flock file operation, the routine invokes it, passing as its parame-
ters the file object pointer filp, a flag (F_SETLKW or F_SETLK depending on the
value of the LOCK_NB bit), and the address of the new file_lock object lock.

6. Otherwise, if the flock file operation is not defined (the common case), invokes
flock_lock_file_wait() to try to perform the required lock operation. Two
parameters are passed: filp, a file object pointer, and lock, the address of the
new file_lock object created in step 3.

7. If the file_lock descriptor has not been inserted in the active or blocked lists in
the previous step, the routine releases it.

8. Returns 0 in case of success.

The flock_lock_file_wait() function executes a cycle consisting of the following
steps:

1. Invokes flock_lock_file() passing as parameters the file object pointer filp and
the address of the new file_lock object lock. This function performs, in turn,
the following operations:

a. Searches the list that filp->f_dentry->d_inode->i_flock points to. If an FL_
FLOCK lock for the same file object is found, checks its type (LOCK_SH or LOCK_
EX): if it is equal to the type of the new lock, returns 0 (nothing has to be
done). Otherwise, the function removes the old element from the list of
locks on the inode and the global file lock list, wakes up all processes sleep-
ing in the wait queues of the locks in the fl_block list, and frees the file_
lock structure.

b. If the process is performing an unlock (LOCK_UN), nothing else needs to be
done: the lock was nonexisting or it has already been released, thus returns 0.

c. If an FL_FLOCK lock for the same file object has been found—thus the process
is changing an already owned read lock into a write one (or vice versa)—gives
some other higher-priority process, in particular every process previously
blocked on the old file lock, a chance to run by invoking cond_resched().

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

File Locking | 515

d. Searches the list of locks on the inode again to verify that no existing FL_
FLOCK lock conflicts with the requested one. There must be no FL_FLOCK write
lock in the list, and moreover, there must be no FL_FLOCK lock at all if the
process is requesting a write lock.

e. If no conflicting lock exists, it inserts the new file_lock structure into the
inode’s lock list and into the global file lock list, then returns 0 (success).

f. A conflicting lock has been found: if the FL_SLEEP flag in the fl_flags field is
set, it inserts the new lock (the waiter lock) in the circular list of the blocker
lock and in the global blocked list.

g. Returns the error code -EAGAIN.

2. Checks the return code of flock_lock_file():

a. If the return code is 0 (no conflicting looks), it returns 0 (success).

b. There are incompatibilities. If the FL_SLEEP flag in the fl_flags field is
cleared, it releases the lock file_lock descriptor and returns -EAGAIN.

c. Otherwise, there are incompatibilities but the process can sleep: invokes
wait_event_interruptible() to insert the current process in the lock->fl_
wait wait queue and to suspend it. When the process is awakened (right
after the blocker lock has been released), it jumps to step 1 to retry the oper-
ation.

FL_POSIX Locks
An FL_POSIX lock is always associated with a process and with an inode; the lock is
automatically released either when the process dies or when a file descriptor is closed
(even if the process opened the same file twice or duplicated a file descriptor). More-
over, FL_POSIX locks are never inherited by a child across a fork().

When used to lock files, the fcntl() system call acts on three parameters: the fd file
descriptor of the file to be acted upon, a cmd parameter that specifies the lock opera-
tion, and an fl pointer to a flock data structure* stored in the User Mode process
address space; its fields are described in Table 12-20.

* Linux also defines a flock64 structure, which uses 64-bit long integers for the offset and length fields. In the
following, we focus on the flock data structure, but the description is valid for flock64 too.

Table 12-20. The fields of the flock data structure

Type Field Description

short l_type F_RDLOCK (requests a shared lock), F_WRLOCK (requests an exclusive lock), F_UNLOCK
(releases the lock)

short l_whence SEEK_SET (from beginning of file), SEEK_CURRENT (from current file pointer), SEEK_
END (from end of file)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

516 | Chapter 12: The Virtual Filesystem

The sys_fcntl() service routine behaves differently, depending on the value of the
flag set in the cmd parameter:

F_GETLK
Determines whether the lock described by the flock structure conflicts with
some FL_POSIX lock already obtained by another process. In this case, the flock
structure is overwritten with the information about the existing lock.

F_SETLK
Sets the lock described by the flock structure. If the lock cannot be acquired, the
system call returns an error code.

F_SETLKW
Sets the lock described by the flock structure. If the lock cannot be acquired, the
system call blocks; that is, the calling process is put to sleep until the lock is
available.

F_GETLK64, F_SETLK64, F_SETLKW64
Identical to the previous ones, but the flock64 data structure is used rather than
flock.

The sys_fcntl() service routine gets first a file object corresponding to the fd param-
eter and invokes then fcntl_getlk() or fcntl_setlk(), depending on the command
passed as its parameter (F_GETBLK for the former function, F_SETLK or F_SETLKW for the
latter one). We’ll consider the second case only.

The fcntl_setlk() function acts on three parameters: a filp pointer to the file
object, a cmd command (F_SETLK or F_SETLKW), and a pointer to a flock data struc-
ture. The steps performed are the following:

1. Reads the structure pointed to by the fl parameter in a local variable of type
flock.

2. Checks whether the lock should be a mandatory one and the file has a shared
memory mapping (see the section “Memory Mapping” in Chapter 16). In this
case, the function refuses to create the lock and returns the -EAGAIN error code,
because the file is already being accessed by another process.

3. Initializes a new file_lock structure according to the contents of the user’s flock
structure and to the file size stored in the file’s inode.

4. If the command is F_SETLKW, the function sets the FL_SLEEP flag in the fl_flags
field of the file_lock structure.

off_t l_start Initial offset of the locked region relative to the value of l_whence

off_t l_len Length of locked region (0 means that the region includes all potential writes past the cur-
rent end of the file)

pid_t l_pid PID of the owner

Table 12-20. The fields of the flock data structure (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

File Locking | 517

5. If the l_type field in the flock structure is equal to F_RDLCK, it checks whether the
process is allowed to read from the file; similarly, if l_type is equal to F_WRLCK,
checks whether the process is allowed to write into the file. If not, it returns an
error code.

6. Invokes the lock method of the file operations, if defined. Usually for disk-based
filesystems, this method is not defined.

7. Invokes _ _posix_lock_file() passing as parameters the address of the file’s
inode object and the address of the file_lock object. This function performs, in
turn, the following operations:

a. Invokes posix_locks_conflict() for each FL_POSIX lock in the inode’s lock
list. The function checks whether the lock conflicts with the requested one.
Essentially, there must be no FL_POSIX write lock for the same region in the
inode list, and there may be no FL_POSIX lock at all for the same region if the
process is requesting a write lock. However, locks owned by the same pro-
cess never conflict; this allows a process to change the characteristics of a
lock it already owns.

b. If a conflicting lock is found, the function checks whether fcntl() was
invoked with the F_SETLKW command. If so, the current process must be sus-
pended: invokes posix_locks_deadlock() to check that no deadlock condi-
tion is being created among processes waiting for FL_POSIX locks, then
inserts the new lock (waiter lock) both in the blocker list of the conflicting
lock (blocker lock) and in the blocked list, and finally returns an error code.
Otherwise, if fcntl() was invoked with the F_SETLK command, returns an
error code.

c. As soon as the inode’s lock list includes no conflicting lock, the function
checks all the FL_POSIX locks of the current process that overlap the file
region that the current process wants to lock, and combines and splits adja-
cent areas as required. For example, if the process requested a write lock
for a file region that falls inside a read-locked wider region, the previous
read lock is split into two parts covering the nonoverlapping areas, while
the central region is protected by the new write lock. In case of overlaps,
newer locks always replace older ones.

d. Inserts the new file_lock structure in the global file lock list and in the
inode list.

e. Returns the value 0 (success).

8. Checks the return code of _ _posix_lock_file():

a. If the return code is 0 (no conflicting locks), it returns 0 (success).

b. There are incompatibilities. If the FL_SLEEP flag in the fl_flags field is
cleared, it releases the new file_lock descriptor and returns -EAGAIN.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

518 | Chapter 12: The Virtual Filesystem

c. Otherwise, if there are incompatibilities but the process can sleep, it invokes
wait_event_interruptible() to insert the current process in the lock->fl_
wait wait queue and to suspend it. When the process is awakened (right after
the blocker lock has been released), it jumps to step 7 to retry the operation.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

519

Chapter 13f CHAPTER 13

I/O Architecture
and Device Drivers

The Virtual File System in the last chapter depends on lower-level functions to carry
out each read, write, or other operation in a manner suited to each device. The previ-
ous chapter included a brief discussion of how operations are handled by different
filesystems. In this chapter, we look at how the kernel invokes the operations on
actual devices.

In the section “I/O Architecture,” we give a brief survey of the 80 × 86 I/O architec-
ture. In the section “The Device Driver Model,” we introduce the Linux device driver
model. Next, in the section “Device Files,” we show how the VFS associates a spe-
cial file called “device file” with each different hardware device, so that application
programs can use all kinds of devices in the same way. We then introduce in the sec-
tion “Device Drivers” some common characteristics of device drivers. Finally, in the
section “Character Device Drivers,” we illustrate the overall organization of charac-
ter device drivers in Linux. We’ll defer the discussion of block device drivers to the
next chapters.

Readers interested in developing device drivers on their own may want to refer to
Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman’s Linux Device Driv-
ers, Third Edition (O’Reilly).

I/O Architecture
To make a computer work properly, data paths must be provided that let informa-
tion flow between CPU(s), RAM, and the score of I/O devices that can be connected
to a personal computer. These data paths, which are denoted as the buses, act as the
primary communication channels inside the computer.

Any computer has a system bus that connects most of the internal hardware devices.
A typical system bus is the PCI (Peripheral Component Interconnect) bus. Several
other types of buses, such as ISA, EISA, MCA, SCSI, and USB, are currently in use.
Typically, the same computer includes several buses of different types, linked

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

520 | Chapter 13: I/O Architecture and Device Drivers

together by hardware devices called bridges. Two high-speed buses are dedicated to
the data transfers to and from the memory chips: the frontside bus connects the CPUs
to the RAM controller, while the backside bus connects the CPUs directly to the
external hardware cache. The host bridge links together the system bus and the
frontside bus.

Any I/O device is hosted by one, and only one, bus. The bus type affects the internal
design of the I/O device, as well as how the device has to be handled by the kernel.
In this section, we discuss the functional characteristics common to all PC architec-
tures, without giving details about a specific bus type.

The data path that connects a CPU to an I/O device is generically called an I/O bus.
The 80 × 86 microprocessors use 16 of their address pins to address I/O devices and
8, 16, or 32 of their data pins to transfer data. The I/O bus, in turn, is connected to
each I/O device by means of a hierarchy of hardware components including up to
three elements: I/O ports, interfaces, and device controllers. Figure 13-1 shows the
components of the I/O architecture.

I/O Ports
Each device connected to the I/O bus has its own set of I/O addresses, which are
usually called I/O ports. In the IBM PC architecture, the I/O address space provides
up to 65,536 8-bit I/O ports. Two consecutive 8-bit ports may be regarded as a sin-
gle 16-bit port, which must start on an even address. Similarly, two consecutive 16-
bit ports may be regarded as a single 32-bit port, which must start on an address that
is a multiple of 4. Four special assembly language instructions called in, ins, out, and
outs allow the CPU to read from and write into an I/O port. While executing one of
these instructions, the CPU selects the required I/O port and transfers the data
between a CPU register and the port.

Figure 13-1. PC’s I/O architecture

I/O bus

I/O Controller

I/O Interface

I/O Port I/O Port.......

I/O Device

CPU

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

I/O Architecture | 521

I/O ports may also be mapped into addresses of the physical address space. The pro-
cessor is then able to communicate with an I/O device by issuing assembly language
instructions that operate directly on memory (for instance, mov, and, or, and so on).
Modern hardware devices are more suited to mapped I/O, because it is faster and
can be combined with DMA.

An important objective for system designers is to offer a unified approach to I/O pro-
gramming without sacrificing performance. Toward that end, the I/O ports of each
device are structured into a set of specialized registers, as shown in Figure 13-2. The
CPU writes the commands to be sent to the device into the device control register and
reads a value that represents the internal state of the device from the device status
register. The CPU also fetches data from the device by reading bytes from the device
input register and pushes data to the device by writing bytes into the device output
register.

To lower costs, the same I/O port is often used for different purposes. For instance,
some bits describe the device state, while others specify the command to be issued to
the device. Similarly, the same I/O port may be used as an input register or an out-
put register.

Accessing I/O ports

The in, out, ins, and outs assembly language instructions access I/O ports. The fol-
lowing auxiliary functions are included in the kernel to simplify such accesses:

inb(), inw(), inl()
Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port. The suffix “b,”
“w,” or “l” refers, respectively, to a byte (8 bits), a word (16 bits), and a long (32
bits).

inb_p(), inw_p(), inl_p()
Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port, and then exe-
cute a “dummy” instruction to introduce a pause.

Figure 13-2. Specialized I/O ports

Device's
I/O Interface

Control register

Status register

Input register

Output register

CPU

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

522 | Chapter 13: I/O Architecture and Device Drivers

outb(), outw(), outl()
Write 1, 2, or 4 consecutive bytes, respectively, to an I/O port.

outb_p(), outw_p(), outl_p()
Write 1, 2, and 4 consecutive bytes, respectively, to an I/O port, and then exe-
cute a “dummy” instruction to introduce a pause.

insb(), insw(), insl()
Read sequences of consecutive bytes in groups of 1, 2, or 4, respectively, from an
I/O port. The length of the sequence is specified as a parameter of the functions.

outsb(), outsw(), outsl()
Write sequences of consecutive bytes, in groups of 1, 2, or 4, respectively, to an
I/O port.

While accessing I/O ports is simple, detecting which I/O ports have been assigned to
I/O devices may not be easy, in particular, for systems based on an ISA bus. Often a
device driver must blindly write into some I/O port to probe the hardware device; if,
however, this I/O port is already used by some other hardware device, a system crash
could occur. To prevent such situations, the kernel keeps track of I/O ports assigned
to each hardware device by means of “resources.”

A resource represents a portion of some entity that can be exclusively assigned to a
device driver. In our case, a resource represents a range of I/O port addresses. The
information relative to each resource is stored in a resource data structure, whose
fields are shown in Table 13-1. All resources of the same kind are inserted in a tree-
like data structure; for instance, all resources representing I/O port address ranges
are included in a tree rooted at the node ioport_resource.

The children of a node are collected in a list whose first element is pointed to by the
child field. The sibling field points to the next node in the list.

Why use a tree? Well, consider, for instance, the I/O port addresses used by an IDE
hard disk interface—let’s say from 0xf000 to 0xf00f. A resource with the start field
set to 0xf000 and the end field set to 0xf00f is then included in the tree, and the con-
ventional name of the controller is stored in the name field. However, the IDE device

Table 13-1. The fields of the resource data structure

Type Field Description

const char * name Description of owner of the resource

unsigned long start Start of the resource range

unsigned long end End of the resource range

unsigned long flags Various flags

struct resource * parent Pointer to parent in the resource tree

struct resource * sibling Pointer to a sibling in the resource tree

struct resource * child Pointer to first child in the resource tree

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

I/O Architecture | 523

driver needs to remember another bit of information, namely that the subrange from
0xf000 to 0xf007 is used for the master disk of the IDE chain, while the subrange
from 0xf008 to 0xf00f is used for the slave disk. To do this, the device driver inserts
two children below the resource corresponding to the whole range from 0xf000 to
0xf00f, one child for each subrange of I/O ports. As a general rule, each node of the
tree must correspond to a subrange of the range associated with the parent. The root
of the I/O port resource tree (ioport_resource) spans the whole I/O address space
(from port number 0 to 65535).

Each device driver may use the following three functions, passing to them the root
node of the resource tree and the address of a resource data structure of interest:

request_resource()
Assigns a given range to an I/O device.

allocate_resource()
Finds an available range having a given size and alignment in the resource tree; if
it exists, assigns the range to an I/O device (mainly used by drivers of PCI
devices, which can be configured to use arbitrary port numbers and on-board
memory addresses).

release_resource()
Releases a given range previously assigned to an I/O device.

The kernel also defines some shortcuts to the above functions that apply to I/O
ports: request_region() assigns a given interval of I/O ports and release_region()
releases a previously assigned interval of I/O ports. The tree of all I/O addresses cur-
rently assigned to I/O devices can be obtained from the /proc/ioports file.

I/O Interfaces
An I/O interface is a hardware circuit inserted between a group of I/O ports and the
corresponding device controller. It acts as an interpreter that translates the values in
the I/O ports into commands and data for the device. In the opposite direction, it
detects changes in the device state and correspondingly updates the I/O port that
plays the role of status register. This circuit can also be connected through an IRQ
line to a Programmable Interrupt Controller, so that it issues interrupt requests on
behalf of the device.

There are two types of interfaces:

Custom I/O interfaces
Devoted to one specific hardware device. In some cases, the device controller is
located in the same card * that contains the I/O interface. The devices attached to

* Each card must be inserted in one of the available free bus slots of the PC. If the card can be connected to an
external device through an external cable, the card supports a suitable connector in the rear panel of the PC.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

524 | Chapter 13: I/O Architecture and Device Drivers

a custom I/O interface can be either internal devices (devices located inside the
PC’s cabinet) or external devices (devices located outside the PC’s cabinet).

General-purpose I/O interfaces
Used to connect several different hardware devices. Devices attached to a gen-
eral-purpose I/O interface are usually external devices.

Custom I/O interfaces

Just to give an idea of how much variety is encompassed by custom I/O interfaces—
thus by the devices currently installed in a PC—we’ll list some of the most com-
monly found:

Keyboard interface
Connected to a keyboard controller that includes a dedicated microprocessor.
This microprocessor decodes the combination of pressed keys, generates an
interrupt, and puts the corresponding scan code in an input register.

Graphic interface
Packed together with the corresponding controller in a graphic card that has its
own frame buffer, as well as a specialized processor and some code stored in a
Read-Only Memory chip (ROM). The frame buffer is an on-board memory con-
taining a description of the current screen contents.

Disk interface
Connected by a cable to the disk controller, which is usually integrated with the
disk. For instance, the IDE interface is connected by a 40-wire flat conductor
cable to an intelligent disk controller that can be found on the disk itself.

Bus mouse interface
Connected by a cable to the corresponding controller, which is included in the
mouse.

Network interface
Packed together with the corresponding controller in a network card used to
receive or transmit network packets. Although there are several widely adopted
network standards, Ethernet (IEEE 802.3) is the most common.

General-purpose I/O interfaces

Modern PCs include several general-purpose I/O interfaces, which connect a wide
range of external devices. The most common interfaces are:

Parallel port
Traditionally used to connect printers, it can also be used to connect removable
disks, scanners, backup units, and other computers. The data is transferred 1
byte (8 bits) at a time.

Serial port
Like the parallel port, but the data is transferred 1 bit at a time. It includes a Uni-
versal Asynchronous Receiver and Transmitter (UART) chip to string out the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

I/O Architecture | 525

bytes to be sent into a sequence of bits and to reassemble the received bits into
bytes. Because it is intrinsically slower than the parallel port, this interface is
mainly used to connect external devices that do not operate at a high speed, such
as modems, mouses, and printers.

PCMCIA interface
Included mostly on portable computers. The external device, which has the
shape of a credit card, can be inserted into and removed from a slot without
rebooting the system. The most common PCMCIA devices are hard disks,
modems, network cards, and RAM expansions.

SCSI (Small Computer System Interface) interface
A circuit that connects the main PC bus to a secondary bus called the SCSI bus.
The SCSI-2 bus allows up to eight PCs and external devices—hard disks, scan-
ners, CD-ROM writers, and so on—to be connected. Wide SCSI-2 and the SCSI-
3 interfaces allow you to connect 16 devices or more if additional interfaces are
present. The SCSI standard is the communication protocol used to connect
devices via the SCSI bus.

Universal serial bus (USB)
A general-purpose I/O interface that operates at a high speed and may be used
for the external devices traditionally connected to the parallel port, the serial
port, and the SCSI interface.

Device Controllers
A complex device may require a device controller to drive it. Essentially, the control-
ler plays two important roles:

• It interprets the high-level commands received from the I/O interface and forces
the device to execute specific actions by sending proper sequences of electrical
signals to it.

• It converts and properly interprets the electrical signals received from the device
and modifies (through the I/O interface) the value of the status register.

A typical device controller is the disk controller, which receives high-level commands
such as a “write this block of data” from the microprocessor (through the I/O inter-
face) and converts them into low-level disk operations such as “position the disk
head on the right track” and “write the data inside the track.” Modern disk control-
lers are very sophisticated, because they can keep the disk data in on-board fast disk
caches and can reorder the CPU high-level requests optimized for the actual disk
geometry.

Simpler devices do not have a device controller; examples include the Programmable
Interrupt Controller (see the section “Interrupts and Exceptions” in Chapter 4) and
the Programmable Interval Timer (see the section “Programmable Interval Timer
(PIT)” in Chapter 6).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

526 | Chapter 13: I/O Architecture and Device Drivers

Several hardware devices include their own memory, which is often called I/O shared
memory. For instance, all recent graphic cards include tens of megabytes of RAM in
the frame buffer, which is used to store the screen image to be displayed on the
monitor. We will discuss I/O shared memory in the section “Accessing the I/O
Shared Memory” later in this chapter.

The Device Driver Model
Earlier versions of the Linux kernel offered few basic functionalities to the device
driver developers: allocating dynamic memory, reserving a range of I/O addresses or
an IRQ line, activating an interrupt service routine in response to a device’s inter-
rupt. Older hardware devices, in fact, were cumbersome and difficult to program,
and two different hardware devices had little in common even if they were hosted on
the same bus. Thus, there was no point in trying to offer a unifying model to the
device driver developers.

Things are different now. Bus types such as PCI put strong demands on the internal
design of the hardware devices; as a consequence, recent hardware devices, even of
different classes, support similar functionalities. Drivers for such devices should typi-
cally take care of:

• Power management (handling of different voltage levels on the device’s power
line)

• Plug and play (transparent allocation of resources when configuring the device)

• Hot-plugging (support for insertion and removal of the device while the system
is running)

Power management is performed globally by the kernel on every hardware device in
the system. For instance, when a battery-powered computer enters the “standby”
state, the kernel must force every hardware device (hard disks, graphics card, sound
card, network card, bus controllers, and so on) in a low-power state. Thus, each
driver of a device that can be put in the “standby” state must include a callback func-
tion that puts the hardware device in the low-power state. Moreover, the hardware
devices must be put in the “standby” state in a precise order, otherwise some devices
could be left in the wrong power state. For instance, the kernel must put in
“standby” first the hard disks and then their disk controller, because in the opposite
case it would be impossible to send commands to the hard disks.

To implement these kinds of operations, Linux 2.6 provides some data structures
and helper functions that offer a unifying view of all buses, devices, and device driv-
ers in the system; this framework is called the device driver model.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Device Driver Model | 527

The sysfs Filesystem
The sysfs filesystem is a special filesystem similar to /proc that is usually mounted on
the /sys directory. The /proc filesystem was the first special filesystem designed to
allow User Mode applications to access kernel internal data structures. The /sysfs
filesystem has essentially the same objective, but it provides additional information
on kernel data structures; furthermore, /sysfs is organized in a more structured way
than /proc. Likely, both /proc and /sysfs will continue to coexist in the near future.

A goal of the sysfs filesystem is to expose the hierarchical relationships among the
components of the device driver model. The related top-level directories of this file-
system are:

block
The block devices, independently from the bus to which they are connected.

devices
All hardware devices recognized by the kernel, organized according to the bus in
which they are connected.

bus
The buses in the system, which host the devices.

drivers
The device drivers registered in the kernel.

class
The types of devices in the system (audio cards, network cards, graphics cards,
and so on); the same class may include devices hosted by different buses and
driven by different drivers.

power
Files to handle the power states of some hardware devices.

firmware
Files to handle the firmware of some hardware devices.

Relationships between components of the device driver models are expressed in the
sysfs filesystem as symbolic links between directories and files. For example, the /sys/
block/sda/device file can be a symbolic link to a subdirectory nested in /sys/devices/
pci0000:00 representing the SCSI controller connected to the PCI bus. Moreover, the
/sys/block/sda/device/block file is a symbolic link to /sys/block/sda, stating that this
PCI device is the controller of the SCSI disk.

The main role of regular files in the sysfs filesystem is to represent attributes of driv-
ers and devices. For instance, the dev file in the /sys/block/hda directory contains the
major and minor numbers of the master disk in the first IDE chain.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 13: I/O Architecture and Device Drivers

Kobjects
The core data structure of the device driver model is a generic data structure named
kobject, which is inherently tied to the sysfs filesystem: each kobject corresponds to a
directory in that filesystem.

Kobjects are embedded inside larger objects—the so-called “containers”—that
describe the components of the device driver model.* The descriptors of buses,
devices, and drivers are typical examples of containers; for instance, the descriptor of
the first partition in the first IDE disk corresponds to the /sys/block/hda/hda1 directory.

Embedding a kobject inside a container allows the kernel to:

• Keep a reference counter for the container

• Maintain hierarchical lists or sets of containers (for instance, a sysfs directory
associated with a block device includes a different subdirectory for each disk
partition)

• Provide a User Mode view for the attributes of the container

Kobjects, ksets, and subsystems

A kobject is represented by a kobject data structure, whose fields are listed in
Table 13-2.

The ktype field points to a kobj_type object representing the “type” of the kobject—
essentially, the type of the container that includes the kobject. The kobj_type data
structure includes three fields: a release method (executed when the kobject is being
freed), a sysfs_ops pointer to a table of sysfs operations, and a list of default
attributes for the sysfs filesystem.

* Kobjects are mainly used to implement the device driver model; however, there is an ongoing effort to change
some other kernel components—such as the module subsystem—so as to use them.

Table 13-2. The fields of the kobject data structure

Type Field Description

char * k_name Pointer to a string holding the name of the container

char [] name String holding the name of the container, if it fits in 20 bytes

struct k_ref kref The reference counter for the container

struct list_head entry Pointers for the list in which the kobject is inserted

struct kobject * parent Pointer to the parent kobject, if any

struct kset * kset Pointer to the containing kset

struct kobj_type * ktype Pointer to the kobject type descriptor

struct dentry * dentry Pointer to the dentry of the sysfs file associated with the kobject

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Device Driver Model | 529

The kref field is a structure of type k_ref consisting of a single refcount field. As the
name implies, this field is the reference counter for the kobject, but it may act also as
the reference counter for the container of the kobject. The kobject_get() and
kobject_put() functions increase and decrease, respectively, the reference counter; if
the counter reaches the value zero, the resources used by the kobject are released and
the release method of the kobj_type object of the kobject is executed. This method,
which is usually defined only if the container of the kobject was allocated dynami-
cally, frees the container itself.

The kobjects can be organized in a hierarchical tree by means of ksets. A kset is a col-
lection of kobjects of the same type—that is, included in the same type of container.
The fields of the kset data structure are listed in Table 13-3.

The list field is the head of the doubly linked circular list of kobjects included in the
kset; the ktype field points to the same kobj_type descriptor shared by all kobjects in
the kset.

The kobj field is a kobject embedded in the kset data structure; the parent field of
the kobjects contained in the kset points to this embedded kobject. Thus, a kset is a
collection of kobjects, but it relies on a kobject of higher level for reference counting
and linking in the hierarchical tree. This design choice is code-efficient and allows
the greatest flexibility. For instance, the kset_get() and kset_put() functions, which
increase and decrease respectively the reference counter of the kset, simply invoke
kobject_get() and kobject_put() on the embedded kobject; because the reference
counter of a kset is merely the reference counter of the kobj kobject embedded in the
kset. Moreover, thanks to the embedded kobject, the kset data structure can be
embedded in a “container” object, exactly as for the kobject data structure. Finally, a
kset can be made a member of another kset: it suffices to insert the embedded kob-
ject in the higher-level kset.

Collections of ksets called subsystems also exist. A subsystem may include ksets of
different types, and it is represented by a subsystem data structure having just two
fields:

kset
An embedded kset that stores the ksets included in the subsystem

Table 13-3. The fields of the kset data structure

Type Field Description

struct subsystem * subsys Pointer to the subsystem descriptor

struct kobj_type * ktype Pointer to the kobject type descriptor of the kset

struct list_head list Head of the list of kobjects included in the kset

struct kobject kobj Embedded kobject (see text)

struct kset_hotplug_ops * hotplug_ops Pointer to a table of callback functions for kobject filtering and
hot-plugging

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

530 | Chapter 13: I/O Architecture and Device Drivers

rwsem
A read-write semaphore that protects all ksets and kobjects recursively included
in the subsystem

Even the subsystem data structure can be embedded in a larger “container” object;
the reference counter of the container is thus the reference counter of the embedded
subsystem—that is, the reference counter of the kobject embedded in the kset
embedded in the subsystem. The subsys_get() and subsys_put() functions respec-
tively increase and decrease this reference counter.

Figure 13-3 illustrates an example of the device driver model hierarchy. The bus sub-
system includes a pci subsystem, which, in turn, includes a drivers kset. This kset
contains a serial kobject—corresponding to the device driver for the serial port—
having a single new-id attribute.

Registering kobjects, ksets, and subsystems

As a general rule, if you want a kobject, kset, or subsystem to appear in the sysfs sub-
tree, you must first register it. The directory associated with a kobject always appears
in the directory of the parent kobject. For instance, the directories of kobjects
included in the same kset appear in the directory of the kset itself. Therefore, the
structure of the sysfs subtree represents the hierarchical relationships between the
various registered kobjects and, consequently, between the various container objects.

Figure 13-3. An example of device driver model hierarchy

... ...

... ...

... ...

... ...

... ...

subsystem

kset

subsystem

kobject

attribute

/sys

bus

pci

drivers

serial

new-id

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Device Driver Model | 531

Usually, the top-level directories of the sysfs filesystem are associated with the regis-
tered subsystems.

The kobject_register() function initializes a kobject and adds the corresponding
directory to the sysfs filesystem. Before invoking it, the caller should set the kset field
in the kobject so that it points to the parent kset, if any. The kobject_unregister()
function removes a kobject’s directory from the sysfs filesystem. To make life easier
for kernel developers, Linux also offers the kset_register() and kset_unregister()
functions, and the subsystem_register() and subsystem_unregister() functions, but
they are essentially wrapper functions around kobject_register() and kobject_
unregister().

As stated before, many kobject directories include regular files called attributes. The
sysfs_create_file() function receives as its parameters the addresses of a kobject
and an attribute descriptor, and creates the special file in the proper directory. Other
relationships between the objects represented in the sysfs filesystem are established
by means of symbolic links: the sysfs_create_link() function creates a symbolic link
for a given kobject in a directory associated with another kobject.

Components of the Device Driver Model
The device driver model is built upon a handful of basic data structures, which repre-
sent buses, devices, device drivers, etc. Let us examine them.

Devices

Each device in the device driver model is represented by a device object, whose fields
are shown in Table 13-4.

Table 13-4. The fields of the device object

Type Field Description

struct list_head node Pointers for the list of sibling devices

struct list_head bus_list Pointers for the list of devices on the same bus
type

struct list_head driver_list Pointers for the driver’s list of devices

struct list_head children Head of the list of children devices

struct device * parent Pointer to the parent device

struct kobject kobj Embedded kobject

char [] bus_id Device position on the hosting bus

struct bus_type * bus Pointer to the hosting bus

struct device_driver
*

driver Pointer to the controlling device driver

void * driver_data Pointer to private data for the driver

void * platform_data Pointer to private data for legacy device drivers

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

532 | Chapter 13: I/O Architecture and Device Drivers

The device objects are globally collected in the devices_subsys subsystem, which is
associated with the /sys/devices directory (see the earlier section “Kobjects”). The
devices are organized hierarchically: a device is the “parent” of some “children”
devices if the children devices cannot work properly without the parent device. For
instance, in a PCI-based computer, a bridge between the PCI bus and the USB bus is
the parent device of every device hosted on the USB bus. The parent field of the
device object points to the descriptor of the parent device, the children field is the
head of the list of children devices, and the node field stores the pointers to the adja-
cent elements in the children list. The parenthood relationships between the kob-
jects embedded in the device objects reflect also the device hierarchy; thus, the
structure of the directories below /sys/devices matches the physical organization of
the hardware devices.

Each driver keeps a list of device objects including all managed devices; the driver_
list field of the device object stores the pointers to the adjacent elements, while the
driver field points to the descriptor of the device driver. For each bus type, more-
over, there is a list including all devices that are hosted on the buses of the given
type; the bus_list field of the device object stores the pointers to the adjacent ele-
ments, while the bus field points to the bus type descriptor.

A reference counter keeps track of the usage of the device object; it is included in the
kobj kobject embedded in the descriptor. The counter is increased by invoking get_
device(), and it is decreased by invoking put_device().

The device_register() function inserts a new device object in the device driver
model, and automatically creates a new directory for it under /sys/devices. Conversely,
the device_unregister() function removes a device from the device driver model.

Usually, the device object is statically embedded in a larger descriptor. For instance,
PCI devices are described by pci_dev data structures; the dev field of this structure is

struct dev_pm_info power Power management information

unsigned long detach_state Power state to be entered when unloading the
device driver

unsigned long long * dma_mask Pointer to the DMA mask of the device (see the
later section “Direct Memory Access (DMA)”)

unsigned long long coherent_dma_mask Mask for coherent DMA of the device

struct list_head dma_pools Head of a list of aggregate DMA buffers

struct
dma_coherent_mem *

dma_mem Pointer to a descriptor of the coherent DMA
memory used by the device (see the later sec-
tion “Direct Memory Access (DMA)”)

void (*)(struct
 device *)

release Callback function for releasing the device
descriptor

Table 13-4. The fields of the device object (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Device Driver Model | 533

a device object, while the other fields are specific to the PCI bus. The device_
register() and device_unregister() functions are executed when the device is being
registered or de-registered in the PCI kernel layer.

Drivers

Each driver in the device driver model is described by a device_driver object, whose
fields are listed in Table 13-5.

The device_driver object includes four methods for handling hot-plugging, plug and
play, and power management. The probe method is invoked whenever a bus device
driver discovers a device that could possibly be handled by the driver; the corre-
sponding function should probe the hardware to perform further checks on the
device. The remove method is invoked on a hot-pluggable device whenever it is
removed; it is also invoked on every device handled by the driver when the driver
itself is unloaded. The shutdown, suspend, and resume methods are invoked on a
device when the kernel must change its power state.

The reference counter included in the kobj kobject embedded in the descriptor keeps
track of the usage of the device_driver object. The counter is increased by invoking
get_driver(), and it is decreased by invoking put_driver().

Table 13-5. The fields of the device_driver object

Type Field Description

char * name Name of the device driver

struct bus_type * bus Pointer to descriptor of the bus that hosts the sup-
ported devices

struct semaphore unload_sem Semaphore to forbid device driver unloading; it is
released when the reference counter reaches zero

struct kobject kobj Embedded kobject

struct list_head devices Head of the list including all devices supported by
the driver

struct module * owner Identifies the module that implements the device
driver, if any (see Appendix B)

int (*)(struct device *) probe Method for probing a device (checking that it can be
handled by the device driver)

int (*)(struct device *) remove Method invoked on a device when it is removed

void (*)(struct device *) shutdown Method invoked on a device when it is powered off
(shut down)

int (*)(struct device *,
unsigned long, unsigned long)

suspend Method invoked on a device when it is put in low-
power state

int (*)(struct device *,
unsigned long)

resume Method invoked on a device when it is put back in
the normal state (full power)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

534 | Chapter 13: I/O Architecture and Device Drivers

The driver_register() function inserts a new device_driver object in the device
driver model, and automatically creates a new directory for it in the sysfs filesystem.
Conversely, the driver_unregister() function removes a driver from the device
driver model.

Usually, the device_driver object is statically embedded in a larger descriptor. For
instance, PCI device drivers are described by pci_driver data structures; the driver
field of this structure is a device_driver object, while the other fields are specific to
the PCI bus.

Buses

Each bus type supported by the kernel is described by a bus_type object, whose fields
are listed in Table 13-6.

Each bus_type object includes an embedded subsystem; the subsystem stored in the
bus_subsys variable collects all subsystems embedded in the bus_type objects. The
bus_subsys subsystem is associated with the /sys/bus directory; thus, for example,
there exists a /sys/bus/pci directory associated with the PCI bus type. The per-bus
subsystem typically includes only two ksets named drivers and devices (correspond-
ing to the drivers and devices fields of the bus_type object, respectively).

Table 13-6. The fields of the bus_type object

Type Field Description

char * name Name of the bus type

struct subsystem subsys Kobject subsystem associated with this bus type

struct kset drivers The set of kobjects of the drivers

struct kset devices The set of kobjects of the devices

struct bus_attribute * bus_attrs Pointer to the object including the bus attributes
and the methods for exporting them to the sysfs
filesystem

struct device_attribute * dev_attrs Pointer to the object including the device attributes
and the methods for exporting them to the sysfs
filesystem

struct driver_attribute * drv_attrs Pointer to the object including the device driver
attributes and the methods for exporting them to
the sysfs filesystem

int (*)(struct device *, struct
device_driver *)

match Method for checking whether a given driver sup-
ports a given device

int (*)(struct device *, char **,
int, char *, int)

hotplug Method invoked when a device is being registered

int (*)(struct device *,
unsigned long)

suspend Method for saving the hardware context state and
changing the power level of a device

int (*)(struct device *) resume Method for changing the power level and restoring
the hardware context of a device

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Device Driver Model | 535

The drivers kset contains the device_driver descriptors of all device drivers pertain-
ing to the bus type, while the devices kset contains the device descriptors of all
devices of the given bus type. Because the directories of the devices’ kobjects already
appear in the sysfs filesystem under /sys/devices, the devices directory of the per-bus
subsystem stores symbolic links pointing to directories under /sys/devices. The bus_
for_each_drv() and bus_for_each_dev() functions iterate over the elements of the
lists of drivers and devices, respectively.

The match method is executed when the kernel must check whether a given device
can be handled by a given driver. Even if each device’s identifier has a format spe-
cific to the bus that hosts the device, the function that implements the method is
usually simple, because it searches the device’s identifier in the driver’s table of sup-
ported identifiers. The hotplug method is executed when a device is being registered
in the device driver model; the implementing function should add bus-specific infor-
mation to be passed as environment variables to a User Mode program that is noti-
fied about the new available device (see the later section “Device Driver
Registration”). Finally, the suspend and resume methods are executed when a device
on a bus of the given type must change its power state.

Classes

Each class is described by a class object. All class objects belong to the class_subsys
subsystem associated with the /sys/class directory. Each class object, moreover,
includes an embedded subsystem; thus, for example, there exists a /sys/class/input
directory associated with the input class of the device driver model.

Each class object includes a list of class_device descriptors, each of which repre-
sents a single logical device belonging to the class. The class_device structure
includes a dev field that points to a device descriptor, thus a logical device always
refers to a given device in the device driver model. However, there can be several
class_device descriptors that refer to the same device. In fact, a hardware device
might include several different sub-devices, each of which requires a different User
Mode interface. For example, the sound card is a hardware device that usually
includes a DSP, a mixer, a game port interface, and so on; each sub-device requires
its own User Mode interface, thus it is associated with its own directory in the sysfs
filesystem.

Device drivers in the same class are expected to offer the same functionalities to the
User Mode applications; for instance, all device drivers of sound cards should offer a
way to write sound samples to the DSP.

The classes of the device driver model are essentially aimed to provide a standard
method for exporting to User Mode applications the interfaces of the logical devices.
Each class_device descriptor embeds a kobject having an attribute (special file)
named dev. Such attribute stores the major and minor numbers of the device file that
is needed to access to the corresponding logical device (see the next section).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

536 | Chapter 13: I/O Architecture and Device Drivers

Device Files
As mentioned in Chapter 1, Unix-like operating systems are based on the notion of a
file, which is just an information container structured as a sequence of bytes. Accord-
ing to this approach, I/O devices are treated as special files called device files; thus,
the same system calls used to interact with regular files on disk can be used to directly
interact with I/O devices. For example, the same write() system call may be used to
write data into a regular file or to send it to a printer by writing to the /dev/lp0 device
file.

According to the characteristics of the underlying device drivers, device files can be
of two types: block or character. The difference between the two classes of hardware
devices is not so clear-cut. At least we can assume the following:

• The data of a block device can be addressed randomly, and the time needed to
transfer a data block is small and roughly the same, at least from the point of
view of the human user. Typical examples of block devices are hard disks, floppy
disks, CD-ROM drives, and DVD players.

• The data of a character device either cannot be addressed randomly (consider,
for instance, a sound card), or they can be addressed randomly, but the time
required to access a random datum largely depends on its position inside the
device (consider, for instance, a magnetic tape driver).

Network cards are a notable exception to this schema, because they are hardware
devices that are not directly associated with device files.

Device files have been in use since the early versions of the Unix operating system. A
device file is usually a real file stored in a filesystem. Its inode, however, doesn’t need
to include pointers to blocks of data on the disk (the file’s data) because there are
none. Instead, the inode must include an identifier of the hardware device corre-
sponding to the character or block device file.

Traditionally, this identifier consists of the type of device file (character or block) and
a pair of numbers. The first number, called the major number, identifies the device
type. Traditionally, all device files that have the same major number and the same
type share the same set of file operations, because they are handled by the same
device driver. The second number, called the minor number, identifies a specific
device among a group of devices that share the same major number. For instance, a
group of disks managed by the same disk controller have the same major number
and different minor numbers.

The mknod() system call is used to create device files. It receives the name of the
device file, its type, and the major and minor numbers as its parameters. Device files
are usually included in the /dev directory. Table 13-7 illustrates the attributes of
some device files. Notice that character and block devices have independent number-
ing, so block device (3,0) is different from character device (3,0).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Device Files | 537

Usually, a device file is associated with a hardware device (such as a hard disk—for
instance, /dev/hda) or with some physical or logical portion of a hardware device
(such as a disk partition—for instance, /dev/hda2). In some cases, however, a device
file is not associated with any real hardware device, but represents a fictitious logical
device. For instance, /dev/null is a device file corresponding to a “black hole;” all data
written into it is simply discarded, and the file always appears empty.

As far as the kernel is concerned, the name of the device file is irrelevant. If you cre-
ate a device file named /tmp/disk of type “block” with the major number 3 and minor
number 0, it would be equivalent to the /dev/hda device file shown in the table. On
the other hand, device filenames may be significant for some application programs.
For example, a communication program might assume that the first serial port is
associated with the /dev/ttyS0 device file. But most application programs can be con-
figured to interact with arbitrarily named device files.

User Mode Handling of Device Files
In traditional Unix systems (and in earlier versions of Linux), the major and minor
numbers of the device files are 8 bits long. Thus, there could be at most 65,536 block
device files and 65,536 character device files. You might expect they will suffice, but
unfortunately they don’t.

The real problem is that device files are traditionally allocated once and forever in the
/dev directory; therefore, each logical device in the system should have an associated
device file with a well-defined device number. The official registry of allocated device
numbers and /dev directory nodes is stored in the Documentation/devices.txt file; the
macros corresponding to the major numbers of the devices may also be found in the
include/linux/major.h file.

Table 13-7. Examples of device files

Name Type Major Minor Description

/dev/fd0 block 2 0 Floppy disk

/dev/hda block 3 0 First IDE disk

/dev/hda2 block 3 2 Second primary partition of first IDE disk

/dev/hdb block 3 64 Second IDE disk

/dev/hdb3 block 3 67 Third primary partition of second IDE disk

/dev/ttyp0 char 3 0 Terminal

/dev/console char 5 1 Console

/dev/lp1 char 6 1 Parallel printer

/dev/ttyS0 char 4 64 First serial port

/dev/rtc char 10 135 Real-time clock

/dev/null char 1 3 Null device (black hole)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

538 | Chapter 13: I/O Architecture and Device Drivers

Unfortunately, the number of different hardware devices is so large nowadays that
almost all device numbers have already been allocated. The official registry of device
numbers works well for the average Linux system; however, it may not be well suited
for large-scale systems. Furthermore, high-end systems may use hundreds or thou-
sands of disks of the same type, and an 8-bit minor number is not sufficient. For
instance, the registry reserves device numbers for 16 SCSI disks having 15 partitions
each; if a high-end system has more than 16 SCSI disks, the standard assignment of
major and minor numbers has to be changed—a non trivial task that requires modi-
fying the kernel source code and makes the system hard to maintain.

In order to solve this kind of problem, the size of the device numbers has been
increased in Linux 2.6: the major number is now encoded in 12 bits, while the minor
number is encoded in 20 bits. Both numbers are usually kept in a single 32-bit vari-
able of type dev_t; the MAJOR and MINOR macros extract the major and minor num-
bers, respectively, from a dev_t value, while the MKDEV macro encodes the two device
numbers in a dev_t value. For backward compatibility, the kernel handles properly
old device files encoded with 16-bit device numbers.

The additional available device numbers are not being statically allocated in the offi-
cial registry, because they should be used only when dealing with unusual demands
for device numbers. Actually, today’s preferred way to deal with device files is highly
dynamic, both in the device number assignment and in the device file creation.

Dynamic device number assignment

Each device driver specifies in the registration phase the range of device numbers
that it is going to handle (see the later section “Device Driver Registration”). The
driver can, however, require the allocation of an interval of device numbers without
specifying the exact values: in this case, the kernel allocates a suitable range of num-
bers and assigns them to the driver.

Therefore, device drivers of new hardware devices no longer require an assignment in
the official registry of device numbers; they can simply use whatever numbers are
currently available in the system.

In this case, however, the device file cannot be created once and forever; it must be
created right after the device driver initialization with the proper major and minor
numbers. Thus, there must be a standard way to export the device numbers used by
each driver to the User Mode applications. As we have seen in the earlier section
“Components of the Device Driver Model,” the device driver model provides an ele-
gant solution: the major and minor numbers are stored in the dev attributes con-
tained in the subdirectories of /sys/class.

Dynamic device file creation

The Linux kernel can create the device files dynamically: there is no need to fill the /dev
directory with the device files of every conceivable hardware device, because the device

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Device Files | 539

files can be created “on demand.” Thanks to the device driver model, the kernel 2.6
offers a very simple way to do so. A set of User Mode programs, collectively known as
the udev toolset, must be installed in the system. At the system startup the /dev direc-
tory is emptied, then a udev program scans the subdirectories of /sys/class looking for
the dev files. For each such file, which represents a combination of major and minor
number for a logical device supported by the kernel, the program creates a correspond-
ing device file in /dev. It also assigns device filenames and creates symbolic links
according to a configuration file, in such a way to resemble the traditional naming
scheme for Unix device files. Eventually, /dev is filled with the device files of all devices
supported by the kernel on this system, and nothing else.

Often a device file is created after the system has been initialized. This happens either
when a module containing a device driver for a still unsupported device is loaded, or
when a hot-pluggable device—such as a USB peripheral—is plugged in the system.
The udev toolset can automatically create the corresponding device file, because the
device driver model supports device hotplugging. Whenever a new device is discov-
ered, the kernel spawns a new process that executes the User Mode /sbin/hotplug
shell script,* passing to it any useful information on the discovered device as environ-
ment variables. The User Mode scripts usually reads a configuration file and takes
care of any operation required to complete the initialization of the new device. If
udev is installed, the script also creates the proper device file in the /dev directory.

VFS Handling of Device Files
Device files live in the system directory tree but are intrinsically different from regu-
lar files and directories. When a process accesses a regular file, it is accessing some
data blocks in a disk partition through a filesystem; when a process accesses a device
file, it is just driving a hardware device. For instance, a process might access a device
file to read the room temperature from a digital thermometer connected to the com-
puter. It is the VFS’s responsibility to hide the differences between device files and
regular files from application programs.

To do this, the VFS changes the default file operations of a device file when it is
opened; as a result, each system call on the device file is translated to an invocation
of a device-related function instead of the corresponding function of the hosting file-
system. The device-related function acts on the hardware device to perform the oper-
ation requested by the process.†

Let’s suppose that a process executes an open() system call on a device file (either of
type block or character). The operations performed by the system call have already

* The pathname of the User Mode program invoked on hot-plugging events can be changed by writing into
the /proc/sys/kernel/hotplug file.

† Notice that, thanks to the name-resolving mechanism explained in the section “Pathname Lookup” in
Chapter 12, symbolic links to device files work just like device files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

540 | Chapter 13: I/O Architecture and Device Drivers

been described in the section “The open() System Call” in Chapter 12. Essentially,
the corresponding service routine resolves the pathname to the device file and sets up
the corresponding inode object, dentry object, and file object.

The inode object is initialized by reading the corresponding inode on disk through a
suitable function of the filesystem (usually ext2_read_inode() or ext3_read_inode();
see Chapter 18). When this function determines that the disk inode is relative to a
device file, it invokes init_special_inode(), which initializes the i_rdev field of the
inode object to the major and minor numbers of the device file, and sets the i_fop
field of the inode object to the address of either the def_blk_fops or the def_chr_fops
file operation table, according to the type of device file. The service routine of the
open() system call also invokes the dentry_open() function, which allocates a new
file object and sets its f_op field to the address stored in i_fop—that is, to the address
of def_blk_fops or def_chr_fops once again. Thanks to these two tables, every sys-
tem call issued on a device file will activate a device driver’s function rather than a
function of the underlying filesystem.

Device Drivers
A device driver is the set of kernel routines that makes a hardware device respond to the
programming interface defined by the canonical set of VFS functions (open, read,
lseek, ioctl, and so forth) that control a device. The actual implementation of all these
functions is delegated to the device driver. Because each device has a different I/O con-
troller, and thus different commands and different state information, most I/O devices
have their own drivers.

There are many types of device drivers. They mainly differ in the level of support that
they offer to the User Mode applications, as well as in their buffering strategies for
the data collected from the hardware devices. Because these choices greatly influ-
ence the internal structure of a device driver, we discuss them in the sections “Direct
Memory Access (DMA)” and “Buffering Strategies for Character Devices.”

A device driver does not consist only of the functions that implement the device file
operations. Before using a device driver, several activities must have taken place.
We’ll examine them in the following sections.

Device Driver Registration
We know that each system call issued on a device file is translated by the kernel into
an invocation of a suitable function of a corresponding device driver. To achieve this,
a device driver must register itself. In other words, registering a device driver means
allocating a new device_driver descriptor, inserting it in the data structures of the
device driver model (see the earlier section “Components of the Device Driver
Model”), and linking it to the corresponding device file(s). Accesses to device files

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Device Drivers | 541

whose corresponding drivers have not been previously registered return the error
code -ENODEV.

If a device driver is statically compiled in the kernel, its registration is performed dur-
ing the kernel initialization phase. Conversely, if a device driver is compiled as a ker-
nel module (see Appendix B), its registration is performed when the module is
loaded. In the latter case, the device driver can also unregister itself when the mod-
ule is unloaded.

Let us consider, for instance, a generic PCI device. To properly handle it, its device
driver must allocate a descriptor of type pci_driver, which is used by the PCI kernel
layer to handle the device. After having initialized some fields of this descriptor, the
device driver invokes the pci_register_driver() function. Actually, the pci_driver
descriptor includes an embedded device_driver descriptor (see the earlier section
“Components of the Device Driver Model”); the pci_register_function() simply ini-
tializes the fields of the embedded driver descriptor and invokes driver_register()
to insert the driver in the data structures of the device driver model.

When a device driver is being registered, the kernel looks for unsupported hardware
devices that could be possibly handled by the driver. To do this, it relies on the match
method of the relevant bus_type bus type descriptor, and on the probe method of the
device_driver object. If a hardware device that can be handled by the driver is dis-
covered, the kernel allocates a device object and invokes device_register() to insert
the device in the device driver model.

Device Driver Initialization
Registering a device driver and initializing it are two different things. A device driver
is registered as soon as possible, so User Mode applications can use it through the
corresponding device files. In contrast, a device driver is initialized at the last possi-
ble moment. In fact, initializing a driver means allocating precious resources of the
system, which are therefore not available to other drivers.

We already have seen an example in the section “I/O Interrupt Handling” in
Chapter 4: the assignment of IRQs to devices is usually made dynamically, right
before using them, because several devices may share the same IRQ line. Other
resources that can be allocated at the last possible moment are page frames for DMA
transfer buffers and the DMA channel itself (for old non-PCI devices such as the
floppy disk driver).

To make sure the resources are obtained when needed but are not requested in a
redundant manner when they have already been granted, device drivers usually
adopt the following schema:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

542 | Chapter 13: I/O Architecture and Device Drivers

• A usage counter keeps track of the number of processes that are currently access-
ing the device file. The counter is increased in the open method of the device file
and decreased in the release method.*

• The open method checks the value of the usage counter before the increment. If
the counter is zero, the device driver must allocate the resources and enable
interrupts and DMA on the hardware device.

• The release method checks the value of the usage counter after the decrement.
If the counter is zero, no more processes are using the hardware device. If so, the
method disables interrupts and DMA on the I/O controller, and then releases
the allocated resources.

Monitoring I/O Operations
The duration of an I/O operation is often unpredictable. It can depend on mechani-
cal considerations (the current position of a disk head with respect to the block to be
transferred), on truly random events (when a data packet arrives on the network
card), or on human factors (when a user presses a key on the keyboard or when she
notices that a paper jam occurred in the printer). In any case, the device driver that
started an I/O operation must rely on a monitoring technique that signals either the
termination of the I/O operation or a time-out.

In the case of a terminated operation, the device driver reads the status register of the
I/O interface to determine whether the I/O operation was carried out successfully. In
the case of a time-out, the driver knows that something went wrong, because the
maximum time interval allowed to complete the operation elapsed and nothing hap-
pened.

The two techniques available to monitor the end of an I/O operation are called the
polling mode and the interrupt mode.

Polling mode

According to this technique, the CPU checks (polls) the device’s status register
repeatedly until its value signals that the I/O operation has been completed. We have
already encountered a technique based on polling in the section “Spin Locks” in
Chapter 5: when a processor tries to acquire a busy spin lock, it repeatedly polls the
variable until its value becomes 0. However, polling applied to I/O operations is usu-
ally more elaborate, because the driver must also remember to check for possible
time-outs. A simple example of polling looks like the following:

for (;;) {
 if (read_status(device) & DEVICE_END_OPERATION) break;

* More precisely, the usage counter keeps track of the number of file objects referring to the device file, because
clone processes could share the same file object.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Device Drivers | 543

 if (--count == 0) break;
}

The count variable, which was initialized before entering the loop, is decreased at
each iteration, and thus can be used to implement a rough time-out mechanism.
Alternatively, a more precise time-out mechanism could be implemented by reading
the value of the tick counter jiffies at each iteration (see the section “Updating the
Time and Date” in Chapter 6) and comparing it with the old value read before start-
ing the wait loop.

If the time required to complete the I/O operation is relatively high, say in the order
of milliseconds, this schema becomes inefficient because the CPU wastes precious
machine cycles while waiting for the I/O operation to complete. In such cases, it is
preferable to voluntarily relinquish the CPU after each polling operation by inserting
an invocation of the schedule() function inside the loop.

Interrupt mode

Interrupt mode can be used only if the I/O controller is capable of signaling, via an
IRQ line, the end of an I/O operation.

We’ll show how interrupt mode works on a simple case. Let’s suppose we want to
implement a driver for a simple input character device. When the user issues a read()
system call on the corresponding device file, an input command is sent to the
device’s control register. After an unpredictably long time interval, the device puts a
single byte of data in its input register. The device driver then returns this byte as the
result of the read() system call.

This is a typical case in which it is preferable to implement the driver using the inter-
rupt mode. Essentially, the driver includes two functions:

1. The foo_read() function that implements the read method of the file object.

2. The foo_interrupt() function that handles the interrupt.

The foo_read() function is triggered whenever the user reads the device file:

ssize_t foo_read(struct file *filp, char *buf, size_t count,
 loff_t *ppos)
{
 foo_dev_t * foo_dev = filp->private_data;
 if (down_interruptible(&foo_dev->sem)
 return -ERESTARTSYS;
 foo_dev->intr = 0;
 outb(DEV_FOO_READ, DEV_FOO_CONTROL_PORT);
 wait_event_interruptible(foo_dev->wait, (foo_dev->intr= =1));
 if (put_user(foo_dev->data, buf))
 return -EFAULT;
 up(&foo_dev->sem);
 return 1;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 13: I/O Architecture and Device Drivers

The device driver relies on a custom descriptor of type foo_dev_t; it includes a sema-
phore sem that protects the hardware device from concurrent accesses, a wait queue
wait, a flag intr that is set when the device issues an interrupt, and a single-byte
buffer data that is written by the interrupt handler and read by the read method. In
general, all I/O drivers that use interrupts rely on data structures accessed by both
the interrupt handler and the read and write methods. The address of the foo_dev_t
descriptor is usually stored in the private_data field of the device file’s file object or
in a global variable.

The main operations of the foo_read() function are the following:

1. Acquires the foo_dev->sem semaphore, thus ensuring that no other process is
accessing the device.

2. Clears the intr flag.

3. Issues the read command to the I/O device.

4. Executes wait_event_interruptible to suspend the process until the intr flag
becomes 1. This macro is described in the section “Wait queues” in Chapter 3.

After some time, our device issues an interrupt to signal that the I/O operation is
completed and that the data is ready in the proper DEV_FOO_DATA_PORT data port. The
interrupt handler sets the intr flag and wakes the process. When the scheduler
decides to reexecute the process, the second part of foo_read() is executed and does
the following:

1. Copies the character ready in the foo_dev->data variable into the user address
space.

2. Terminates after releasing the foo_dev->sem semaphore.

For simplicity, we didn’t include any time-out control. In general, time-out control is
implemented through static or dynamic timers (see Chapter 6); the timer must be set
to the right time before starting the I/O operation and removed when the operation
terminates.

Let’s now look at the code of the foo_interrupt() function:

irqreturn_t foo_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
 foo->data = inb(DEV_FOO_DATA_PORT);
 foo->intr = 1;
 wake_up_interruptible(&foo->wait);
 return 1;
}

The interrupt handler reads the character from the input register of the device and
stores it in the data field of the foo_dev_t descriptor of the device driver pointed to by
the foo global variable. It then sets the intr flag and invokes wake_up_interruptible()
to wake the process blocked in the foo->wait wait queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Device Drivers | 545

Notice that none of the three parameters are used by our interrupt handler. This is a
rather common case.

Accessing the I/O Shared Memory
Depending on the device and on the bus type, I/O shared memory in the PC’s archi-
tecture may be mapped within different physical address ranges. Typically:

For most devices connected to the ISA bus
The I/O shared memory is usually mapped into the 16-bit physical addresses
ranging from 0xa0000 to 0xfffff; this gives rise to the “hole” between 640 KB
and 1 MB mentioned in the section “Physical Memory Layout” in Chapter 2.

For devices connected to the PCI bus
The I/O shared memory is mapped into 32-bit physical addresses near the 4 GB
boundary. This kind of device is much simpler to handle.

A few years ago, Intel introduced the Accelerated Graphics Port (AGP) standard,
which is an enhancement of PCI for high-performance graphic cards. Beside having
its own I/O shared memory, this kind of card is capable of directly addressing por-
tions of the motherboard’s RAM by means of a special hardware circuit named
Graphics Address Remapping Table (GART). The GART circuitry enables AGP cards
to sustain much higher data transfer rates than older PCI cards. From the kernel’s
point of view, however, it doesn’t really matter where the physical memory is
located, and GART-mapped memory is handled like the other kinds of I/O shared
memory.

How does a device driver access an I/O shared memory location? Let’s start with the
PC’s architecture, which is relatively simple to handle, and then extend the discus-
sion to other architectures.

Remember that kernel programs act on linear addresses, so the I/O shared memory
locations must be expressed as addresses greater than PAGE_OFFSET. In the following
discussion, we assume that PAGE_OFFSET is equal to 0xc0000000—that is, that the ker-
nel linear addresses are in the fourth gigabyte.

Device drivers must translate I/O physical addresses of I/O shared memory locations
into linear addresses in kernel space. In the PC architecture, this can be achieved
simply by ORing the 32-bit physical address with the 0xc0000000 constant. For
instance, suppose the kernel needs to store the value in the I/O location at physical
address 0x000b0fe4 in t1 and the value in the I/O location at physical address
0xfc000000 in t2 . One might think that the following statements could do the job:

t1 = *((unsigned char *)(0xc00b0fe4));
t2 = *((unsigned char *)(0xfc000000));

During the initialization phase, the kernel maps the available RAM’s physical
addresses into the initial portion of the fourth gigabyte of the linear address space.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 13: I/O Architecture and Device Drivers

Therefore, the Paging Unit maps the 0xc00b0fe4 linear address appearing in the first
statement back to the original I/O physical address 0x000b0fe4, which falls inside the
“ISA hole” between 640 KB and 1 MB (see the section “Paging in Linux” in
Chapter 2). This works fine.

There is a problem, however, for the second statement, because the I/O physical
address is greater than the last physical address of the system RAM. Therefore, the
0xfc000000 linear address does not correspond to the 0xfc000000 physical address. In
such cases, the kernel Page Tables must be modified to include a linear address that
maps the I/O physical address. This can be done by invoking the ioremap() or
ioremap_nocache() functions. The first function, which is similar to vmalloc(),
invokes get_vm_area() to create a new vm_struct descriptor (see the section “Descrip-
tors of Noncontiguous Memory Areas” in Chapter 8) for a linear address interval that
has the size of the required I/O shared memory area. The functions then update the
corresponding Page Table entries of the canonical kernel Page Tables appropriately.
The ioremap_nocache() function differs from ioremap() in that it also disables the
hardware cache when referencing the remapped linear addresses properly.

The correct form for the second statement might therefore look like:

io_mem = ioremap(0xfb000000, 0x200000);
t2 = *((unsigned char *)(io_mem + 0x100000));

The first statement creates a new 2 MB linear address interval, which maps physical
addresses starting from 0xfb000000; the second one reads the memory location that
has the 0xfc000000 address. To remove the mapping later, the device driver must use
the iounmap() function.

On some architectures other than the PC, I/O shared memory cannot be accessed by
simply dereferencing the linear address pointing to the physical memory location.
Therefore, Linux defines the following architecture-dependent functions, which
should be used when accessing I/O shared memory:

readb(), readw(), readl()
Reads 1, 2, or 4 bytes, respectively, from an I/O shared memory location

writeb(), writew(), writel()
Writes 1, 2, or 4 bytes, respectively, into an I/O shared memory location

memcpy_fromio(), memcpy_toio()
Copies a block of data from an I/O shared memory location to dynamic mem-
ory and vice versa

memset_io()
Fills an I/O shared memory area with a fixed value

The recommended way to access the 0xfc000000 I/O location is thus:

io_mem = ioremap(0xfb000000, 0x200000);
t2 = readb(io_mem + 0x100000);

Thanks to these functions, all dependencies on platform-specific ways of accessing
the I/O shared memory can be hidden.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Device Drivers | 547

Direct Memory Access (DMA)
In the original PC architecture, the CPU is the only bus master of the system, that is,
the only hardware device that drives the address/data bus in order to fetch and store
values in the RAM’s locations. With more modern bus architectures such as PCI,
each peripheral can act as bus master, if provided with the proper circuitry. Thus,
nowadays all PCs include auxiliary DMA circuits, which can transfer data between
the RAM and an I/O device. Once activated by the CPU, the DMA is able to con-
tinue the data transfer on its own; when the data transfer is completed, the DMA
issues an interrupt request. The conflicts that occur when CPUs and DMA circuits
need to access the same memory location at the same time are resolved by a hard-
ware circuit called a memory arbiter (see the section “Atomic Operations” in
Chapter 5).

The DMA is mostly used by disk drivers and other devices that transfer a large num-
ber of bytes at once. Because setup time for the DMA is relatively high, it is more effi-
cient to directly use the CPU for the data transfer when the number of bytes is small.

The first DMA circuits for the old ISA buses were complex, hard to program, and
limited to the lower 16 MB of physical memory. More recent DMA circuits for the
PCI and SCSI buses rely on dedicated hardware circuits in the buses and make life
easier for device driver developers.

Synchronous and asynchronous DMA

A device driver can use the DMA in two different ways called synchronous DMA and
asynchronous DMA. In the first case, the data transfers are triggered by processes; in
the second case the data transfers are triggered by hardware devices.

An example of synchronous DMA is a sound card that is playing a sound track. A
User Mode application writes the sound data (called samples) on a device file associ-
ated with the digital signal processor (DSP) of the sound card. The device driver of
the sound card accumulates these samples in a kernel buffer. At the same time, the
device driver instructs the sound card to copy the samples from the kernel buffer to
the DSP with a well-defined timing. When the sound card finishes the data transfer,
it raises an interrupt, and the device driver checks whether the kernel buffer still con-
tains samples yet to be played; if so, the driver activates another DMA data transfer.

An example of asynchronous DMA is a network card that is receiving a frame (data
packet) from a LAN. The peripheral stores the frame in its I/O shared memory, then
raises an interrupt. The device driver of the network card acknowledges the inter-
rupt, then instructs the peripheral to copy the frame from the I/O shared memory
into a kernel buffer. When the data transfer completes, the network card raises
another interrupt, and the device driver notifies the upper kernel layer about the new
frame.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 13: I/O Architecture and Device Drivers

Helper functions for DMA transfers

When designing a driver for a device that makes use of DMA, the developer should
write code that is both architecture-independent and, as far as DMA is concerned,
bus-independent. This goal is now feasible thanks to the rich set of DMA helper
functions provided by the kernel. These helper functions hide the differences in the
DMA mechanisms of the various hardware architectures.

There are two subsets of DMA helper functions: an older subset provides architec-
ture-independent functions for PCI devices; a more recent subset ensures both bus
and architecture independence. We’ll now examine some of these functions while
pointing out some hardware peculiarities of DMAs.

Bus addresses

Every DMA transfer involves (at least) one memory buffer, which contains the data
to be read or written by the hardware device. In general, before activating the trans-
fer, the device driver must ensure that the DMA circuit can directly access the RAM
locations.

Until now we have distinguished three kinds of memory addresses: logical and linear
addresses, which are used internally by the CPU, and physical addresses, which are
the memory addresses used by the CPU to physically drive the data bus. However,
there is a fourth kind of memory address: the so-called bus address. It corresponds to
the memory addresses used by all hardware devices except the CPU to drive the data
bus.

Why should the kernel be concerned at all about bus addresses? Well, in a DMA
operation, the data transfer takes place without CPU intervention; the data bus is
driven directly by the I/O device and the DMA circuit. Therefore, when the kernel
sets up a DMA operation, it must write the bus address of the memory buffer
involved in the proper I/O ports of the DMA or I/O device.

In the 80 × 86 architecture, bus addresses coincide with physical addresses. How-
ever, other architectures such as Sun’s SPARC and Hewlett-Packard’s Alpha include
a hardware circuit called the I/O Memory Management Unit (IO-MMU), analog to
the paging unit of the microprocessor, which maps physical addresses into bus
addresses. All I/O drivers that make use of DMAs must set up properly the IO-MMU
before starting the data transfer.

Different buses have different bus address sizes. For instance, bus addresses for ISA are
24-bits long, thus in the 80 × 86 architecture DMA transfers can be done only on the
lower 16 MB of physical memory—that’s why the memory for the buffer used by such
DMA has to be allocated in the ZONE_DMA memory zone with the GFP_DMA flag. The orig-
inal PCI standard defines bus addresses of 32 bits; however, some PCI hardware
devices have been originally designed for the ISA bus, thus they still cannot access
RAM locations above physical address 0x00ffffff. The recent PCI-X standard uses
64-bit bus addresses and allows DMA circuits to address directly the high memory.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Device Drivers | 549

In Linux, the dma_addr_t type represents a generic bus address. In the 80 × 86 archi-
tecture dma_addr_t corresponds to a 32-bit integer, unless the kernel supports PAE
(see the section “The Physical Address Extension (PAE) Paging Mechanism” in
Chapter 2), in which case dma_addr_t corresponds to a 64-bit integer.

The pci_set_dma_mask() and dma_set_mask() helper functions check whether the bus
accepts a given size for the bus addresses (mask) and, if so, notify the bus layer that
the given peripheral will use that size for its bus addresses.

Cache coherency

The system architecture does not necessarily offer a coherency protocol between the
hardware cache and the DMA circuits at the hardware level, so the DMA helper
functions must take into consideration the hardware cache when implementing
DMA mapping operations. To see why, suppose that the device driver fills the mem-
ory buffer with some data, then immediately instructs the hardware device to read
that data with a DMA transfer. If the DMA accesses the physical RAM locations but
the corresponding hardware cache lines have not yet been written to RAM, then the
hardware device fetches the old values of the memory buffer.

Device driver developers may handle DMA buffers in two different ways by making
use of two different classes of helper functions. Using Linux terminology, the devel-
oper chooses between two different DMA mapping types:

Coherent DMA mapping
When using this mapping, the kernel ensures that there will be no cache coher-
ency problems between the memory and the hardware device; this means that
every write operation performed by the CPU on a RAM location is immediately
visible to the hardware device, and vice versa. This type of mapping is also called
“synchronous” or “consistent.”

Streaming DMA mapping
When using this mapping, the device driver must take care of cache coherency
problems by using the proper synchronization helper functions. This type of
mapping is also called “asynchronous” or “non-coherent.”

In the 80 × 86 architecture there are never cache coherency problems when using the
DMA, because the hardware devices themselves take care of “snooping” the accesses
to the hardware caches. Therefore, a driver for a hardware device designed specifi-
cally for the 80 × 86 architecture may choose either one of the two DMA mapping
types: they are essentially equivalent. On the other hand, in many architectures—
such as MIPS, SPARC, and some models of PowerPC—hardware devices do not
always snoop in the hardware caches, so cache coherency problems arise. In general,
choosing the proper DMA mapping type for an architecture-independent driver is
not trivial.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 13: I/O Architecture and Device Drivers

As a general rule, if the buffer is accessed in unpredictable ways by the CPU and the
DMA processor, coherent DMA mapping is mandatory (for instance, buffers for
SCSI adapters’ command data structures). In other cases, streaming DMA mapping
is preferable, because in some architectures handling the coherent DMA mapping is
cumbersome and may lead to lower system performance.

Helper functions for coherent DMA mappings

Usually, the device driver allocates the memory buffer and establishes the coherent
DMA mapping in the initialization phase; it releases the mapping and the buffer when
it is unloaded. To allocate a memory buffer and to establish a coherent DMA map-
ping, the kernel provides the architecture-dependent pci_alloc_consistent() and
dma_alloc_coherent() functions. They both return the linear address and the bus
address of the new buffer. In the 80 × 86 architecture, they return the linear address
and the physical address of the new buffer. To release the mapping and the buffer, the
kernel provides the pci_free_consistent() and the dma_free_coherent() functions.

Helper functions for streaming DMA mappings

Memory buffers for streaming DMA mappings are usually mapped just before the
transfer and unmapped thereafter. It is also possible to keep the same mapping
among several DMA transfers, but in this case the device driver developer must be
aware of the hardware cache lying between the memory and the peripheral.

To set up a streaming DMA transfer, the driver must first dynamically allocate the
memory buffer by means of the zoned page frame allocator (see the section “The
Zoned Page Frame Allocator” in Chapter 8) or the generic memory allocator (see the
section “General Purpose Objects” in Chapter 8). Then, the drivers must establish
the streaming DMA mapping by invoking either the pci_map_single() or the dma_
map_single() function, which receives as its parameter the linear address of the
buffer and returns its bus address. To release the mapping, the driver invokes the
corresponding pci_unmap_single() or dma_unmap_single() functions.

To avoid cache coherency problems, right before starting a DMA transfer from the
RAM to the device, the driver should invoke pci_dma_sync_single_for_device() or
dma_sync_single_for_device(), which flush, if necessary, the cache lines correspond-
ing to the DMA buffer. Similarly, a device driver should not access a memory buffer
right after the end of a DMA transfer from the device to the RAM: instead, before
reading the buffer, the driver should invoke pci_dma_sync_single_for_cpu() or dma_
sync_single_for_cpu(), which invalidate, if necessary, the corresponding hardware
cache lines. In the 80 × 86 architecture, these functions do almost nothing, because
the coherency between hardware caches and DMAs is maintained by the hardware.

Even buffers in high memory (see the section “Kernel Mappings of High-Memory
Page Frames” in Chapter 8) can be used for DMA transfers; the developer uses pci_
map_page()—or dma_map_page()—passing to it the descriptor address of the page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Device Drivers | 551

including the buffer and the offset of the buffer inside the page. Correspondingly, to
release the mapping of the high memory buffer, the developer uses pci_unmap_page()
or dma_unmap_page().

Levels of Kernel Support
The Linux kernel does not fully support all possible existing I/O devices. Generally
speaking, in fact, there are three possible kinds of support for a hardware device:

No support at all
The application program interacts directly with the device’s I/O ports by issuing
suitable in and out assembly language instructions.

Minimal support
The kernel does not recognize the hardware device, but does recognize its I/O
interface. User programs are able to treat the interface as a sequential device
capable of reading and/or writing sequences of characters.

Extended support
The kernel recognizes the hardware device and handles the I/O interface itself.
In fact, there might not even be a device file for the device.

The most common example of the first approach, which does not rely on any kernel
device driver, is how the X Window System traditionally handles the graphic dis-
play. This is quite efficient, although it constrains the X server from using the hard-
ware interrupts issued by the I/O device. This approach also requires some
additional effort to allow the X server to access the required I/O ports. As mentioned
in the section “Task State Segment” in Chapter 3, the iopl() and ioperm() system
calls grant a process the privilege to access I/O ports. They can be invoked only by
programs having root privileges. But such programs can be made available to users
by setting the setuid flag of the executable file (see the section “Process Credentials
and Capabilities” in Chapter 20).

Recent Linux versions support several widely used graphic cards. The /dev/fb device
file provides an abstraction for the frame buffer of the graphic card and allows appli-
cation software to access it without needing to know anything about the I/O ports of
the graphics interface. Furthermore, the kernel supports the Direct Rendering Infra-
structure (DRI) that allows application software to exploit the hardware of acceler-
ated 3D graphics cards. In any case, the traditional do-it-yourself X Window System
server is still widely adopted.

The minimal support approach is used to handle external hardware devices con-
nected to a general-purpose I/O interface. The kernel takes care of the I/O interface
by offering a device file (and thus a device driver); the application program handles
the external hardware device by reading and writing the device file.

Minimal support is preferable to extended support because it keeps the kernel size
small. However, among the general-purpose I/O interfaces commonly found on a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 13: I/O Architecture and Device Drivers

PC, only the serial port and the parallel port can be handled with this approach.
Thus, a serial mouse is directly controlled by an application program, such as the X
server, and a serial modem always requires a communication program, such as Mini-
com, Seyon, or a Point-to-Point Protocol (PPP) daemon.

Minimal support has a limited range of applications, because it cannot be used when
the external device must interact heavily with internal kernel data structures. For
example, consider a removable hard disk that is connected to a general-purpose I/O
interface. An application program cannot interact with all kernel data structures and
functions needed to recognize the disk and to mount its filesystem, so extended sup-
port is mandatory in this case.

In general, every hardware device directly connected to the I/O bus, such as the
internal hard disk, is handled according to the extended support approach: the ker-
nel must provide a device driver for each such device. External devices attached to
the Universal Serial Bus (USB), the PCMCIA port found in many laptops, or the SCSI
interface—in short, every general-purpose I/O interface except the serial and the par-
allel ports—also require extended support.

It is worth noting that the standard file-related system calls such as open(), read(),
and write() do not always give the application full control of the underlying hard-
ware device. In fact, the lowest-common-denominator approach of the VFS does not
include room for special commands that some devices need or let an application
check whether the device is in a specific internal state.

The ioctl() system call was introduced to satisfy such needs. Besides the file
descriptor of the device file and a second 32-bit parameter specifying the request, the
system call can accept an arbitrary number of additional parameters. For example,
specific ioctl() requests exist to get the CD-ROM sound volume or to eject the CD-
ROM media. Application programs may provide the user interface of a CD player
using these kinds of ioctl() requests.

Character Device Drivers
Handling a character device is relatively easy, because usually sophisticated buffer-
ing strategies are not needed and disk caches are not involved. Of course, character
devices differ in their requirements: some of them must implement a sophisticated
communication protocol to drive the hardware device, while others just have to read
a few values from a couple of I/O ports of the hardware devices. For instance, the
device driver of a multiport serial card device (a hardware device offering many serial
ports) is much more complicated than the device driver of a bus mouse.

Block device drivers, on the other hand, are inherently more complex than character
device drivers. In fact, applications are entitled to ask repeatedly to read or write the
same block of data. Furthermore, accesses to these devices are usually very slow.
These peculiarities have a profound impact on the structure of the disk drivers. As

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Character Device Drivers | 553

we ’ll see in the next chapters, however, the kernel provides sophisticated compo-
nents—such as the page cache and the block I/O subsystem—to handle them. In the
rest of this chapter we focus our attention on the character device drivers.

A character device driver is described by a cdev structure, whose fields are listed in
Table 13-8.

The list field is the head of a doubly linked circular list collecting inodes of charac-
ter device files that refer to the same character device driver. There could be many
device files having the same device number, and all of them refer to the same charac-
ter device. Moreover, a device driver can be associated with a range of device num-
bers, not just a single one; all device files whose numbers fall in the range are handled
by the same character device driver. The size of the range is stored in the count field.

The cdev_alloc() function allocates dynamically a cdev descriptor and initializes the
embedded kobject so that the descriptor is automatically freed when the reference
counter becomes zero.

The cdev_add() function registers a cdev descriptor in the device driver model. The
function initializes the dev and count fields of the cdev descriptor, then invokes the
kobj_map() function. This function, in turn, sets up the device driver model’s data
structures that glue the interval of device numbers to the device driver descriptor.

The device driver model defines a kobject mapping domain for the character devices,
which is represented by a descriptor of type kobj_map and is referenced by the cdev_
map global variable. The kobj_map descriptor includes a hash table of 255 entries
indexed by the major number of the intervals. The hash table stores objects of type
probe, one for each registered range of major and minor numbers, whose fields are
listed in Table 13-9.

Table 13-8. The fields of the cdev structure

Type Field Description

struct kobject kobj Embedded kobject

struct module * owner Pointer to the module implementing the driver, if any

struct file_operations * ops Pointer to the file operations table of the device driver

struct list_head list Head of the list of inodes relative to device files for this character
device

dev_t dev Initial major and minor numbers assigned to the device driver

unsigned int count Size of the range of device numbers assigned to the device driver

Table 13-9. The fields of the probe object

Type Field Description

struct probe * next Next element in hash collision list

dev_t dev Initial device number (major and minor) of the interval

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

554 | Chapter 13: I/O Architecture and Device Drivers

When the kobj_map() function is invoked, the specified interval of device numbers is
added to the hash table. The data field of the corresponding probe object points to
the cdev descriptor of the device driver. The value of this field is passed to the get
and lock methods when they are executed. In this case, the get method is imple-
mented by a short function that returns the address of the kobject embedded in the
cdev descriptor; the lock method, instead, essentially increases the reference counter
in the embedded kobject.

The kobj_lookup() function receives as input parameters a kobject mapping domain
and a device number; it searches the hash table and returns the address of the kob-
ject of the owner of the interval including the number, if it was found. When applied
to the mapping domain of the character devices, the function returns the address of
the kobject embedded in the cdev descriptor of the device driver that owns the inter-
val of device numbers.

Assigning Device Numbers
To keep track of which character device numbers are currently assigned, the kernel
uses a hash table chrdevs, which contains intervals of device numbers. Two intervals
may share the same major number, but they cannot overlap, thus their minor num-
bers should be all different. The table includes 255 entries, and the hash function
masks out the four higher-order bits of the major number—therefore, major num-
bers less than 255 are hashed in different entries. Each entry points to the first ele-
ment of a collision list ordered by increasing major and minor numbers.

Each list element is a char_device_struct structure, whose fields are shown in
Table 13-10.

unsigned long range Size of the interval

struct module * owner Pointer to the module that implements the device driver, if any

struct kobject *(*)
(dev_t, int *, void *)

get Method for probing the owner of the interval

int (*)(dev_t, void *) lock Method for increasing the reference counter of the owner of the
interval

void * data Private data for the owner of the interval

Table 13-10. The fields of the char_device_struct descriptor

Type Field Description

unsigned char_device_struct * next The pointer to next element in hash collision list

unsigned int major The major number of the interval

Table 13-9. The fields of the probe object (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Character Device Drivers | 555

There are essentially two methods for assigning a range of device numbers to a char-
acter device driver. The first method, which should be used for all new device driv-
ers, relies on the register_chrdev_region() and alloc_chrdev_region() functions,
and assigns an arbitrary range of device numbers. For instance, to get an interval of
numbers starting from the dev_t value dev and of size size:

register_chrdev_region(dev, size, "foo");

These functions do not execute cdev_add(), so the device driver must execute cdev_
add() after the requested interval has been successfully assigned.

The second method makes use of the register_chrdev() function and assigns a fixed
interval of device numbers including a single major number and minor numbers
from 0 to 255. In this case, the device driver must not invoke cdev_add().

The register_chrdev_region() and alloc_chrdev_region() functions

The register_chrdev_region() function receives three parameters: the initial device
number (major and minor numbers), the size of the requested range of device num-
bers (as the number of minor numbers), and the name of the device driver that is
requesting the device numbers. The function checks whether the requested range
spans several major numbers and, if so, determines the major numbers and the corre-
sponding intervals that cover the whole range; then, the function invokes _ _
register_chrdev_region() (described below) on each of these intervals.

The alloc_chrdev_region() function is similar, but it is used to allocate dynamically
a major number; thus, it receives as its parameters the initial minor number of the
interval, the size of the interval, and the name of the device driver. This function also
ends up invoking _ _register_chrdev_region().

The _ _register_chrdev_region() function executes the following steps:

1. Allocates a new char_device_struct structure, and fills it with zeros.

2. If the major number of the interval is zero, then the device driver has requested
the dynamic allocation of the major number. Starting from the last hash table
entry and proceeding backward, the function looks for an empty collision list

unsigned int baseminor The initial minor number of the interval

int minorct The interval size

const char * name The name of the device driver that handles the interval

struct file_operations * fops Not used

struct cdev * cdev Pointer to the character device driver descriptor

Table 13-10. The fields of the char_device_struct descriptor (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 13: I/O Architecture and Device Drivers

(NULL pointer), which corresponds to a yet unused major number. If no empty
entry is found, the function returns an error code.*

3. Initializes the fields of the char_device_struct structure with the initial device
number of the interval, the interval size, and the name of the device driver.

4. Executes the hash function to compute the hash table index corresponding to
the major number.

5. Walks the collision list, looking for the correct position of the new char_device_
struct structure. Meanwhile, if an interval overlapping with the requested one is
found, it returns an error code.

6. Inserts the new char_device_struct descriptor in the collision list.

7. Returns the address of the new char_device_struct descriptor.

The register_chrdev() function

The register_chrdev() function is used by drivers that require an old-style interval
of device numbers: a single major number and minor numbers ranging from 0
to 255. The function receives as its parameters the requested major number major
(zero for dynamic allocation), the name of the device driver name, and a pointer fops
to a table of file operations specific to the character device files in the interval. It exe-
cutes the following operations:

1. Invokes the _ _register_chrdev_region() function to allocate the requested
interval. If the function returns an error code (the interval cannot be assigned), it
terminates.

2. Allocates a new cdev structure for the device driver.

3. Initializes the cdev structure:

a. Sets the type of the embedded kobject to the ktype_cdev_dynamic type
descriptor (see the earlier section “Kobjects”).

b. Sets the owner field with the contents of fops->owner.

c. Sets the ops field with the address fops of the table of file operations.

d. Copies the characters of the device driver name into the name field of the
embedded kobject.

4. Invokes the cdev_add() function (explained previously).

* Notice that the kernel can dynamically allocate only major numbers less than 255, and that in some cases
allocation can fail even if there is a unused major number less than 255. We might expect that these con-
straints will be removed in the future.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Character Device Drivers | 557

5. Sets the cdev field of the char_device_struct descriptor _ _register_chrdev_
region() returned in step 1 with the address of the cdev descriptor of the device
driver.

6. Returns the major number of the assigned interval.

Accessing a Character Device Driver
We mentioned in the earlier section “VFS Handling of Device Files” that the dentry_
open() function triggered by the open() system call service routine customizes the f_
op field in the file object of the character device file so that it points to the def_chr_
fops table. This table is almost empty; it only defines the chrdev_open() function as
the open method of the device file. This method is immediately invoked by dentry_
open().

The chrdev_open() function receives as its parameters the addresses inode and filp
of the inode and file objects relative to the device file being opened. It executes essen-
tially the following operations:

1. Checks the inode->i_cdev pointer to the device driver’s cdev descriptor. If this
field is not NULL, then the inode has already been accessed: increases the refer-
ence counter of the cdev descriptor and jumps to step 6.

2. Invokes the kobj_lookup() function to search the interval including the number.
If such interval does not exists, it returns an error code; otherwise, it computes
the address of the cdev descriptor associated with the interval.

3. Sets the inode->i_cdev field of the inode object to the address of the cdev
descriptor.

4. Sets the inode->i_cindex field to the relative index of the device number inside
the interval of the device driver (index zero for the first minor number in the
interval, one for the second, and so on).

5. Adds the inode object into the list pointed to by the list field of the cdev
descriptor.

6. Initializes the filp->f_ops file operations pointer with the contents of the ops
field of the cdev descriptor.

7. If the filp->f_ops->open method is defined, the function executes it. If the device
driver handles more than one device number, typically this function sets the file
operations of the file object once again, so as to install the file operations suit-
able for the accessed device file.

8. Terminates by returning zero (success).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

558 | Chapter 13: I/O Architecture and Device Drivers

Buffering Strategies for Character Devices
Traditionally, Unix-like operating systems divide hardware devices into block and
character devices. However, this classification does not tell the whole story. Some
devices are capable of transferring sizeable amounts of data in a single I/O opera-
tion, while others transfer only a few characters.

For instance, a PS/2 mouse driver gets a few bytes in each read operation corre-
sponding to the status of the mouse button and to the position of the mouse pointer
on the screen. This kind of device is the easiest to handle. Input data is first read one
character at a time from the device input register and stored in a proper kernel data
structure; the data is then copied at leisure into the process address space. Similarly,
output data is first copied from the process address space to a proper kernel data
structure and then written one at a time into the I/O device output register. Clearly,
I/O drivers for such devices do not use the DMA, because the CPU time spent to set
up a DMA I/O operation is comparable to the time spent to move the data to or from
the I/O ports.

On the other hand, the kernel must also be ready to deal with devices that yield a
large number of bytes in each I/O operation, either sequential devices such as sound
cards or network cards, or random access devices such as disks of all kinds (floppy,
CD-ROM, SCSI disk, etc.).

Suppose, for instance, that you have set up the sound card of your computer so that
you are able to record sounds coming from a microphone. The sound card samples
the electrical signal coming from the microphone at a fixed rate, say 44.14 kHz, and
produces a stream of 16-bit numbers divided into blocks of input data. The sound
card driver must be able to cope with this avalanche of data in all possible situa-
tions, even when the CPU is temporarily busy running some other process.

This can be done by combining two different techniques:

• Use of DMA to transfer blocks of data.

• Use of a circular buffer of two or more elements, each element having the size of
a block of data. When an interrupt occurs signaling that a new block of data has
been read, the interrupt handler advances a pointer to the elements of the circu-
lar buffer so that further data will be stored in an empty element. Conversely,
whenever the driver succeeds in copying a block of data into user address space,
it releases an element of the circular buffer so that it is available for saving new
data from the hardware device.

The role of the circular buffer is to smooth out the peaks of CPU load; even if the
User Mode application receiving the data is slowed down because of other higher-
priority tasks, the DMA is able to continue filling elements of the circular buffer
because the interrupt handler executes on behalf of the currently running process.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Character Device Drivers | 559

A similar situation occurs when receiving packets from a network card, except that
in this case, the flow of incoming data is asynchronous. Packets are received inde-
pendently from each other and the time interval that occurs between two consecu-
tive packet arrivals is unpredictable.

All considered, buffer handling for sequential devices is easy because the same buffer
is never reused: an audio application cannot ask the microphone to retransmit the
same block of data.

We’ll see in Chapter 15 that buffering for random access devices (all kinds of disks)
is much more complicated.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

560

Chapter 14,CHAPTER 14

Block Device Drivers

This chapter deals with I/O drivers for block devices, i.e., for disks of every kind. The
key aspect of a block device is the disparity between the time taken by the CPU and
buses to read or write data and the speed of the disk hardware. Block devices have
very high average access times. Each operation requires several milliseconds to com-
plete, mainly because the disk controller must move the heads on the disk surface to
reach the exact position where the data is recorded. However, when the heads are cor-
rectly placed, data transfer can be sustained at rates of tens of megabytes per second.

The organization of Linux block device handlers is quite involved. We won’t be able
to discuss in detail all the functions that are included in the block I/O subsystem of
the kernel; however, we’ll outline the general software architecture. As in the previ-
ous chapter, our objective is to explain how Linux supports the implementation of
block device drivers, rather than showing how to implement one of them.

We start in the first section “Block Devices Handling” to explain the general archi-
tecture of the Linux block I/O subsystem. In the sections “The Generic Block Layer,”
“The I/O Scheduler,” and “Block Device Drivers,” we will describe the main compo-
nents of the block I/O subsystem. Finally, in the last section, “Opening a Block
Device File,” we will outline the steps performed by the kernel when opening a block
device file.

Block Devices Handling
Each operation on a block device driver involves a large number of kernel compo-
nents; the most important ones are shown in Figure 14-1.

Let us suppose, for instance, that a process issued a read() system call on some disk
file—we’ll see that write requests are handled essentially in the same way. Here is
what the kernel typically does to service the process request:

1. The service routine of the read() system call activates a suitable VFS function,
passing to it a file descriptor and an offset inside the file. The Virtual Filesystem

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Block Devices Handling | 561

is the upper layer of the block device handling architecture, and it provides a
common file model adopted by all filesystems supported by Linux. We have
described at length the VFS layer in Chapter 12.

2. The VFS function determines if the requested data is already available and, if
necessary, how to perform the read operation. Sometimes there is no need to
access the data on disk, because the kernel keeps in RAM the data most recently
read from—or written to—a block device. The disk cache mechanism is
explained in Chapter 15, while details on how the VFS handles the disk opera-
tions and how it interfaces with the disk cache and the filesystems are given in
Chapter 16.

3. Let’s assume that the kernel must read the data from the block device, thus it
must determine the physical location of that data. To do this, the kernel relies on
the mapping layer, which typically executes two steps:

a. It determines the block size of the filesystem including the file and com-
putes the extent of the requested data in terms of file block numbers. Essen-
tially, the file is seen as split in many blocks, and the kernel determines the
numbers (indices relative to the beginning of file) of the blocks containing
the requested data.

b. Next, the mapping layer invokes a filesystem-specific function that accesses
the file’s disk inode and determines the position of the requested data on
disk in terms of logical block numbers. Essentially, the disk is seen as split in

Figure 14-1. Kernel components affected by a block device operation

Disk Caches

Block Device
Driver

Block Device
Driver

Hard
Disk

Hard
Disk

I/O scheduler layer

Generic Block Layer

Mapping Layer

Disk
Filesystem

Block
Device File

Disk
Filesystem

VFS

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 14: Block Device Drivers

blocks, and the kernel determines the numbers (indices relative to the begin-
ning of the disk or partition) corresponding to the blocks storing the
requested data. Because a file may be stored in nonadjacent blocks on disk,
a data structure stored in the disk inode maps each file block number to a
logical block number.*

We will see the mapping layer in action in Chapter 16, while we will present
some typical disk-based filesystems in Chapter 18.

4. The kernel can now issue the read operation on the block device. It makes use of
the generic block layer, which starts the I/O operations that transfer the
requested data. In general, each I/O operation involves a group of blocks that are
adjacent on disk. Because the requested data is not necessarily adjacent on disk,
the generic block layer might start several I/O operations. Each I/O operation is
represented by a “block I/O” (in short, “bio”) structure, which collects all infor-
mation needed by the lower components to satisfy the request.

The generic block layer hides the peculiarities of each hardware block device,
thus offering an abstract view of the block devices. Because almost all block
devices are disks, the generic block layer also provides some general data struc-
tures that describe “disks” and “disk partitions.” We will discuss the generic
block layer and the bio structure in the section “The Generic Block Layer” later
in this chapter.

5. Below the generic block layer, the “I/O scheduler” sorts the pending I/O data
transfer requests according to predefined kernel policies. The purpose of the
scheduler is to group requests of data that lie near each other on the physical
medium. We will describe this component in the section “The I/O Scheduler”
later in this chapter.

6. Finally, the block device drivers take care of the actual data transfer by sending
suitable commands to the hardware interfaces of the disk controllers. We will
explain the overall organization of a generic block device driver in the section
“Block Device Drivers” later in this chapter.

As you can see, there are many kernel components that are concerned with data
stored in block devices; each of them manages the disk data using chunks of differ-
ent length:

• The controllers of the hardware block devices transfer data in chunks of fixed
length called “sectors.” Therefore, the I/O scheduler and the block device driv-
ers must manage sectors of data.

* However, if the read access was done on a raw block device file, the mapping layer does not invoke a filesys-
tem-specific method; rather, it translates the offset in the block device file to a position inside the disk—or
disk partition—corresponding to the device file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Block Devices Handling | 563

• The Virtual Filesystem, the mapping layer, and the filesystems group the disk
data in logical units called “blocks.” A block corresponds to the minimal disk
storage unit inside a filesystem.

• As we will see shortly, block device drivers should be able to cope with “seg-
ments” of data: each segment is a memory page—or a portion of a memory
page—including chunks of data that are physically adjacent on disk.

• The disk caches work on “pages” of disk data, each of which fits in a page frame.

• The generic block layer glues together all the upper and lower components, thus
it knows about sectors, blocks, segments, and pages of data.

Even if there are many different chunks of data, they usually share the same physical
RAM cells. For instance, Figure 14-2 shows the layout of a 4,096-byte page. The
upper kernel components see the page as composed of four block buffers of 1,024
bytes each. The last three blocks of the page are being transferred by the block device
driver, thus they are inserted in a segment covering the last 3,072 bytes of the page.
The hard disk controller considers the segment as composed of six 512-byte sectors.

In this chapter we describe the lower kernel components that handle the block
devices—generic block layer, I/O scheduler, and block device drivers—thus we focus
our attention on sectors, blocks, and segments.

Sectors
To achieve acceptable performance, hard disks and similar devices transfer several
adjacent bytes at once. Each data transfer operation for a block device acts on a
group of adjacent bytes called a sector. In the following discussion, we say that

Figure 14-2. Typical layout of a page including disk data

Sector

Sector

Sector

Sector

Sector

Sector

Sector

Sector

Se
gm

en
t

Bl
oc

k b
uf

fe
r

Bl
oc

k b
uf

fe
r

Bl
oc

k b
uf

fe
r

Bl
oc

k b
uf

fe
r

Pa
ge

512 B

512 B

512 B

512 B

512 B

512 B

512 B

512 B
1 KB

1 KB

1 KB

1 KB

3 KB

4 KB

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 14: Block Device Drivers

groups of bytes are adjacent when they are recorded on the disk surface in such a
manner that a single seek operation can access them. Although the physical geome-
try of a disk is usually very complicated, the hard disk controller accepts commands
that refer to the disk as a large array of sectors.

In most disk devices, the size of a sector is 512 bytes, although there are devices that
use larger sectors (1,024 and 2,048 bytes). Notice that the sector should be consid-
ered as the basic unit of data transfer; it is never possible to transfer less than one
sector, although most disk devices are capable of transferring several adjacent sec-
tors at once.

In Linux, the size of a sector is conventionally set to 512 bytes; if a block device uses
larger sectors, the corresponding low-level block device driver will do the necessary
conversions. Thus, a group of data stored in a block device is identified on disk by its
position—the index of the first 512-byte sector—and its length as number of 512-
byte sectors. Sector indices are stored in 32- or 64-bit variables of type sector_t.

Blocks
While the sector is the basic unit of data transfer for the hardware devices, the block
is the basic unit of data transfer for the VFS and, consequently, for the filesystems.
For example, when the kernel accesses the contents of a file, it must first read from
disk a block containing the disk inode of the file (see the section “Inode Objects” in
Chapter 12). This block on disk corresponds to one or more adjacent sectors, which
are looked at by the VFS as a single data unit.

In Linux, the block size must be a power of 2 and cannot be larger than a page frame.
Moreover, it must be a multiple of the sector size, because each block must include
an integral number of sectors. Therefore, on 80 × 86 architecture, the permitted
block sizes are 512, 1,024, 2,048, and 4,096 bytes.

The block size is not specific to a block device. When creating a disk-based filesys-
tem, the administrator may select the proper block size. Thus, several partitions on
the same disk might make use of different block sizes. Furthermore, each read or
write operation issued on a block device file is a “raw” access that bypasses the disk-
based filesystem; the kernel executes it by using blocks of largest size (4,096 bytes).

Each block requires its own block buffer, which is a RAM memory area used by the
kernel to store the block’s content. When the kernel reads a block from disk, it fills
the corresponding block buffer with the values obtained from the hardware device;
similarly, when the kernel writes a block on disk, it updates the corresponding group
of adjacent bytes on the hardware device with the actual values of the associated block
buffer. The size of a block buffer always matches the size of the corresponding block.

Each buffer has a “buffer head” descriptor of type buffer_head. This descriptor con-
tains all the information needed by the kernel to know how to handle the buffer; thus,
before operating on each buffer, the kernel checks its buffer head. We will give a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Block Devices Handling | 565

detailed explanation of all fields of the buffer head in Chapter 15; in the present chap-
ter, however, we will only consider a few fields: b_page, b_data, b_blocknr, and b_bdev.

The b_page field stores the page descriptor address of the page frame that includes the
block buffer. If the page frame is in high memory, the b_data field stores the offset of the
block buffer inside the page; otherwise, it stores the starting linear address of the block
buffer itself. The b_blocknr field stores the logical block number (i.e., the index of the
block inside the disk partition). Finally, the b_bdev field identifies the block device that
is using the buffer head (see the section “Block Devices” later in this chapter).

Segments
We know that each disk I/O operation consists of transferring the contents of some
adjacent sectors from—or to—some RAM locations. In almost all cases, the data
transfer is directly performed by the disk controller with a DMA operation (see the
section “Direct Memory Access (DMA)” in Chapter 13). The block device driver sim-
ply triggers the data transfer by sending suitable commands to the disk controller;
once the data transfer is finished, the controller raises an interrupt to notify the block
device driver.

The data transferred by a single DMA operation must belong to sectors that are adja-
cent on disk. This is a physical constraint: a disk controller that allows DMA transfers
to non-adjacent sectors would have a poor transfer rate, because moving a read/write
head on the disk surface is quite a slow operation.

Older disk controllers support “simple” DMA operations only: in each such opera-
tion, data is transferred from or to memory cells that are physically contiguous in
RAM. Recent disk controllers, however, may also support the so-called scatter-gather
DMA transfers: in each such operation, the data can be transferred from or to sev-
eral noncontiguous memory areas.

For each scatter-gather DMA transfer, the block device driver must send to the disk
controller:

• The initial disk sector number and the total number of sectors to be transferred

• A list of descriptors of memory areas, each of which consists of an address and a
length.

The disk controller takes care of the whole data transfer; for instance, in a read oper-
ation the controller fetches the data from the adjacent disk sectors and scatters it into
the various memory areas.

To make use of scatter-gather DMA operations, block device drivers must handle the
data in units called segments. A segment is simply a memory page—or a portion of a
memory page—that includes the data of some adjacent disk sectors. Thus, a scatter-
gather DMA operation may involve several segments at once.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 14: Block Device Drivers

Notice that a block device driver does not need to know about blocks, block sizes,
and block buffers. Thus, even if a segment is seen by the higher levels as a page com-
posed of several block buffers, the block device driver does not care about it.

As we’ll see, the generic block layer can merge different segments if the correspond-
ing page frames happen to be contiguous in RAM and the corresponding chunks of
disk data are adjacent on disk. The larger memory area resulting from this merge
operation is called physical segment.

Yet another merge operation is allowed on architectures that handle the mapping
between bus addresses and physical addresses through a dedicated bus circuitry (the
IO-MMU; see the section “Direct Memory Access (DMA)” in Chapter 13). The
memory area resulting from this kind of merge operation is called hardware segment.
Because we will focus on the 80 × 86 architecture, which has no such dynamic map-
ping between bus addresses and physical addresses, we will assume in the rest of this
chapter that hardware segments always coincide with physical segments.

The Generic Block Layer
The generic block layer is a kernel component that handles the requests for all block
devices in the system. Thanks to its functions, the kernel may easily:

• Put data buffers in high memory—the page frame(s) will be mapped in the ker-
nel linear address space only when the CPU must access the data, and will be
unmapped right after.

• Implement—with some additional effort—a “zero-copy” schema, where disk
data is directly put in the User Mode address space without being copied to ker-
nel memory first; essentially, the buffer used by the kernel for the I/O transfer
lies in a page frame mapped in the User Mode linear address space of a process.

• Manage logical volumes—such as those used by LVM (the Logical Volume Man-
ager) and RAID (Redundant Array of Inexpensive Disks): several disk partitions,
even on different block devices, can be seen as a single partition.

• Exploit the advanced features of the most recent disk controllers, such as large
onboard disk caches, enhanced DMA capabilities, onboard scheduling of the I/
O transfer requests, and so on.

The Bio Structure
The core data structure of the generic block layer is a descriptor of an ongoing I/O
block device operation called bio. Each bio essentially includes an identifier for a disk
storage area—the initial sector number and the number of sectors included in the
storage area—and one or more segments describing the memory areas involved in
the I/O operation. A bio is implemented by the bio data structure, whose fields are
listed in Table 14-1.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Generic Block Layer | 567

Each segment in a bio is represented by a bio_vec data structure, whose fields are
listed in Table 14-2. The bi_io_vec field of the bio points to the first element of an
array of bio_vec data structures, while the bi_vcnt field stores the current number of
elements in the array.

The contents of a bio descriptor keep changing during the block I/O operation. For
instance, if the block device driver cannot perform the whole data transfer with one
scatter-gather DMA operation, the bi_idx field is updated to keep track of the first
segment in the bio that is yet to be transferred. To iterate over the segments of a
bio—starting from the current segment at index bi_idx—a device driver can execute
the bio_for_each_segment macro.

Table 14-1. The fields of the bio structure

Type Field Description

sector_t bi_sector First sector on disk of block I/O operation

struct bio * bi_next Link to the next bio in the request queue

struct
block_device *

bi_bdev Pointer to block device descriptor

unsigned long bi_flags Bio status flags

unsigned long bi_rw I/O operation flags

unsigned short bi_vcnt Number of segments in the bio’s bio_vec array

unsigned short bi_idx Current index in the bio’s bio_vec array of segments

unsigned short bi_phys_segments Number of physical segments of the bio after merging

unsigned short bi_hw_segments Number of hardware segments after merging

unsigned int bi_size Bytes (yet) to be transferred

unsigned int bi_hw_front_size Used by the hardware segment merge algorithm

unsigned int bi_hw_back_size Used by the hardware segment merge algorithm

unsigned int bi_max_vecs Maximum allowed number of segments in the bio’s bio_
vecarray

struct bio_vec * bi_io_vec Pointer to the bio’s bio_vec array of segments

bio_end_io_t * bi_end_io Method invoked at the end of bio’s I/O operation

atomic_t bi_cnt Reference counter for the bio

void * bi_private Pointer used by the generic block layer and the I/O completion
method of the block device driver

bio_destructor_t * bi_destructor Destructor method (usually bio_destructor()) invoked
when the bio is being freed

Table 14-2. The fields of the bio_vec structure

Type Field Description

struct page * bv_page Pointer to the page descriptor of the segment’s page frame

unsigned int bv_len Length of the segment in bytes

unsigned int bv_offset Offset of the segment’s data in the page frame

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

568 | Chapter 14: Block Device Drivers

When the generic block layer starts a new I/O operation, it allocates a new bio struc-
ture by invoking the bio_alloc() function. Usually, bios are allocated through the
slab allocator, but the kernel also keeps a small memory pool of bios to be used
when memory is scarce (see the section “Memory Pools” in Chapter 8). The kernel
also keeps a memory pool for the bio_vec structures—after all, it would not make
sense to allocate a bio without being able to allocate the segment descriptors to be
included in the bio. Correspondingly, the bio_put() function decrements the refer-
ence counter (bi_cnt) of a bio and, if the counter becomes zero, it releases the bio
structure and the related bio_vec structures.

Representing Disks and Disk Partitions
A disk is a logical block device that is handled by the generic block layer. Usually a
disk corresponds to a hardware block device such as a hard disk, a floppy disk, or a
CD-ROM disk. However, a disk can be a virtual device built upon several physical
disk partitions, or a storage area living in some dedicated pages of RAM. In any case,
the upper kernel components operate on all disks in the same way thanks to the ser-
vices offered by the generic block layer.

A disk is represented by the gendisk object, whose fields are shown in Table 14-3.

Table 14-3. The fields of the gendisk object

Type Field Description

int major Major number of the disk

int first_minor First minor number associated with the disk

int minors Range of minor numbers associated with the disk

char [32] disk_name Conventional name of the disk (usually, the canonical
name of the corresponding device file)

struct hd_struct ** part Array of partition descriptors for the disk

struct
block_device_operations *

fops Pointer to a table of block device methods

struct request_queue * queue Pointer to the request queue of the disk (see “Request
Queue Descriptors” later in this chapter)

void * private_data Private data of the block device driver

sector_t capacity Size of the storage area of the disk (in number of sectors)

int flags Flags describing the kind of disk (see below)

char [64] devfs_name Device filename in the (nowadays deprecated) devfs
special filesystem

int number No longer used

struct device * driverfs_dev Pointer to the device object of the disk’s hardware
device (see the section “Components of the Device Driver
Model” in Chapter 13)

struct kobject kobj Embedded kobject (see the section “Kobjects” in
Chapter 13)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Generic Block Layer | 569

The flags field stores information about the disk. The most important flag is GENHD_
FL_UP: if it is set, the disk is initialized and working. Another relevant flag is GENHD_
FL_REMOVABLE, which is set if the disk is a removable support, such as a floppy disk or
a CD-ROM.

The fops field of the gendisk object points to a block_device_operations table, which
stores a few custom methods for crucial operations of the block device (see
Table 14-4).

Hard disks are commonly split into logical partitions. Each block device file may rep-
resent either a whole disk or a partition inside the disk. For instance, a master EIDE
disk might be represented by a device file /dev/hda having major number 3 and minor
number 0; the first two partitions inside the disk might be represented by device files
/dev/hda1 and /dev/hda2 having major number 3 and minor numbers 1 and 2, respec-
tively. In general, the partitions inside a disk are characterized by consecutive minor
numbers.

If a disk is split in partitions, their layout is kept in an array of hd_struct structures
whose address is stored in the part field of the gendisk object. The array is indexed

struct timer_rand_state * random Pointer to a data structure that records the timing of the
disk’s interrupts; used by the kernel built-in random
number generator

int policy Set to 1 if the disk is read-only (write operations forbid-
den), 0 otherwise

atomic_t sync_io Counter of sectors written to disk, used only for RAID

unsigned long stamp Timestamp used to determine disk queue usage statis-
tics

unsigned long stamp_idle Same as above

int in_flight Number of ongoing I/O operations

struct disk_stats * dkstats Statistics about per-CPU disk usage

Table 14-4. The methods of the block devices

Method Triggers

open Opening the block device file

release Closing the last reference to a block device file

ioctl Issuing an ioctl() system call on the block device file (uses the big kernel lock)

compat_ioctl Issuing an ioctl() system call on the block device file (does not use the big kernel lock)

media_changed Checking whether the removable media has been changed (e.g., floppy disk)

revalidate_disk Checking whether the block device holds valid data

Table 14-3. The fields of the gendisk object (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

570 | Chapter 14: Block Device Drivers

by the relative index of the partition inside the disk. The fields of the hd_struct
descriptor are listed in Table 14-5.

When the kernel discovers a new disk in the system (in the boot phase, or when a
removable media is inserted in a drive, or when an external disk is attached at run-
time), it invokes the alloc_disk() function, which allocates and initializes a new
gendisk object and, if the new disk is split in several partitions, a suitable array of hd_
struct descriptors. Then, it invokes the add_disk() function to insert the new
gendisk descriptor into the data structures of the generic block layer (see the section
“Device Driver Registration and Initialization” later in this chapter).

Submitting a Request
Let us describe the common sequence of steps executed by the kernel when submit-
ting an I/O operation request to the generic block layer. We’ll assume that the
requested chunks of data are adjacent on disk and that the kernel has already deter-
mined their physical location.

The first step consists in executing the bio_alloc() function to allocate a new bio
descriptor. Then, the kernel initializes the bio descriptor by setting a few fields:

• The bi_sector field is set to the initial sector number of the data (if the block
device is split in several partitions, the sector number is relative to the start of the
partition).

• The bi_size field is set to the number of sectors covering the data.

• The bi_bdev field is set to the address of the block device descriptor (see the sec-
tion “Block Devices” later in this chapter).

• The bi_io_vec field is set to the initial address of an array of bio_vec data struc-
tures, each of which describes a segment (memory buffer) involved in the I/O oper-
ation; moreover, the bi_vcnt field is set to the total number of segments in the bio.

Table 14-5. The fields of the hd_struct descriptor

Type Field Description

sector_t start_sect Starting sector of the partition inside the disk

sector_t nr_sects Length of the partition (number of sectors)

struct kobject kobj Embedded kobject (see the section “Kobjects” in Chapter 13)

unsigned int reads Number of read operations issued on the partition

unsigned int read_sectors Number of sectors read from the partition

unsigned int writes Number of write operations issued on the partition

unsigned int write_sectors Number of sectors written into the partition

int policy Set to 1 if the partition is read-only, 0 otherwise

int partno The relative index of the partition inside the disk

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Generic Block Layer | 571

• The bi_rw field is set with the flags of the requested operation. The most impor-
tant flag specifies the data transfer direction: READ (0) or WRITE (1).

• The bi_end_io field is set to the address of a completion procedure that is exe-
cuted whenever the I/O operation on the bio is completed.

Once the bio descriptor has been properly initialized, the kernel invokes the generic_
make_request() function, which is the main entry point of the generic block layer.
The function essentially executes the following steps:

1. Checks that bio->bi_sector does not exceed the number of sectors of the block
device. If it does, the function sets the BIO_EOF flag of bio->bi_flags, prints a ker-
nel error message, invokes the bio_endio() function, and terminates. bio_endio()
updates the bi_size and bi_sector fields of the bio descriptor, and it invokes the
bi_end_io bio’s method. The implementation of the latter function essentially
depends on the kernel component that has triggered the I/O data transfer; we
will see some examples of bi_end_io methods in the following chapters.

2. Gets the request queue q associated with the block device (see the section
“Request Queue Descriptors” later in this chapter); its address can be found in
the bd_disk field of the block device descriptor, which in turn is pointed to by
the bio->bi_bdev field.

3. Invokes block_wait_queue_running() to check whether the I/O scheduler cur-
rently in use is being dynamically replaced; in this case, the function puts the pro-
cess to sleep until the new I/O scheduler is started (see the next section “The I/O
Scheduler”).

4. Invokes blk_partition_remap() to check whether the block device refers to a
disk partition (bio->bi_bdev not equal to bio->bi_dev->bd_contains; see the sec-
tion “Block Devices” later in this chapter). In this case, the function gets the hd_
struct descriptor of the partition from the bio->bi_bdev field to perform the fol-
lowing substeps:

a. Updates the read_sectors and reads fields, or the write_sectors and writes
fields, of the hd_struct descriptor, according to the direction of data trans-
fer.

b. Adjusts the bio->bi_sector field so as to transform the sector number rela-
tive to the start of the partition to a sector number relative to the whole disk.

c. Sets the bio->bi_bdev field to the block device descriptor of the whole disk
(bio->bd_contains).

From now on, the generic block layer, the I/O scheduler, and the device driver
forget about disk partitioning, and work directly with the whole disk.

5. Invokes the q->make_request_fn method to insert the bio request in the request
queue q.

6. Returns.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

572 | Chapter 14: Block Device Drivers

We will discuss a typical implementation of the make_request_fn method in the sec-
tion “Issuing a Request to the I/O Scheduler” later in this chapter.

The I/O Scheduler
Although block device drivers are able to transfer a single sector at a time, the block
I/O layer does not perform an individual I/O operation for each sector to be accessed
on disk; this would lead to poor disk performance, because locating the physical
position of a sector on the disk surface is quite time-consuming. Instead, the kernel
tries, whenever possible, to cluster several sectors and handle them as a whole, thus
reducing the average number of head movements.

When a kernel component wishes to read or write some disk data, it actually creates
a block device request. That request essentially describes the requested sectors and
the kind of operation to be performed on them (read or write). However, the kernel
does not satisfy a request as soon as it is created—the I/O operation is just sched-
uled and will be performed at a later time. This artificial delay is paradoxically the
crucial mechanism for boosting the performance of block devices. When a new block
data transfer is requested, the kernel checks whether it can be satisfied by slightly
enlarging a previous request that is still waiting (i.e., whether the new request can be
satisfied without further seek operations). Because disks tend to be accessed sequen-
tially, this simple mechanism is very effective.

Deferring requests complicates block device handling. For instance, suppose a pro-
cess opens a regular file and, consequently, a filesystem driver wants to read the cor-
responding inode from disk. The block device driver puts the request on a queue,
and the process is suspended until the block storing the inode is transferred. How-
ever, the block device driver itself cannot be blocked, because any other process try-
ing to access the same disk would be blocked as well.

To keep the block device driver from being suspended, each I/O operation is pro-
cessed asynchronously. In particular, block device drivers are interrupt-driven (see
the section “Monitoring I/O Operations” in the previous chapter): the generic block
layer invokes the I/O scheduler to create a new block device request or to enlarge an
already existing one and then terminates. The block device driver, which is activated
at a later time, invokes the strategy routine to select a pending request and satisfy it
by issuing suitable commands to the disk controller. When the I/O operation termi-
nates, the disk controller raises an interrupt and the corresponding handler invokes
the strategy routine again, if necessary, to process another pending request.

Each block device driver maintains its own request queue, which contains the list of
pending requests for the device. If the disk controller is handling several disks, there
is usually one request queue for each physical block device. I/O scheduling is per-
formed separately on each request queue, thus increasing disk performance.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The I/O Scheduler | 573

Request Queue Descriptors
Each request queue is represented by means of a large request_queue data structure
whose fields are listed in Table 14-6.

Table 14-6. The fields of the request queue descriptor

Type Field Description

struct list_head queue_head List of pending requests

struct request * last_merge Pointer to descriptor of the request in the queue to
be considered first for possible merging

elevator_t * elevator Pointer to the elevator object (see the later section
“I/O Scheduling Algorithms”)

struct request_list rq Data structure used for allocation of request descrip-
tors

request_fn_proc * request_fn Method that implements the entry point of the
strategy routine of the driver

merge_request_fn * back_merge_fn Method to check whether it is possible to merge a
bio to the last request in the queue

merge_request_fn * front_merge_fn Method to check whether it is possible to merge a
bio to the first request in the queue

merge_requests_fn * merge_requests_fn Method to attempt merging two adjacent requests
in the queue

make_request_fn * make_request_fn Method invoked when a new request has to be
inserted in the queue

prep_rq_fn * prep_rq_fn Method to build the commands to be sent to the
hardware device to process this request

unplug_fn * unplug_fn Method to unplug the block device (see the section
“Activating the Block Device Driver” later in the
chapter)

merge_bvec_fn * merge_bvec_fn Method that returns the number of bytes that can be
inserted into an existing bio when adding a new
segment (usually undefined)

activity_fn * activity_fn Method invoked when a request is added to a queue
(usually undefined)

issue_flush_fn * issue_flush_fn Method invoked when a request queue is flushed
(the queue is emptied by processing all requests in a
row)

struct timer_list unplug_timer Dynamic timer used to perform device plugging (see
the later section “Activating the Block Device
Driver”)

int unplug_thresh If the number of pending requests in the queue
exceeds this value, the device is immediately
unplugged (default is 4)

unsigned long unplug_delay Time delay before device unplugging (default is 3
milliseconds)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

574 | Chapter 14: Block Device Drivers

struct work_struct unplug_work Work queue used to unplug the device (see the later
section “Activating the Block Device Driver”)

struct
backing_dev_info

backing_dev_info See the text following this table

void * queuedata Pointer to private data of the block device driver

void * activity_data Private data used by the activity_fn method

unsigned long bounce_pfn Page frame number above which buffer bouncing
must be used (see the section “Submitting a
Request” later in this chapter)

int bounce_gfp Memory allocation flags for bounce buffers

unsigned long queue_flags Set of flags describing the queue status

spinlock_t * queue_lock Pointer to request queue lock

struct kobject kobj Embedded kobject for the request queue

unsigned long nr_requests Maximum number of requests in the queue

unsigned int nr_congestion_on Queue is considered congested if the number of
pending requests rises above this threshold

unsigned int nr_congestion_off Queue is considered not congested if the number of
pending requests falls below this threshold

unsigned int nr_batching Maximum number (usually 32) of pending requests
that can be submitted even when the queue is full
by a special “batcher” process

unsigned short max_sectors Maximum number of sectors handled by a single
request (tunable)

unsigned short max_hw_sectors Maximum number of sectors handled by a single
request (hardware constraint)

unsigned short max_phys_segments Maximum number of physical segments handled by
a single request

unsigned short max_hw_segments Maximum number of hardware segments handled
by a single request (the maximum number of dis-
tinct memory areas in a scatter-gather DMA opera-
tion)

unsigned short hardsect_size Size in bytes of a sector

unsigned int max_segment_size Maximum size of a physical segment (in bytes)

unsigned long seg_boundary_mask Memory boundary mask for segment merging

unsigned int dma_alignment Alignment bitmap for initial address and length of
DMA buffers (default 511)

struct
blk_queue_tag *

queue_tags Bitmap of free/busy tags (used for tagged requests)

atomic_t refcnt Reference counter of the queue

unsigned int in_flight Number of pending requests in the queue

unsigned int sg_timeout User-defined command time-out (used only by SCSI
generic devices)

Table 14-6. The fields of the request queue descriptor (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The I/O Scheduler | 575

Essentially, a request queue is a doubly linked list whose elements are request
descriptors (that is, request data structures; see the next section). The queue_head
field of the request queue descriptor stores the head (the first dummy element) of the
list, while the pointers in the queuelist field of the request descriptor link each
request to the previous and next elements in the list. The ordering of the elements in
the queue list is specific to each block device driver; the I/O scheduler offers, how-
ever, several predefined ways of ordering elements, which are discussed in the later
section “I/O Scheduling Algorithms.”

The backing_dev_info field is a small object of type backing_dev_info, which stores
information about the I/O data flow traffic for the underlying hardware block device.
For instance, it holds information about read-ahead and about request queue conges-
tion state.

Request Descriptors
Each pending request for a block device is represented by a request descriptor, which
is stored in the request data structure illustrated in Table 14-7.

unsigned int sg_reserved_size Essentially unused

struct list_head drain_list Head of a list of requests temporarily delayed until
the I/O scheduler is dynamically replaced

Table 14-7. The fields of the request descriptor

Type Field Description

struct list_head queuelist Pointers for request queue list

unsigned long flags Flags of the request (see below)

sector_t sector Number of the next sector to be transferred

unsigned long nr_sectors Number of sectors yet to be transferred in the
whole request

unsigned int current_nr_sectors Number of sectors in the current segment of the
current bio yet to be transferred

sector_t hard_sector Number of the next sector to be transferred

unsigned long hard_nr_sectors Number of sectors yet to be transferred in the
whole request (updated by the generic block
layer)

unsigned int hard_cur_sectors Number of sectors in the current segment of the
current bio yet to be transferred (updated by
the generic block layer)

struct bio * bio First bio in the request that has not been com-
pletely transferred

struct bio * biotail Last bio in the request list

Table 14-6. The fields of the request queue descriptor (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

576 | Chapter 14: Block Device Drivers

void * elevator_private Pointer to private data for the I/O scheduler

int rq_status Request status: essentially, either RQ_ACTIVE
or RQ_INACTIVE

struct gendisk * rq_disk The descriptor of the disk referenced by the
request

int errors Counter for the number of I/O errors that
occurred on the current transfer

unsigned long start_time Request’s starting time (in jiffies)

unsigned short nr_phys_segments Number of physical segments of the request

unsigned short nr_hw_segments Number of hardware segments of the request

int tag Tag associated with the request (only for hard-
ware devices supporting multiple outstanding
data transfers)

char * buffer Pointer to the memory buffer of the current
data transfer (NULL if the buffer is in high-
memory)

int ref_count Reference counter for the request

request_queue_t * q Pointer to the descriptor of the request queue
containing the request

struct request_list * rl Pointer to request_list data structure

struct completion * waiting Completion for waiting for the end of the data
transfers (see the section “Completions” in
Chapter 5)

void * special Pointer to data used when the request includes
a “special” command to the hardware device

unsigned int cmd_len Length of the commands in the cmd field

unsigned char [] cmd Buffer containing the pre-built commands pre-
pared by the request queue’s prep_rq_fn
method

unsigned int data_len Usually, the length of data in the buffer pointed
to by the data field

void * data Pointer used by the device driver to keep track
of the data to be transferred

unsigned int sense_len Length of buffer pointed to by the sense field
(0 if the sense field is NULL)

void * sense Pointer to buffer used for output of sense com-
mands

unsigned int timeout Request’s time-out

struct
request_pm_state *

pm Pointer to a data structure used for power-man-
agement commands

Table 14-7. The fields of the request descriptor (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The I/O Scheduler | 577

Each request consists of one or more bio structures. Initially, the generic block layer
creates a request including just one bio. Later, the I/O scheduler may “extend” the
request either by adding a new segment to the original bio, or by linking another bio
structure into the request. This is possible when the new data is physically adjacent to
the data already in the request. The bio field of the request descriptor points to the
first bio structure in the request, while the biotail field points to the last bio. The rq_
for_each_bio macro implements a loop that iterates over all bios included in a request.

Several fields of the request descriptor may dynamically change. For instance, as
soon as the chunks of data referenced in a bio have all been transferred, the bio field
is updated so that it points to the next bio in the request list. Meanwhile, new bios
can be added to the tail of the request list, so the biotail field may also change.

Several other fields of the request descriptor are modified either by the I/O scheduler
or the device driver while the disk sectors are being transferred. For instance, the nr_
sectors field stores the number of sectors yet to be transferred in the whole request,
while the current_nr_sectors field stores the number of sectors yet to be transferred
in the current bio.

The flags field stores a large number of flags, which are listed in Table 14-8. The
most important one is, by far, REQ_RW, which determines the direction of the data
transfer.

Table 14-8. The flags of the request descriptor

Flag Description

REQ_RW Direction of data transfer: READ (0) or WRITE (1)

REQ_FAILFAST Requests says to not retry the I/O operation in case of error

REQ_SOFTBARRIER Request acts as a barrier for the I/O scheduler

REQ_HARDBARRIER Request acts as a barrier for the I/O scheduler and the device driver—it should be pro-
cessed after older requests and before newer ones

REQ_CMD Request includes a normal read or write I/O data transfer

REQ_NOMERGE Request should not be extended or merged with other requests

REQ_STARTED Request is being processed

REQ_DONTPREP Do not invoke the prep_rq_fn request queue’s method to prepare in advance the
commands to be sent to the hardware device

REQ_QUEUED Request is tagged—that is, it refers to a hardware device that can manage many out-
standing data transfers at the same time

REQ_PC Request includes a direct command to be sent to the hardware device

REQ_BLOCK_PC Same as previous flag, but the command is included in a bio

REQ_SENSE Request includes a “sense” request command (for SCSI and ATAPI devices)

REQ_FAILED Set when a sense or direct command in the request did not work as expected

REQ_QUIET Request says to not generate kernel messages in case of I/O errors

REQ_SPECIAL Request includes a special command for the hardware device (e.g., drive reset)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

578 | Chapter 14: Block Device Drivers

Managing the allocation of request descriptors

The limited amount of free dynamic memory may become, under very heavy loads
and high disk activity, a bottleneck for processes that want to add a new request into
a request queue q. To cope with this kind of situation, each request_queue descriptor
includes a request_list data structure, which consists of:

• A pointer to a memory pool of request descriptors (see the section “Memory
Pools” in Chapter 8).

• Two counters for the number of requests descriptors allocated for READ and
WRITE requests, respectively.

• Two flags indicating whether a recent allocation for a READ or WRITE request,
respectively, failed.

• Two wait queues storing the processes sleeping for available READ and WRITE
request descriptors, respectively.

• A wait queue for the processes waiting for a request queue to be flushed (emptied).

The blk_get_request() function tries to get a free request descriptor from the mem-
ory pool of a given request queue; if memory is scarce and the memory pool is
exhausted, the function either puts the current process to sleep or—if the kernel con-
trol path cannot block—returns NULL. If the allocation succeeds, the function stores
in the rl field of the request descriptor the address of the request_list data struc-
ture of the request queue. The blk_put_request() function releases a request descrip-
tor; if its reference counter becomes zero, the descriptor is given back to the memory
pool from which it was taken.

Avoiding request queue congestion

Each request queue has a maximum number of allowed pending requests. The nr_
requests field of the request queue descriptor stores the maximum number of allowed
pending requests for each data transfer direction. By default, a queue has at most 128

REQ_DRIVE_CMD Request includes a special command for IDE disks

REQ_DRIVE_TASK Request includes a special command for IDE disks

REQ_DRIVE_TASKFILE Request includes a special command for IDE disks

REQ_PREEMPT Request replaces the current request in front of the queue (only for IDE disks)

REQ_PM_SUSPEND Request includes a power-management command to suspend the hardware device

REQ_PM_RESUME Request includes a power-management command to awaken the hardware device

REQ_PM_SHUTDOWN Request includes a power-management command to switch off the hardware device

REQ_BAR_PREFLUSH Request includes a “flush queue” command to be sent to the disk controller

REQ_BAR_POSTFLUSH Request includes a “flush queue” command, which has been sent to the disk controller

Table 14-8. The flags of the request descriptor (continued)

Flag Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The I/O Scheduler | 579

pending read requests and 128 pending write requests. If the number of pending read
(write) requests exceeds nr_requests, the queue is marked as full by setting the QUEUE_
FLAG_READFULL (QUEUE_FLAG_WRITEFULL) flag in the queue_flags field of the request queue
descriptor, and blockable processes trying to add requests for that data transfer direc-
tion are put to sleep in the corresponding wait queue of the request_list data
structure.

A filled-up request queue impacts negatively on the system’s performance, because it
forces many processes to sleep while waiting for the completion of I/O data trans-
fers. Thus, if the number of pending requests for a given direction exceeds the value
stored in the nr_congestion_on field of the request descriptor (by default, 113), the
kernel regards the queue as congested and tries to slow down the creation rate of the
new requests. A congested request queue becomes uncongested when the number of
pending requests falls below the value of the nr_congestion_off field (by default,
111). The blk_congestion_wait() function puts the current process to sleep until any
request queue becomes uncongested or a time-out elapses.

Activating the Block Device Driver
As we saw earlier, it’s expedient to delay activation of the block device driver in
order to increase the chances of clustering requests for adjacent blocks. The delay is
accomplished through a technique known as device plugging and unplugging.* As
long as a block device driver is plugged, the device driver is not activated even if
there are requests to be processed in the driver’s queues.

The blk_plug_device() function plugs a block device—or more precisely, a request
queue serviced by some block device driver. Essentially, the function receives as an
argument the address q of a request queue descriptor. It sets the QUEUE_FLAG_PLUGGED
bit in the q->queue_flags field; then, it restarts the dynamic timer embedded in the q->
unplug_timer field.

The blk_remove_plug() function unplugs a request queue q: it clears the QUEUE_
FLAG_PLUGGED flag and cancels the execution of the q->unplug_timer dynamic
timer. This function can be explicitly invoked by the kernel when all mergeable
requests “in sight” have been added to the queue. Moreover, the I/O scheduler
unplugs a request queue if the number of pending requests in the queue exceeds
the value stored in the unplug_thres field of the request queue descriptor (by
default, 4).

If a device remains plugged for a time interval of length q->unplug_delay (usually 3
milliseconds), the dynamic timer activated by blk_plug_device() elapses, thus the
blk_unplug_timeout() function is executed. As a consequence, the kblockd kernel
thread servicing the kblockd_workqueue work queue is awakened (see the section

* If you are confused by the terms “plugging” and “unplugging,” you might consider them equivalent to “de-
activating” and “activating,” respectively.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

580 | Chapter 14: Block Device Drivers

“Work Queues” in Chapter 4). This kernel thread executes the function whose
address is stored in the q->unplug_work data structure—that is, the blk_unplug_work()
function. In turn, this function invokes the q->unplug_fn method of the request
queue, which is usually implemented by the generic_unplug_device() function. The
generic_unplug_device() function takes care of unplugging the block device: first, it
checks whether the queue is still active; then, it invokes blk_remove_plug(); and
finally, it executes the strategy routine—request_fn method—to start processing the
next request in the queue (see the section “Device Driver Registration and Initializa-
tion” later in this chapter).

I/O Scheduling Algorithms
When a new request is added to a request queue, the generic block layer invokes the
I/O scheduler to determine that exact position of the new element in the queue. The
I/O scheduler tries to keep the request queue sorted sector by sector. If the requests
to be processed are taken sequentially from the list, the amount of disk seeking is sig-
nificantly reduced because the disk head moves in a linear way from the inner track
to the outer one (or vice versa) instead of jumping randomly from one track to
another. This heuristic is reminiscent of the algorithm used by elevators when deal-
ing with requests coming from different floors to go up or down. The elevator moves
in one direction; when the last booked floor is reached in one direction, the elevator
changes direction and starts moving in the other direction. For this reason, I/O
schedulers are also called elevators.

Under heavy load, an I/O scheduling algorithm that strictly follows the order of the
sector numbers is not going to work well. In this case, indeed, the completion time of
a data transfer strongly depends on the physical position of the data on the disk.
Thus, if a device driver is processing requests near the top of the queue (lower sector
numbers), and new requests with low sector numbers are continuously added to the
queue, then the requests in the tail of the queue can easily starve. I/O scheduling
algorithms are thus quite sophisticated.

Currently, Linux 2.6 offers four different types of I/O schedulers—or elevators—
called “Anticipatory,” “Deadline,” “CFQ (Complete Fairness Queueing),” and
“Noop (No Operation).” The default elevator used by the kernel for most block
devices is specified at boot time with the kernel parameter elevator=<name>, where
<name> is one of the following: as, deadline, cfq, and noop. If no boot time argument
is given, the kernel uses the “Anticipatory” I/O scheduler. Anyway, a device driver
can replace the default elevator with another one; a device driver can also define its
custom I/O scheduling algorithm, but this is very seldom done.

Furthermore, the system administrator can change at runtime the I/O scheduler for
a specific block device. For instance, to change the I/O scheduler used in the mas-
ter disk of the first IDE channel, the administrator can write an elevator name into
the /sys/block/hda/queue/scheduler file of the sysfs special filesystem (see the section
“The sysfs Filesystem” in Chapter 13).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The I/O Scheduler | 581

The I/O scheduler algorithm used in a request queue is represented by an elevator
object of type elevator_t; its address is stored in the elevator field of the request
queue descriptor. The elevator object includes several methods covering all possible
operations of the elevator: linking and unlinking the elevator to a request queue,
adding and merging requests to the queue, removing requests from the queue, get-
ting the next request to be processed from the queue, and so on. The elevator object
also stores the address of a table including all information required to handle the
request queue. Furthermore, each request descriptor includes an elevator_private
field that points to an additional data structure used by the I/O scheduler to handle
the request.

Let us now briefly describe the four I/O scheduling algorithms, from the simplest
one to the most sophisticated one. Be warned that designing an I/O scheduler is
much like designing a CPU scheduler (see Chapter 7): the heuristics and the values
of the adopted constants are the result of an extensive amount of testing and bench-
marking.

Generally speaking, all algorithms make use of a dispatch queue, which includes all
requests sorted according to the order in which the requests should be processed by
the device driver—the next request to be serviced by the device driver is always the
first element in the dispatch queue. The dispatch queue is actually the request queue
rooted at the queue_head field of the request queue descriptor. Almost all algorithms
also make use of additional queues to classify and sort requests. All of them allow
the device driver to add bios to existing requests and, if necessary, to merge two
“adjacent” requests.

The “Noop” elevator

This is the simplest I/O scheduling algorithm. There is no ordered queue: new
requests are always added either at the front or at the tail of the dispatch queue, and
the next request to be processed is always the first request in the queue.

The “CFQ” elevator

The main goal of the “Complete Fairness Queueing” elevator is ensuring a fair allo-
cation of the disk I/O bandwidth among all the processes that trigger the I/O
requests. To achieve this result, the elevator makes use of a large number of sorted
queues—by default, 64—that store the requests coming from the different pro-
cesses. Whenever a requested is handed to the elevator, the kernel invokes a hash
function that converts the thread group identifier of the current process (usually it
corresponds to the PID, see the section “Identifying a Process” in Chapter 3) into the
index of a queue; then, the elevator inserts the new request at the tail of this queue.
Therefore, requests coming from the same process are always inserted in the same
queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

582 | Chapter 14: Block Device Drivers

To refill the dispatch queue, the elevator essentially scans the I/O input queues in a
round-robin fashion, selects the first nonempty queue, and moves a batch of requests
from that queue into the tail of the dispatch queue.

The “Deadline” elevator

Besides the dispatch queue, the “Deadline” elevator makes use of four queues. Two of
them—the sorted queues—include the read and write requests, respectively, ordered
according to their initial sector numbers. The other two—the deadline queues—
include the same read and write requests sorted according to their “deadlines.” These
queues are introduced to avoid request starvation, which occurs when the elevator
policy ignores for a very long time a request because it prefers to handle other requests
that are closer to the last served one. A request deadline is essentially an expire timer
that starts ticking when the request is passed to the elevator. By default, the expire
time of read requests is 500 milliseconds, while the expire time for write requests is 5
seconds—read requests are privileged over write requests because they usually block
the processes that issued them. The deadline ensures that the scheduler looks at a
request if it’s been waiting a long time, even if it is low in the sort.

When the elevator must replenish the dispatch queue, it first determines the data
direction of the next request. If there are both read and write requests to be dis-
patched, the elevator chooses the “read” direction, unless the “write” direction has
been discarded too many times (to avoid write requests starvation).

Next, the elevator checks the deadline queue relative to the chosen direction: if the
deadline of the first request in the queue is elapsed, the elevator moves that request to
the tail of the dispatch queue; it also moves a batch of requests taken from the sorted
queue, starting from the request following the expired one. The length of this batch is
longer if the requests happen to be physically adjacent on disks, shorter otherwise.

Finally, if no request is expired, the elevator dispatches a batch of requests starting
with the request following the last one taken from the sorted queue. When the cur-
sor reaches the tail of the sorted queue, the search starts again from the top (“one-
way elevator”).

The “Anticipatory” elevator

The “Anticipatory” elevator is the most sophisticated I/O scheduler algorithm
offered by Linux. Basically, it is an evolution of the “Deadline” elevator, from which
it borrows the fundamental mechanism: there are two deadline queues and two
sorted queues; the I/O scheduler keeps scanning the sorted queues, alternating
between read and write requests, but giving preference to the read ones. The scan-
ning is basically sequential, unless a request expires. The default expire time for read
requests is 125 milliseconds, while the default expire time for write requests is 250
milliseconds. The elevator, however, follows some additional heuristics:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The I/O Scheduler | 583

• In some cases, the elevator might choose a request behind the current position in
the sorted queue, thus forcing a backward seek of the disk head. This happens,
typically, when the seek distance for the request behind is less than half the seek
distance of the request after the current position in the sorted queue.

• The elevator collects statistics about the patterns of I/O operations triggered by
every process in the system. Right after dispatching a read request that comes
from some process P, the elevator checks whether the next request in the sorted
queue comes from the same process P. If so, the next request is dispatched
immediately. Otherwise, the elevator looks at the collected statistics about
process P: if it decides that process P will likely issue another read request soon,
then it stalls for a short period of time (by default, roughly 7 milliseconds). Thus,
the elevator might anticipate a read request coming from process P that is
“close” on disk to the request just dispatched.

Issuing a Request to the I/O Scheduler
As seen in the section “Submitting a Request” earlier in this chapter, the generic_
make_request() function invokes the make_request_fn method of the request queue
descriptor to transmit a request to the I/O scheduler. This method is usually imple-
mented by the __make_request() function; it receives as its parameters a request_
queue descriptor q and a bio descriptor bio, and it performs the following operations:

1. Invokes the blk_queue_bounce() function to set up a bounce buffer, if required
(see later). If a bounce buffer was created, the __make_request() function oper-
ates on it rather than on the original bio.

2. Invokes the I/O scheduler function elv_queue_empty() to check whether there
are pending requests in the request queue—notice that the dispatch queue might
be empty, but other queues of the I/O scheduler might contain pending
requests. If there are no pending requests, it invokes the blk_plug_device() func-
tion to plug the request queue (see the section “Activating the Block Device
Driver” earlier in this chapter), and jumps to step 5.

3. Here the request queue includes pending requests. Invokes the elv_merge() I/O
scheduler function to check whether the new bio can be merged inside an exist-
ing request. The function may return three possible values:

• ELEVATOR_NO_MERGE: the bio cannot be included in an already existing
request: in that case, the function jumps to step 5.

• ELEVATOR_BACK_MERGE: the bio might be added as the last bio of some request
req: in that case, the function invokes the q->back_merge_fn method to check
whether the request can be extended. If not, the function jumps to step 5.
Otherwise it inserts the bio descriptor at the tail of the req’s list and updates
the req’s fields. Then, it tries to merge the request with a following request
(the new bio might fill a hole between the two requests).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

584 | Chapter 14: Block Device Drivers

• ELEVATOR_FRONT_MERGE: the bio can be added as the first bio of some request
req: in that case, the function invokes the q->front_merge_fn method to
check whether the request can be extended. If not, it jumps to step 5. Other-
wise, it inserts the bio descriptor at the head of the req’s list and updates the
req’s fields. Then, the function tries to merge the request with the preceding
request.

4. The bio has been merged inside an already existing request. Jumps to step 7 to
terminate the function.

5. Here the bio must be inserted in a new request. Allocates a new request descrip-
tor. If there is no free memory, the function suspends the current process, unless
the BIO_RW_AHEAD flag in bio->bi_rw is set, which means that the I/O operation is
a read-ahead (see Chapter 16); in this case, the function invokes bio_endio() and
terminates: the data transfer will not be executed. For a description of bio_
endio(), see step 1 of generic_make_request() in the earlier section “Submitting
a Request.”

6. Initializes the fields of the request descriptor. In particular:

a. Initializes the various fields that store the sector numbers, the current bio,
and the current segment according to the contents of the bio descriptor.

b. Sets the REQ_CMD flag in the flags field (this is a normal read or write opera-
tion).

c. If the page frame of the first bio segment is in low memory, it sets the buffer
field to the linear address of that buffer.

d. Sets the rq_disk field with the bio->bi_bdev->bd_disk address.

e. Inserts the bio in the request list.

f. Sets the start_time field to the value of jiffies.

7. All done. Before terminating, however, it checks whether the BIO_RW_SYNC flag in
bio->bi_rw is set. If so, it invokes generic_unplug_device() on the request queue
to unplug the driver (see the section “Activating the Block Device Driver” earlier
in this chapter).

8. Terminates.

If the request queue was not empty before invoking __make_request(), either the
request queue is already unplugged, or it will be unplugged soon—because each
plugged request queue q with pending requests has a running q->unplug_timer
dynamic timer. On the other hand, if the request queue was empty, the __make_
request() function plugs it. Sooner (on exiting from __make_request(), if the BIO_RW_
SYNC bio flag is set) or later (in the worst case, when the unplug timer decays), the
request queue will be unplugged. In any case, eventually the strategy routine of the
block device driver will take care of the requests in the dispatch queue (see the sec-
tion “Device Driver Registration and Initialization” earlier in this chapter).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Block Device Drivers | 585

The blk_queue_bounce() function

The blk_queue_bounce() function looks at the flags in q->bounce_gfp and at the
threshold in q->bounce_pfn to determine whether buffer bouncing might be required.
This happens when some of the buffers in the request are located in high memory
and the hardware device is not able to address them.

Older DMA for ISA buses only handled 24-bit physical addresses. In this case, the
buffer bouncing threshold is set to 16 MB, that is, to page frame number 4096. Block
device drivers, however, do not usually rely on buffer bouncing when dealing with
older devices; rather, they prefer to directly allocate the DMA buffers in the ZONE_DMA
memory zone.

If the hardware device cannot cope with buffers in high memory, the function checks
whether some of the buffers in the bio must really be bounced. In this case, it makes
a copy of the bio descriptor, thus creating a bounce bio; then, for each segment’s page
frame having number equal to or greater than q->bounce_pfn, it performs the follow-
ing steps:

1. Allocates a page frame in the ZONE_NORMAL or ZONE_DMA memory zone, according
to the allocation flags.

2. Updates the bv_page field of the segment in the bounce bio so that it points to
the descriptor of the new page frame.

3. If bio->bio_rw specifies a write operation, it invokes kmap() to temporarily map
the high memory page in the kernel address space, copies the high memory page
onto the low memory page, and invokes kunmap() to release the mapping.

The blk_queue_bounce() function then sets the BIO_BOUNCED flag in the bounce bio,
initializes a specific bi_end_io method for the bounce bio, and finally stores in the
bi_private field of the bounce bio the pointer to the original bio. When the I/O data
transfer on the bounce bio terminates, the function that implements the bi_end_io
method copies the data to the high memory buffer (only for a read operation) and
releases the bounce bio.

Block Device Drivers
Block device drivers are the lowest component of the Linux block subsystem. They
get requests from I/O scheduler, and do whatever is required to process them.

Block device drivers are, of course, integrated within the device driver model
described in the section “The Device Driver Model” in Chapter 13. Therefore, each
of them refers to a device_driver descriptor; moreover, each disk handled by the
driver is associated with a device descriptor. These descriptors, however, are rather
generic: the block I/O subsystem must store additional information for each block
device in the system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

586 | Chapter 14: Block Device Drivers

Block Devices
A block device driver may handle several block devices. For instance, the IDE device
driver can handle several IDE disks, each of which is a separate block device. Fur-
thermore, each disk is usually partitioned, and each partition can be seen as a logical
block device. Clearly, the block device driver must take care of all VFS system calls
issued on the block device files associated with the corresponding block devices.

Each block device is represented by a block_device descriptor, whose fields are listed
in Table 14-9.

Table 14-9. The fields of the block device descriptor

Type Field Description

dev_t bd_dev Major and minor numbers of the block device

struct inode * bd_inode Pointer to the inode of the file associated with the block
device in the bdev filesystem

int bd_openers Counter of how many times the block device has been
opened

struct semaphore bd_sem Semaphore protecting the opening and closing of the
block device

struct semaphore bd_mount_sem Semaphore used to forbid new mounts on the block
device

struct list_head bd_inodes Head of a list of inodes of opened block device files for
this block device

void * bd_holder Current holder of block device descriptor

int bd_holders Counter for multiple settings of the bd_holder field

struct
block_device *

bd_contains If block device is a partition, it points to the block device
descriptor of the whole disk; otherwise, it points to this
block device descriptor

unsigned bd_block_size Block size

struct hd_struct * bd_part Pointer to partition descriptor (NULL if this block device
is not a partition)

unsigned bd_part_count Counter of how many times partitions included in this
block device have been opened

int bd_invalidated Flag set when the partition table on this block device
needs to be read

struct gendisk * bd_disk Pointer to gendisk structure of the disk underlying this
block device

struct list_head * bd_list Pointers for the block device descriptor list

struct
backing_dev_info *

bd_inode_back
ing_dev_info

Pointer to a specialized backing_dev_info descrip-
tor for this block device (usually NULL)

unsigned long bd_private Pointer to private data of the block device holder

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Block Device Drivers | 587

All block device descriptors are inserted in a global list, whose head is represented by
the all_bdevs variable; the pointers for list linkage are in the bd_list field of the
block device descriptor.

If the block device descriptor refers to a disk partition, the bd_contains field points to
the descriptor of the block device associated with the whole disk, while the bd_part
field points to the hd_struct partition descriptor (see the section “Representing Disks
and Disk Partitions” earlier in this chapter). Otherwise, if the block device descrip-
tor refers to a whole disk, the bd_contains field points to the block device descriptor
itself, and the bd_part_count field records how many times the partitions on the disk
have been opened.

The bd_holder field stores a linear address representing the holder of the block
device. The holder is not the block device driver that services the I/O data transfers
of the device; rather, it is a kernel component that makes use of the device and has
exclusive, special privileges (for instance, it can freely use the bd_private field of the
block device descriptor). Typically, the holder of a block device is the filesystem
mounted over it. Another common case occurs when a block device file is opened for
exclusive access: the holder is the corresponding file object.

The bd_claim() function sets the bd_holder field with a specified address; con-
versely, the bd_release() function resets the field to NULL. Be aware, however, that
the same kernel component can invoke bd_claim() many times; each invocation
increases the bd_holders field. To release the block device, the kernel component
must invoke bd_release() a corresponding number of times.

Figure 14-3 refers to a whole disk and illustrates how the block device descriptors are
linked to the other main data structures of the block I/O subsystem.

Figure 14-3. Linking the block device descriptors with the other structures of the block subsystem

block_device
(disk)

bd_contains

bd_contains

block_device
(partition)

gendisk

bd_disk

bd_disk

hd_struct hd_struct hd_struct hd_struct

part

bd_part

request_queue
queue

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

588 | Chapter 14: Block Device Drivers

Accessing a block device

When the kernel receives a request for opening a block device file, it must first deter-
mine whether the device file is already open. In fact, if the file is already open, the
kernel must not create and initialize a new block device descriptor; rather, it should
update the already existing block device descriptor. To complicate life, block device
files that have the same major and minor numbers but different pathnames are
viewed by the VFS as different files, although they really refer to the same block
device. Therefore, the kernel cannot determine whether a block device is already in
use by simply checking for the existence in the inode cache of an object for a block
device file.

The relationship between a major and minor number and the corresponding block
device descriptor is maintained through the bdev special filesystem (see the section
“Special Filesystems” in Chapter 12). Each block device descriptor is coupled with a
bdev special file: the bd_inode field of the block device descriptor points to the corre-
sponding bdev inode; conversely, such an inode encodes both the major and minor
numbers of the block device and the address of the corresponding descriptor.

The bdget() function receives as its parameter the major and minor numbers of a
block device: It looks up in the bdev filesystem the associated inode; if such inode
does not exist, the function allocates a new inode and new block device descriptor.
In any case, the function returns the address of the block device descriptor corre-
sponding to given major and minor numbers.

Once the block device descriptor for a block device has been found, the kernel can
determine whether the block device is currently in use by checking the value of the
bd_openers field: if it is positive, the block device is already in use (possibly by means
of a different device file). The kernel also maintains a list of inode objects relative to
opened block device files. This list is rooted at the bd_inodes field of the block device
descriptor; the i_devices field of the inode object stores the pointers for the previous
and next element in this list.

Device Driver Registration and Initialization
Let’s now explain the essential steps involved in setting up a new device driver for a
block device. Clearly, the description that follows is very succinct, nevertheless it
could be useful to understand how and when the main data structures used by the
block I/O subsystem are initialized.

We silently omit many steps required for all kinds of device drivers and already men-
tioned in Chapter 13. For example, we skip all steps required for registering the
driver itself (see the section “The Device Driver Model” in Chapter 13). Usually, the
block device belongs to a standard bus architecture such as PCI or SCSI, and the ker-
nel offers helper functions that, as a side effect, register the driver in the device driver
model.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Block Device Drivers | 589

Defining a custom driver descriptor

First of all, the device driver needs a custom descriptor foo of type foo_dev_t holding
the data required to drive the hardware device. For every device, the descriptor will
store information such as the I/O ports used to program the device, the IRQ line of
the interrupts raised by the device, the internal status of the device, and so on. The
descriptor must also include a few fields required by the block I/O subsystem:

struct foo_dev_t {
 [...]
 spinlock_t lock;
 struct gendisk *gd;
 [...]
} foo;

The lock field is a spin lock used to protect the fields of the foo descriptor; its
address is often passed to kernel helper functions, which can thus protect the data
structures of the block I/O subsystem specific to the driver. The gd field is a pointer
to the gendisk descriptor that represents the whole block device (disk) handled by
this driver.

Reserving the major number

The device driver must reserve a major number for its own purposes. Traditionally,
this is done by invoking the register_blkdev() function:

err = register_blkdev(FOO_MAJOR, "foo");
if (err) goto error_major_is_busy;

This function is very similar to register_chrdev() presented in the section “Assign-
ing Device Numbers” in Chapter 13: it reserves the major number FOO_MAJOR and
associates the name foo to it. Notice that there is no way to allocate a subrange of
minor numbers, because there is no analog of register_chrdev_region(); moreover,
no link is established between the reserved major number and the data structures of
the driver. The only visible effect of register_blkdev() is to include a new item in the
list of registered major numbers in the /proc/devices special file.

Initializing the custom descriptor

All the fields of the foo descriptor must be initialized properly before making use of
the driver. To initialize the fields related to the block I/O subsystem, the device
driver could execute the following instructions:

spin_lock_init(&foo.lock);
foo.gd = alloc_disk(16);
if (!foo.gd) goto error_no_gendisk;

The driver initializes the spin lock, then allocates the disk descriptor. As shown ear-
lier in Figure 14-3, the gendisk structure is crucial for the block I/O subsystem,
because it references many other data structures. The alloc_disk() function allo-
cates also the array that stores the partition descriptors of the disk. The argument of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

590 | Chapter 14: Block Device Drivers

the function is the number of hd_struct elements in the array; the value 16 means
that the driver can support disks containing up to 15 partitions (partition 0 is not
used).

Initializing the gendisk descriptor

Next, the driver initializes some fields of the gendisk descriptor:

foo.gd->private_data = &foo;
foo.gd->major = FOO_MAJOR;
foo.gd->first_minor = 0;
foo.gd->minors = 16;
set_capacity(foo.gd, foo_disk_capacity_in_sectors);
strcpy(foo.gd->disk_name, "foo");
foo.gd->fops = &foo_ops;

The address of the foo descriptor is saved in the private_data of the gendisk struc-
ture, so that low-level driver functions invoked as methods by the block I/O sub-
system can quickly find the driver descriptor—this improves efficiency if the driver
can handle more than one disk at a time. The set_capacity() function initializes the
capacity field with the size of the disk in 512-byte sectors—this value is likely deter-
mined by probing the hardware and asking about the disk parameters.

Initializing the table of block device methods

The fops field of the gendisk descriptor is initialized with the address of a custom
table of block device methods (see Table 14-4 earlier in this chapter).* Quite likely,
the foo_ops table of the device driver includes functions specific to the device driver.
As an example, if the hardware device supports removable disks, the generic block
layer may invoke the media_changed method to check whether the disk is changed
since the last mount or open operation on the block device. This check is usually
done by sending some low-level commands to the hardware controller, thus the
implementation of the media_changed method is always specific to the device driver.

Similarly, the ioctl method is only invoked when the generic block layer does not
know how to handle some ioctl command. For instance, the method is typically
invoked when an ioctl() system call asks about the disk geometry, that is, the num-
ber of cylinders, tracks, sectors, and heads used by the disk. Thus, the implementa-
tion of this method is specific to the device driver.

Allocating and initializing a request queue

Our brave device driver designer might now set up a request queue that will collect
the requests waiting to be serviced. This can be easily done as follows:

* The block device methods should not be confused with the block device file operations; see the section
“Opening a Block Device File” later in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Block Device Drivers | 591

foo.gd->rq = blk_init_queue(foo_strategy, &foo.lock);
if (!foo.gd->rq) goto error_no_request_queue;
blk_queue_hardsect_size(foo.gd->rd, foo_hard_sector_size);
blk_queue_max_sectors(foo.gd->rd, foo_max_sectors);
blk_queue_max_hw_segments(foo.gd->rd, foo_max_hw_segments);
blk_queue_max_phys_segments(foo.gd->rd, foo_max_phys_segments);

The blk_init_queue() function allocates a request queue descriptor and initializes
many of its fields with default values. It receives as its parameters the address of the
device descriptor’s spin lock—for the foo.gd->rq->queue_lock field—and the address
of the strategy routine of the device driver—for the foo.gd->rq->request_fn field; see
the next section; “The Strategy Routine.” The blk_init_queue() function also initial-
izes the foo.gd->rq->elevator field, forcing the driver to use the default I/O sched-
uler algorithm. If the device driver wants to use a different elevator, it may later
override the address in the elevator field.

Next, some helper functions set various fields of the request queue descriptor with
the proper values for the device driver (look at Table 14-6 for the similarly named
fields).

Setting up the interrupt handler

As described in the section “I/O Interrupt Handling” in Chapter 4, the driver needs
to register the IRQ line for the device. This can be done as follows:

request_irq(foo_irq, foo_interrupt,
 SA_INTERRUPT|SA_SHIRQ, "foo", NULL);

The foo_interrupt() function is the interrupt handler for the device; we discuss
some of its peculiarities in the section “The Interrupt Handler” later in this chapter).

Registering the disk

Finally, all the device driver’s data structures are ready: the last step of the initializa-
tion phase consists of “registering” and activating the disk. This can be achieved sim-
ply by executing:

add_disk(foo.gd);

The add_disk() function receives as its parameter the address of the gendisk descrip-
tor, and essentially executes the following operations:

1. Sets the GENHD_FL_UP flag of gd->flags.

2. Invokes kobj_map() to establish the link between the device driver and the
device’s major number with its associated range of minor numbers (see the sec-
tion “Character Device Drivers” in Chapter 13; be warned that in this case the
kobject mapping domain is represented by the bdev_map variable).

3. Registers the kobject included in the gendisk descriptor in the device driver
model as a new device serviced by the device driver (e.g., /sys/block/foo).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

592 | Chapter 14: Block Device Drivers

4. Scans the partition table included in the disk, if any; for each partition found, prop-
erly initializes the corresponding hd_struct descriptor in the foo.gd->part array.
Also registers the partitions in the device driver model (e.g., /sys/block/foo/foo1).

5. Registers the kobject embedded in the request queue descriptor in the device
driver model (e.g., /sys/block/foo/queue).

Once add_disk() returns, the device driver is actively working. The function that car-
ried on the initialization phase terminates; the strategy routine and the interrupt han-
dler take care of each request passed to the device driver by the I/O scheduler.

The Strategy Routine
The strategy routine is a function—or a group of functions—of the block device
driver that interacts with the hardware block device to satisfy the requests collected
in the dispatch queue. The strategy routine is invoked by means of the request_fn
method of the request queue descriptor—the foo_strategy() function in the exam-
ple carried on in the previous section. The I/O scheduler layer passes to this func-
tion the address q of the request queue descriptor.

As we’ll see, the strategy routine is usually started after inserting a new request in an
empty request queue. Once activated, the block device driver should handle all
requests in the queue and terminate when the queue is empty.

A naïve implementation of the strategy routine could be the following: for each ele-
ment in the dispatch queue, remove it from the queue, interact with the block device
controller to service the request, and wait until the data transfer completes. Then
proceed with the next request in the dispatch queue.

Such an implementation is not very efficient. Even assuming that the data can be
transferred using DMA, the strategy routine must suspend itself while waiting for I/O
completion. This means that the strategy routine should execute on a dedicated ker-
nel thread (we don’t want to penalize an unrelated user process, do we?). Moreover,
such a driver would not be able to support modern disk controllers that can process
multiple I/O data transfers at a time.

Therefore, most block device drivers adopt the following strategy:

• The strategy routine starts a data transfer for the first request in the queue and
sets up the block device controller so that it raises an interrupt when the data
transfer completes. Then the strategy routine terminates.

• When the disk controller raises the interrupt, the interrupt handler invokes the
strategy routine again (often directly, sometimes by activating a work queue).
The strategy routine either starts another data transfer for the current request or,
if all the chunks of data of the request have been transferred, removes the
request from the dispatch queue and starts processing the next request.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Block Device Drivers | 593

Requests can be composed of several bios, which in turn can be composed of several
segments. Basically, block device drivers make use of DMA in two ways:

• The driver sets up a different DMA transfer to service each segment in each bio
of the request

• The driver sets up a single scatter-gather DMA transfer to service all segments in
all bios of the request

Ultimately, the design of the strategy routine of the device drivers depends on the
characteristics of the block controller. Each physical block device is inherently differ-
ent from all others (for example, a floppy driver groups blocks in disk tracks and
transfers a whole track in a single I/O operation), so making general assumptions on
how a device driver should service a request is meaningless.

In our example, the foo_strategy() strategy routine could execute the following
actions:

1. Gets the current request from the dispatch queue by invoking the elv_next_
request() I/O scheduler helper function. If the dispatch queue is empty, the
strategy routine returns:

req = elv_next_request(q);
if (!req) return;

2. Executes the blk_fs_request macro to check whether the REQ_CMD flag of the
request is set, that is, whether the request contains a normal read or write opera-
tion:

if (!blk_fs_request(req))
 goto handle_special_request;

3. If the block device controller supports scatter-gather DMA, it programs the disk
controller so as to perform the data transfer for the whole request and to raise an
interrupt when the transfer completes. The blk_rq_map_sg() helper function
returns a scatter-gather list that can be immediately used to start the transfer.

4. Otherwise, the device driver must transfer the data segment by segment. In this
case, the strategy routine executes the rq_for_each_bio and bio_for_each_
segment macros, which walk the list of bios and the list of segments inside each
bio, respectively:

rq_for_each_bio(bio, rq)
 bio_for_each_segment(bvec, bio, i) {
 /* transfer the i-th segment bvec */
 local_irq_save(flags);
 addr = kmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ);

foo_start_dma_transfer(addr+bvec->bv_offset, bvec->bv_len);
 kunmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ);
 local_irq_restore(flags);
 }

The kmap_atomic() and kunmap_atomic() functions are required if the data to be
transferred can be in high memory. The foo_start_dma_transfer() function

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

594 | Chapter 14: Block Device Drivers

programs the hardware device so as to start the DMA transfer and to raise an
interrupt when the I/O operation completes.

5. Returns.

The Interrupt Handler
The interrupt handler of a block device driver is activated when a DMA transfer ter-
minates. It should check whether all chunks of data in the request have been trans-
ferred. If so, the interrupt handler invokes the strategy routine to process the next
request in the dispatch queue. Otherwise, the interrupt handler updates the field of
the request descriptor and invokes the strategy routine to process the data transfer
yet to be performed.

A typical fragment of the interrupt handler of our foo device driver is the following:

irqreturn_t foo_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
 struct foo_dev_t *p = (struct foo_dev_t *) dev_id;
 struct request_queue *rq = p->gd->rq;
 [...]
 if (!end_that_request_first(rq, uptodate, nr_sectors)) {
 blkdev_dequeue_request(rq);
 end_that_request_last(rq);
 }
 rq->request_fn(rq);
 [...]
 return IRQ_HANDLED;
}

The job of ending a request is split in two functions called end_that_request_first()
and end_that_request_last().

The end_that_request_first() function receives as arguments a request descriptor, a
flag indicating if the DMA data transfer completed successfully, and the number of
sectors transferred in the DMA transfer (the end_that_request_chunk() function is
similar, but it receives the number of bytes transferred instead of the number of sec-
tors). Essentially, the function scans the bios in the request and the segments inside
each bio, then updates the fields of the request descriptor in such a way to:

• Set the bio field so that it points to the first unfinished bio in the request.

• Set the bi_idx of the unfinished bio so that it points to the first unfinished seg-
ment.

• Set the bv_offset and bv_len fields of the unfinished segment so that they spec-
ify the data yet to be transferred.

The function also invokes bio_endio() on each bio that has been completely trans-
ferred.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Opening a Block Device File | 595

The end_that_request_first() function returns 0 if all chunks of data in the request
have been transferred; otherwise, it returns 1. If the returned value is 1, the interrupt
handler restarts the strategy routine, which thus continues processing the same
request. Otherwise, the interrupt handler removes the request from the request
queue (typically by using blkdev_dequeue_request()), invokes the end_that_request_
last() helper function, and restarts the strategy routine to process the next request
in the dispatch queue.

The end_that_request_last() function updates some disk usage statistics, removes
the request descriptor from the dispatch queue of the rq->elevator I/O scheduler,
wakes up any process sleeping in the waiting completion of the request descriptor,
and releases that descriptor.

Opening a Block Device File
We conclude this chapter by describing the steps performed by the VFS when open-
ing a block device file.

The kernel opens a block device file every time that a filesystem is mounted over a
disk or partition, every time that a swap partition is activated, and every time that a
User Mode process issues an open() system call on a block device file. In all cases,
the kernel executes essentially the same operations: it looks for the block device
descriptor (possibly allocating a new descriptor if the block device is not already in
use), and sets up the file operation methods for the forthcoming data transfers.

In the section “VFS Handling of Device Files” in Chapter 13, we described how the
dentry_open() function customizes the methods of the file object when a device file is
opened. In this case, the f_op field of the file object is set to the address of the def_
blk_fops table, whose content is shown in Table 14-10.

Table 14-10. The default block device file operations (def_blk_fops table)

Method Function

open blkdev_open()

release blkdev_close()

llseek block_llseek()

read generic_file_read()

write blkdev_file_write()

aio_read generic_file_aio_read()

aio_write blkdev_file_aio_write()

mmap generic_file_mmap()

fsync block_fsync()

ioctl block_ioctl()

compat-ioctl compat_blkdev_ioctl()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

596 | Chapter 14: Block Device Drivers

Here we are only concerned with the open method, which is invoked by the dentry_
open() function. The blkdev_open() function receives as its parameters inode and
filp, which store the addresses of the inode and file objects respectively; the func-
tion essentially executes the following steps:

1. Executes bd_acquire(inode) to get the address bdev of the block device descrip-
tor. In turn, this function receives the inode object address and performs the fol-
lowing steps:

a. Checks whether the inode->i_bdev field of the inode object is not NULL; if it
is, the block device file has been opened already, and this field stores the
address of the corresponding block descriptor. In this case, the function
increases the usage counter of the inode->i_bdev->bd_inode inode of the
bdev special filesystem associated with the block device, and returns the
address inode->i_bdev of the descriptor.

b. Here the block device file has not been opened yet. Executes bdget(inode->
i_rdev) to get the address of the block device descriptor corresponding to
the major and minor number of the block device file (see the section “Block
Devices” earlier in this chapter). If the descriptor does not already exist,
bdget() allocates it; notice however that the descriptor might already exist,
for instance because the block device is already being accessed by means of
another block device file.

c. Stores the block device descriptor address in inode->i_bdev, so as to speed
up future opening operations on the same block device file.

d. Sets the inode->i_mapping field with the value of the corresponding field in
the bdev inode. This is the pointer to the address space object, which will be
explained in the section “The address_space Object” in Chapter 15.

e. Inserts inode into the list of opened inodes of the block device descriptor
rooted at bdev->bd_inodes.

f. Returns the address bdev of the descriptor.

2. Sets the filp->i_mapping field with the value of inode->i_mapping (see step 1(d)
above).

3. Gets the address of the gendisk descriptor relative to this block device:
disk = get_gendisk(bdev->bd_dev, &part);

If the block device being opened is a partition, the function also returns its index in
the part local variable; otherwise, part is set to zero. The get_gendisk() function

readv generic_file_readv()

writev generic_file_write_nolock()

sendfile generic_file_sendfile()

Table 14-10. The default block device file operations (def_blk_fops table) (continued)

Method Function

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Opening a Block Device File | 597

simply invokes kobj_lookup() on the bdev_map kobject mapping domain passing
the major and minor number of the device (see also the section “Device Driver
Registration and Initialization” earlier in this chapter).

4. If bdev->bd_openers is not equal to zero, the block device has already been
opened. Checks the bdev->bd_contains field:

a. If it is equal to bdev, the block device is a whole disk: invokes the bdev->bd_
disk->fops->open block device method, if defined, then checks the bdev->bd_
invalidated field and invokes, if necessary, the rescan_partitions() functions
(see comments on steps 6a and 6c later).

b. If it not equal to bdev, the block device is a partition: increases the bdev->bd_
contains->bd_part_count counter.

Then, jumps to step 8.

5. Here the block device is being accessed for the first time. Initializes bdev->bd_
disk with the address disk of the gendisk descriptor.

6. If the block device is a whole disk (part is zero), it executes the following sub-
steps:

a. If defined, it executes the disk->fops->open block device method: it is a cus-
tom function defined by the block device driver to perform any specific last-
minute initialization.

b. Gets from the hardsect_size field of the disk->queue request queue the sec-
tor size in bytes, and uses this value to set properly the bdev->bd_block_size
and bdev->bd_inode->i_blkbits fields. Sets also the bdev->bd_inode->i_size
field with the size of the disk computed from disk->capacity.

c. If the bdev->bd_invalidated flag is set, it invokes rescan_partitions() to
scan the partition table and update the partition descriptors. The flag is set
by the check_disk_change block device method, which applies only to
removable devices.

7. Otherwise if the block device is a partition (part is not zero), it executes the fol-
lowing substeps:

a. Invokes bdget() again—this time passing the disk->first_minor minor
number—to get the address whole of the block descriptor for the whole disk.

b. Repeats steps from 3 to 6 for the block device descriptor of the whole disk,
thus initializing it if necessary.

c. Sets bdev->bd_contains to the address of the descriptor of the whole disk.

d. Increases whole->bd_part_count to account for the new open operation on
the partition of the disk.

e. Sets bdev->bd_part with the value in disk->part[part-1]; it is the address of
the hd_struct descriptor of the partition. Also, executes kobject_get(&bdev->
bd_part->kobj) to increase the reference counter of the partition.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

598 | Chapter 14: Block Device Drivers

f. As in step 6b, sets the inode fields that specify size and sector size of the par-
tition.

8. Increases the bdev->bd_openers counter.

9. If the block device file is being opened in exclusive mode (O_EXCL flag in filp->f_
flags set), it invokes bd_claim(bdev, filp) to set the holder of the block device
(see the section “Block Devices” earlier in this chapter). In case of error—block
device has already an holder—it releases the block device descriptor and returns
the error code -EBUSY.

10. Terminates by returning 0 (success).

Once the blkdev_open() function terminates, the open() system call proceeds as
usual. Every future system call issued on the opened file will trigger one of the
default block device file operations. As we will see in Chapter 16, each data transfer
to or from the block device is effectively implemented by submitting requests to the
generic block layer.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

599

Chapter 15, CHAPTER 15

The Page Cache

As already mentioned in the section “The Common File Model” in Chapter 12, a
disk cache is a software mechanism that allows the system to keep in RAM some
data that is normally stored on a disk, so that further accesses to that data can be sat-
isfied quickly without accessing the disk.

Disk caches are crucial for system performance, because repeated accesses to the
same disk data are quite common. A User Mode process that interacts with a disk is
entitled to ask repeatedly to read or write the same disk data. Moreover, different
processes may also need to address the same disk data at different times. As an
example, you may use the cp command to copy a text file and then invoke your
favorite editor to modify it. To satisfy your requests, the command shell will create
two different processes that access the same file at different times.

We have already encountered other disk caches in Chapter 12: the dentry cache,
which stores dentry objects representing filesystem pathnames, and the inode cache,
which stores inode objects representing disk inodes. Notice, however, that dentry
objects and inode objects are not mere buffers storing the contents of some disk
blocks; thus, the dentry cache and the inode cache are rather peculiar as disk caches.

This chapter deals with the page cache, which is a disk cache working on whole
pages of data. We introduce the page cache in the first section. Then, we discuss in
the section “Storing Blocks in the Page Cache” how the page cache can be used to
retrieve single blocks of data (for instance, superblocks and inodes); this feature is
crucial to speed up the VFS and the disk-based filesystems. Next, we describe in the
section “Writing Dirty Pages to Disk” how the dirty pages in the page cache are writ-
ten back to disk. Finally, we mention in the last section “The sync(), fsync(), and
fdatasync() System Calls” some system calls that allow a user to flush the contents of
the page cache so as to update the disk contents.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

600 | Chapter 15: The Page Cache

The Page Cache
The page cache is the main disk cache used by the Linux kernel. In most cases, the
kernel refers to the page cache when reading from or writing to disk. New pages are
added to the page cache to satisfy User Mode processes’s read requests. If the page is
not already in the cache, a new entry is added to the cache and filled with the data
read from the disk. If there is enough free memory, the page is kept in the cache for
an indefinite period of time and can then be reused by other processes without
accessing the disk.

Similarly, before writing a page of data to a block device, the kernel verifies whether
the corresponding page is already included in the cache; if not, a new entry is added
to the cache and filled with the data to be written on disk. The I/O data transfer does
not start immediately: the disk update is delayed for a few seconds, thus giving a
chance to the processes to further modify the data to be written (in other words, the
kernel implements deferred write operations).

Kernel code and kernel data structures don’t need to be read from or written to disk.*

Thus, the pages included in the page cache can be of the following types:

• Pages containing data of regular files; in Chapter 16, we describe how the kernel
handles read, write, and memory mapping operations on them.

• Pages containing directories; as we’ll see in Chapter 18, Linux handles the direc-
tories much like regular files.

• Pages containing data directly read from block device files (skipping the filesys-
tem layer); as discussed in Chapter 16, the kernel handles them using the same
set of functions as for pages containing data of regular files.

• Pages containing data of User Mode processes that have been swapped out on
disk. As we’ll see in Chapter 17, the kernel could be forced to keep in the page
cache some pages whose contents have been already written on a swap area
(either a regular file or a disk partition).

• Pages belonging to files of special filesystems, such as the shm special filesystem
used for Interprocess Communication (IPC) shared memory region (see
Chapter 19).

As you can see, each page included in the page cache contains data belonging to
some file. This file—or more precisely the file’s inode—is called the page’s owner.
(As we will see in Chapter 17, pages containing swapped-out data have the same
owner even if they refer to different swap areas.)

* Well, almost never: if you want to resume the whole state of the system after a shutdown, you can perform
a “suspend to disk” operation (hibernation), which saves the content of the whole RAM on a swap partition.
We won’t further discuss this case.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Page Cache | 601

Practically all read() and write() file operations rely on the page cache. The only
exception occurs when a process opens a file with the O_DIRECT flag set: in this case,
the page cache is bypassed and the I/O data transfers make use of buffers in the User
Mode address space of the process (see the section “Direct I/O Transfers” in
Chapter 16); several database applications make use of the O_DIRECT flag so that they
can use their own disk caching algorithm.

Kernel designers have implemented the page cache to fulfill two main requirements:

• Quickly locate a specific page containing data relative to a given owner. To take
the maximum advantage from the page cache, searching it should be a very fast
operation.

• Keep track of how every page in the cache should be handled when reading or
writing its content. For instance, reading a page from a regular file, a block
device file, or a swap area must be performed in different ways, thus the kernel
must select the proper operation depending on the page’s owner.

The unit of information kept in the page cache is, of course, a whole page of data. As
we’ll see in Chapter 18, a page does not necessarily contain physically adjacent disk
blocks, so it cannot be identified by a device number and a block number. Instead, a
page in the page cache is identified by an owner and by an index within the owner’s
data—usually, an inode and an offset inside the corresponding file.

The address_space Object
The core data structure of the page cache is the address_space object, a data struc-
ture embedded in the inode object that owns the page.* Many pages in the cache may
refer to the same owner, thus they may be linked to the same address_space object.
This object also establishes a link between the owner’s pages and a set of methods
that operate on these pages.

Each page descriptor includes two fields called mapping and index, which link the
page to the page cache (see the section “Page Descriptors” in Chapter 8). The first
field points to the address_space object of the inode that owns the page. The second
field specifies the offset in page-size units within the owner’s “address space,” that is,
the position of the page’s data inside the owner’s disk image. These two fields are
used when looking for a page in the page cache.

Quite surprisingly, the page cache may happily contain multiple copies of the same
disk data. For instance, the same 4-KB block of data of a regular file can be accessed
in the following ways:

* An exception occurs for pages that have been swapped out. As we will see in Chapter 17, these pages have a
common address_space object not included in any inode.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

602 | Chapter 15: The Page Cache

• Reading the file; hence, the data is included in a page owned by the regular file’s
inode.

• Reading the block from the device file (disk partition) that hosts the file; hence,
the data is included in a page owned by the master inode of the block device file.

Thus, the same disk data appears in two different pages referenced by two different
address_space objects.

The fields of the address_space object are shown in Table 15-1.

If the owner of a page in the page cache is a file, the address_space object is embed-
ded in the i_data field of a VFS inode object. The i_mapping field of the inode always
points to the address_space object of the owner of the pages containing the inode’s
data. The host field of the address_space object points to the inode object in which
the descriptor is embedded.

Table 15-1. The fields of the address_space object

Type Field Description

struct inode * host Pointer to the inode hosting this object, if any

struct
radix_tree_root

page_tree Root of radix tree identifying the owner’s pages

spinlock_t tree_lock Spin lock protecting the radix tree

unsigned int i_mmap_writable Number of shared memory mappings in the address
space

struct
prio_tree_root

i_mmap Root of the radix priority search tree (see Chapter 17)

struct list_head i_mmap_nonlinear List of non-linear memory regions in the address space

spinlock_t i_mmap_lock Spin lock protecting the radix priority search tree

unsigned int truncate_count Sequence counter used when truncating the file

unsigned long nrpages Total number of owner’s pages

unsigned long writeback_index Page index of the last write-back operation on the
owner’s pages

struct address_space_
operations *

a_ops Methods that operate on the owner’s pages

unsigned long flags Error bits and memory allocator flags

struct
backing_dev_info *

backing_dev_info Pointer to the backing_dev_info of the block
device holding the data of this owner

spinlock_t private_lock Usually, spin lock used when managing the
private_list list

struct list head private_list Usually, a list of dirty buffers of indirect blocks associ-
ated with the inode

struct
address_space *

assoc_mapping Usually, pointer to the address_space object of
the block device including the indirect blocks

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Page Cache | 603

Thus, if a page belongs to a file that is stored in an Ext3 filesystem, the owner of the
page is the inode of the file and the corresponding address_space object is stored in
the i_data field of the VFS inode object. The i_mapping field of the inode points to
the i_data field of the same inode, and the host field of the address_space object
points to the same inode.

Sometimes, however, things are more complicated. If a page contains data read from
a block device file—that is, it stores “raw” data of a block device—the address_space
object is embedded in the “master” inode of the file in the bdev special filesystem
associated with the block device (this inode is referenced by the bd_inode field of the
block device descriptor, see the section “Block Devices” in Chapter 14). Therefore,
the i_mapping field of an inode of a block device file points to the address_space
object embedded in the master inode; correspondingly, the host field of the address_
space object points to the master inode. In this way, all pages containing data read
from a block device have the same address_space object, even if they have been
accessed by referring to different block device files.

The i_mmap, i_mmap_writable, i_mmap_nonlinear, and i_mmap_lock fields refer to mem-
ory mapping and reverse mapping. We’ll discuss these topics in Chapter 16 and
Chapter 17.

The backing_dev_info field points the backing_dev_info descriptor associated with
the block device storing the data of the owner. As explained in the section “Request
Queue Descriptors” in Chapter 14, the backing_dev_info structure is usually embed-
ded in the request queue descriptor of the block device.

The private_list field is the head of a generic list that can be freely used by the file-
system for its specific purposes. For example, the Ext2 filesystem makes use of this
list to collect the dirty buffers of “indirect” blocks associated with the inode (see the
section “Data Blocks Addressing” in Chapter 18). When a flush operation forces the
inode to be written to disk, the kernel flushes also all the buffers in this list. More-
over, the Ext2 filesystem stores in the assoc_mapping field a pointer to the address_
space object of the block device containing the indirect blocks; it also uses the assoc_
mapping->private_lock spin lock to protect the lists of indirect blocks in multiproces-
sor systems.

A crucial field of the address_space object is a_ops, which points to a table of type
address_space_operations containing the methods that define how the owner’s pages
are handled. These methods are shown in Table 15-2.

Table 15-2. The methods of the address_space object

Method Description

writepage Write operation (from the page to the owner’s disk image)

readpage Read operation (from the owner’s disk image to the page)

sync_page Start the I/O data transfer of already scheduled operations on owner’s pages

writepages Write back to disk a given number of dirty owner’s pages

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

604 | Chapter 15: The Page Cache

The most important methods are readpage, writepage, prepare_write, and commit_
write. We discuss them in Chapter 16. In most cases, the methods link the owner
inode objects with the low-level drivers that access the physical devices. For instance,
the function that implements the readpage method for an inode of a regular file
knows how to locate the positions on the physical disk device of the blocks corre-
sponding to each page of the file. In this chapter, however, we don’t have to discuss
the address_space methods further.

The Radix Tree
In Linux, files can have large sizes, even a few terabytes. When accessing a large file,
the page cache may become filled with so many of the file’s pages that sequentially
scanning all of them would be too time-consuming. In order to perform page cache
lookup efficiently, Linux 2.6 makes use of a large set of search trees, one for each
address_space object.

The page_tree field of an address_space object is the root of a radix tree, which con-
tains pointers to the descriptors of the owner’s pages. Given a page index denoting
the position of the page inside the owner’s disk image, the kernel can perform a very
fast lookup operation in order to determine whether the required page is already
included in the page cache. When looking up the page, the kernel interprets the
index as a path inside the radix tree and quickly reaches the position where the page
descriptor is—or should be—stored. If found, the kernel can retrieve from the radix
tree the descriptor of the page; it can also quickly determine whether the page is dirty
(i.e., to be flushed to disk) and whether an I/O transfer for its data is currently on-
going.

Each node of the radix tree can have up to 64 pointers to other nodes or to page
descriptors. Nodes at the bottom level store pointers to page descriptors (the leaves),
while nodes at higher levels store pointers to other nodes (the children). Each node is
represented by the radix_tree_node data structure, which includes three fields: slots
is an array of 64 pointers, count is a counter of how many pointers in the node are

set_page_dirty Set an owner’s page as dirty

readpages Read a list of owner’s pages from disk

prepare_write Prepare a write operation (used by disk-based filesystems)

commit_write Complete a write operation (used by disk-based filesystems)

bmap Get a logical block number from a file block index

invalidatepage Invalidate owner’s pages (used when truncating the file)

releasepage Used by journaling filesystems to prepare the release of a page

direct_IO Direct I/O transfer of the owner’s pages (bypassing the page cache)

Table 15-2. The methods of the address_space object (continued)

Method Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Page Cache | 605

not NULL, and tags is a two-component array of flags that will be discussed in the sec-
tion “The Tags of the Radix Tree” later in this chapter. The root of the tree is repre-
sented by a radix_tree_root data structure, having three fields: height denotes the
current tree’s height (number of levels excluding the leaves), gfp_mask specifies the
flags used when requesting memory for a new node, and rnode points to the radix_
tree_node data structure corresponding to the node at level 1 of the tree (if any).

Let us consider a simple example. If none of the indices stored in the tree is greater
than 63, the tree height is equal to one, because the 64 potential leaves can all be
stored in the node at level 1 (see Figure 15-1 (a)). If, however, a new page descriptor
corresponding to index 131 must be stored in the page cache, the tree height is
increased to two, so that the radix tree can pinpoint indices up to 4095 (see
Figure 15-1(b)).

Table 15-3 shows the highest page index and the corresponding maximum file size
for each given height of the radix tree on a 32-bit architecture. In this case, the maxi-
mum height of a radix tree is six, although it is quite unlikely that the page cache of
your system will make use of a radix tree that huge. Because the page index is stored
in a 32-bit variable, when the tree has height equal to six, the node at the highest
level can have at most four children.

Figure 15-1. Two examples of a radix tree

(a) radix tree of height 1 (b) radix tree of height 2

radix_tree_root

height = 1

radix_tree_node

rnode

count = 2

slots[0] slots[4]

index = 0

page

...

index = 4

0 63

radix_tree_root

height = 2

radix_tree_node

rnode

count = 2

...
0 63

radix_tree_node
count = 2

slots[0] slots[4]

index = 0

...

index = 4

0 63

slots[0]

radix_tree_node
count = 1

slots[3]

index = 131

...
0 63

slots[2]

page page page page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

606 | Chapter 15: The Page Cache

The best way to understand how page lookup is performed is to recall how the pag-
ing system makes use of the page tables to translate linear addresses into physical
addresses. As discussed in the section “Regular Paging” in Chapter 2, the 20 most
significant bits of a linear address are split into two 10-bit long fields: the first field is
an offset in the Page Directory, while the second one is an offset in the Page Table
pointed to by the proper Page Directory entry.

A similar approach is used in the radix tree. The equivalent of the linear address is
the page’s index. However, the number of fields to be considered in the page’s index
depends on the height of the radix tree. If the radix tree has height 1, only indices
ranging from 0 to 63 can be represented, thus the 6 less significant bits of the page’s
index are interpreted as the slots array index for the single node at level 1. If the
radix tree has height 2, the indices that can be represented range from 0 to 4095; the
12 less significant bits of the page’s index are thus split in 2 fields of 6 bits each; the
most significant field is used as an array index for the node at level 1, while the less
significant field is used as an array index for the node at level 2. The procedure is
similar for every other radix tree’s height. If the height is equal to 6, the 2 most sig-
nificant bits of the page’s index are the array index for the node at level 1, the follow-
ing 6 bits are the array index for the node at level 2, and so on up to the 6 less
significant bits, which are the array index for the node at level 6.

If the highest index of a radix tree is smaller than the index of a page that should be
added, then the kernel increases the tree height correspondingly; the intermediate
nodes of the radix tree depend on the value of the page index (see Figure 15-1 for an
example).

Page Cache Handling Functions
The basic high-level functions that use the page cache involve finding, adding, and
removing a page. Another function based on the previous ones ensures that the
cache includes an up-to-date version of a given page.

Table 15-3. Highest index and maximum file size for each radix tree height

Radix tree
height Highest index Maximum file size

0 none 0 bytes

1 26 -1 = 63 256 kilobytes

2 212 -1 = 4 095 16 megabytes

3 218 -1 = 262 143 1 gigabyte

4 224-1 = 16 777 215 64 gigabytes

5 230 -1 = 1 073 741 823 4 terabytes

6 232 -1 = 4 294 967 295 16 terabytes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Page Cache | 607

Finding a page

The find_get_page() function receives as its parameters a pointer to an address_
space object and an offset value. It acquires the address space’s spin lock and invokes
the radix_tree_lookup() function to search for a leaf node of the radix tree having
the required offset. This function, in turn, starts from the root node of the tree and
goes down according to the bits of the offset value, as explained in the previous sec-
tion. If a NULL pointer is encountered, the function returns NULL; otherwise, it returns
the address of a leaf node, that is, the pointer of the required page descriptor. If the
requested page is found, find_get_page() increases its usage counter, releases the
spin lock, and returns its address; otherwise, the function releases the spin lock and
returns NULL.

The find_get_pages() function is similar to find_get_page(), but it performs a page
cache lookup for a group of pages having contiguous indices. It receives as its parame-
ters a pointer to an address_space object, the offset in the address space from where
to start searching, the maximum number of pages to be retrieved, and a pointer to an
array of pages descriptors to be filled by the function. To perform the lookup opera-
tion, find_get_pages() relies on the radix_tree_gang_lookup() function, which fills
the array of pointers and returns the number of pages found. The returned pages
have ascending indices, although there may be holes in the indices because some
pages may not be in the page cache.

There are several other functions that perform search operations on the page cache.
For example, the find_lock_page() function is similar to find_get_page(), but it
increases the usage counter of the returned page and invokes lock_page() to set the
PG_locked flag—thus, when the function returns, the page can be accessed exclusively
by the caller. The lock_page() function, in turn, blocks the current process if the page
is already locked. To that end, it invokes the __wait_on_bit_lock() function on the
PG_locked bit. The latter function puts the current process in the TASK_
UNINTERRUPTIBLE state, stores the process descriptor in a wait queue, executes the
sync_page method of the address_space object to unplug the request queue of the
block device containing the file, and finally invokes schedule() to suspend the process
until the PG_locked flag of the page is cleared. To unlock a page and wake up the pro-
cesses sleeping in the wait queue, the kernel makes use of the unlock_page() function.

The find_trylock_page() function is similar to find_lock_page(), except that it never
blocks: if the requested page is already locked, the function returns an error code.
Finally, the find_or_create_page() function executes find_lock_page(); however, if
the page is not found, a new page is allocated and inserted in the page cache.

Adding a page

The add_to_page_cache() function inserts a new page descriptor in the page cache. It
receives as its parameters the address page of the page descriptor, the address mapping
of an address_space object, the value offset representing the page index inside the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

608 | Chapter 15: The Page Cache

address space, and the memory allocation flags gfp_mask to be used when allocating
the new nodes of the radix tree. The function performs the following operations:

1. Invokes radix_tree_preload(), which disables kernel preemption and fills the
per-CPU variable radix_tree_preloads with a few free radix_tree_node struc-
tures. Allocation of radix_tree_node structures is done by means of the radix_
tree_node_cachep slab allocator cache. If radix_tree_preload() fails in preallo-
cating the radix_tree_node structures, the add_to_page_cache() function termi-
nates by returning the error code -ENOMEM. Otherwise, if radix_tree_preload()
succeeds, add_to_page_cache() can be sure that the insertion of the new page
descriptor will not fail for lack of free memory, at least for files of size up to
64 GB.

2. Acquires the mapping->tree_lock spin lock—notice that kernel preemption has
already been disabled by radix_tree_preload().

3. Invokes radix_tree_insert() to insert the new node in the tree. This function
performs the following steps:

a. Invokes radix_tree_maxindex() to get the maximum index that can be
inserted in the radix tree with its current height; if the index of the new page
cannot be represented with the current height, it invokes radix_tree_extend()
to increase the height of the tree by adding the proper number of nodes (for
instance, when applied to the radix tree shown in Figure 15-1 (a), radix_tree_
extend() would add a single node on top of it). New nodes are allocated by
executing the radix_tree_node_alloc() function, which tries to get a radix_
tree_node structure from the slab allocator cache or, if this allocation fails,
from the pool of preallocated structures stored in radix_tree_preloads.

b. Starting from the root (mapping->page_tree), it traverses the tree according
to the offset page’s index until the leaf is reached, as described in the previ-
ous section. If required, it allocates new intermediate nodes by invoking
radix_tree_node_alloc().

c. Stores the page descriptor address in the proper slot of the last traversed
node of the radix tree, and returns 0.

4. Increases the usage counter page->_count of the page descriptor.

5. Because the page is new, its content is invalid: the function sets the PG_locked
flag of the page frame to protect the page against concurrent accesses from other
kernel control paths.

6. Initializes page->mapping and page->index with the parameters mapping and
offset.

7. Increases the counter of cached pages in the address space (mapping->nrpages).

8. Releases the address space’s spin lock.

9. Invokes radix_tree_preload_end() to reenable kernel preemption.

10. Returns 0 (success).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Page Cache | 609

Removing a page

The remove_from_page_cache() function removes a page descriptor from the page
cache. This is achieved in the following way:

1. Acquires the page->mapping->tree_lock spin lock and disables interrupts.

2. Invokes radix_tree_delete() to delete the node from the tree. This function
receives as its parameters the address of the tree’s root (page->mapping->page_
tree) and the index of the page to be removed and performs the following steps:

a. Starting from the root, it traverses the tree according to the page’s index
until the leaf is reached, as described in the previous section. While doing
so, it builds up an array of radix_tree_path structures that describe the com-
ponents of the path from the root to the leaf corresponding to the page to be
deleted.

b. Starts a cycle on the nodes collected in the path array, starting with the last
node, which contains the pointer to the page descriptor. For each node, it
sets to NULL the element of the slots array pointing to the next node (or to
the page descriptor) and decreases the count field. If count becomes zero, it
removes the node from the tree and releases the radix_tree_node structure
to the slab allocator cache, then continues the cycle with the preceding node
in the path array; otherwise, if count does not become zero, it continues with
the next step.

c. Returns the pointer to the page descriptor that has been removed from the
tree.

3. Sets the page->mapping field to NULL.

4. Decreases by one the page->mapping->nrpages counter of cached pages.

5. Releases the page->mapping->tree_lock spin lock, enables the interrupts, and ter-
minates.

Updating a page

The read_cache_page() function ensures that the cache includes an up-to-date ver-
sion of a given page. Its parameters are a pointer mapping to an address_space object,
an offset value index that specifies the requested page, a pointer filler to a function
that reads the page’s data from disk (usually it is the function that implements the
address space’s readpage method), and a pointer data that is passed to the filler
function (usually, it is NULL). Here is a simplified description of what the function
does:

1. Invokes find_get_page() to check whether the page is already in the page cache.

2. If the page is not in the page cache, it performs the following substeps:

a. Invokes alloc_pages() to allocate a new page frame.

b. Invokes add_to_page_cache() to insert the corresponding page descriptor
into the page cache.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

610 | Chapter 15: The Page Cache

c. Invokes lru_cache_add() to insert the page in the zone’s inactive LRU list
(see the section “The Least Recently Used (LRU) Lists” in Chapter 17).

3. Here the page is in the page cache. Invokes mark_page_accessed() to record the
fact that the page has been accessed (see the section “The Least Recently Used
(LRU) Lists” in Chapter 17).

4. If the page is not up-to-date (PG_uptodate flag clear), it invokes the filler func-
tion to read from disk the page.

5. Returns the address of the page descriptor.

The Tags of the Radix Tree
As stated previously, the page cache not only allows the kernel to quickly retrieve a
page containing specified data of a block device; the cache also allows the kernel to
quickly retrieve pages in the cache that are in a given state.

For instance, let us suppose that the kernel must retrieve all pages in the cache that
belong to a given owner and that are dirty, that is, the pages whose contents have not
yet been written to disk. The PG_dirty flag stored in the page descriptor specifies
whether a page is dirty or not; however, traversing the whole radix tree to sequen-
tially access all the leaves—that is, the page descriptors—would be an unduly slow
operation if most pages are not dirty.

Instead, to allow a quick search of dirty pages, each intermediate node in the radix
tree contains a dirty tag for each child node (or leaf); this flag is set if and only if at
least one of the dirty tags of the child node is set. The dirty tags of the nodes at the
bottom level are usually copies of the PG_dirty flags of the page descriptors. In this
way, when the kernel traverses a radix tree looking for dirty pages, it can skip each
subtree rooted at an intermediate node whose dirty tag is clear: it knows for sure that
all page descriptors stored in the subtree are not dirty.

The same idea applies to the PG_writeback flag, which denotes that a page is cur-
rently being written back to disk. Thus, each node of the radix tree propagates two
flags of the page descriptor: PG_dirty and PG_writeback (see the section “Page
Descriptors” in Chapter 8). To store them, each node includes two arrays of 64 bits
in the tags field. The tags[0] array (PAGECACHE_TAG_DIRTY) is the dirty tag, while the
tags[1] (PAGECACHE_TAG_WRITEBACK) array is the writeback tag.

The radix_tree_tag_set() function is invoked when setting the PG_dirty or the PG_
writeback flag of a cached page; it acts on three parameters: the root of the radix tree,
the page’s index, and the type of tag to be set (PAGECACHE_TAG_DIRTY or PAGECACHE_TAG_
WRITEBACK). The function starts from the root of the tree and goes down to the leaf cor-
responding to the given index; for each node of the path leading from the root to the
leaf, the function sets the tag associated with the pointer to the next node in the path.
The function then returns the address of the page descriptor. As a result, each in node
in the path that goes down from the root to the leaf is tagged in the appropriate way.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Blocks in the Page Cache | 611

The radix_tree_tag_clear() function is invoked when clearing the PG_dirty or the
PG_writeback flag of a cached page; it acts on the same parameters as radix_tree_
tag_set(). The function starts from the root of the tree and goes down to the leaf,
building an array of radix_tree_path structures describing the path. Then, the func-
tion proceeds backward from the leaf to the root: it clears the tag of the node at the
bottom level, then it checks whether all tags in the node’s array are now cleared; if
so, the function clears the proper tag in the parent node at the upper level, checks
whether all tags in that node are cleared, and so on. The function then returns the
address of the page descriptor.

When a page descriptor is removed from a radix tree, the proper tags in the nodes
belonging to the path from the root to the leaf must be updated. The radix_tree_
delete() function does this properly (even if we omitted mentioning this fact in the
previous section). The radix_tree_insert() function, however, doesn’t update the
tags, because each page descriptor inserted in the radix tree is supposed to have the PG_
dirty and PG_writeback flags cleared. If necessary, the kernel may later invoke the
radix_tree_tag_set() function.

The radix_tree_tagged() function takes advantage of the arrays of flags included in
all nodes of the tree to test whether a radix tree includes at least one page in a given
state. The function performs this task quite simply by executing the following code
(root is a pointer to the radix_tree_root structure of the radix tree, and tag is the flag
to be tested):

for (idx = 0; idx < 2; idx++) {
 if (root->rnode->tags[tag][idx])
 return 1;
}
return 0;

Because the tags of all nodes of the radix tree can be assumed to be properly
updated, radix_tree_tagged() needs only to check the tags of the node at level 1. An
example of use of such function occurs when determining whether an inode con-
tains dirty pages to be written to disk. Notice that in each iteration the function tests
whether any of the 32 flags stored in an unsigned long is set.

The find_get_pages_tag() function is similar to find_get_pages() except that it
returns only pages that are tagged with the tag parameter. As we’ll see in the section
“Writing Dirty Pages to Disk,” this function is crucial to quickly identify all the dirty
pages of an inode.

Storing Blocks in the Page Cache
We have seen in the section “Block Devices Handling” in Chapter 14 that the VFS,
the mapping layer, and the various filesystems group the disk data in logical units
called “blocks.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

612 | Chapter 15: The Page Cache

In old versions of the Linux kernel, there were two different main disk caches: the
page cache, which stored whole pages of disk data resulting from accesses to the con-
tents of the disk files, and the buffer cache, which was used to keep in memory the
contents of the blocks accessed by the VFS to manage the disk-based filesystems.

Starting from stable version 2.4.10, the buffer cache does not really exist anymore. In
fact, for reasons of efficiency, block buffers are no longer allocated individually;
instead, they are stored in dedicated pages called “buffer pages,” which are kept in
the page cache.

Formally, a buffer page is a page of data associated with additional descriptors called
“buffer heads,” whose main purpose is to quickly locate the disk address of each
individual block in the page. In fact, the chunks of data stored in a page belonging to
the page cache are not necessarily adjacent on disk.

Block Buffers and Buffer Heads
Each block buffer has a buffer head descriptor of type buffer_head. This descriptor
contains all the information needed by the kernel to know how to handle the block;
thus, before operating on each block, the kernel checks its buffer head. The fields of
a buffer head are listed in Table 15-4.

Two fields of the buffer head encode the disk address of the block: the b_bdev field
identifies the block device—usually, a disk or a partition—that contains the block
(see the section “Block Devices” in Chapter 14), while the b_blocknr field stores the
logical block number, that is, the index of the block inside its disk or partition.

Table 15-4. The fields of a buffer head

Type Field Description

unsigned long b_state Buffer status flags

struct buffer_head * b_this_page Pointer to the next element in the buffer page’s list

struct page * b_page Pointer to the descriptor of the buffer page holding this block

atomic_t b_count Block usage counter

u32 b_size Block size

sector_t b_blocknr Block number relative to the block device (logical block num-
ber)

char * b_data Position of the block inside the buffer page

struct block_device * b_bdev Pointer to block device descriptor

bh_end_io_t * b_end_io I/O completion method

void * b_private Pointer to data for the I/O completion method

struct list_head b_assoc_buffers Pointers for the list of indirect blocks associated with an
inode (see the section “The address_space Object” earlier in
this chapter)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Blocks in the Page Cache | 613

The b_data field specifies the position of the block buffer inside the buffer page.
Actually, the encoding of this position depends on whether the page is in high mem-
ory or not. If the page is in high memory, the b_data field contains the offset of the
block buffer with respect to the beginning of the page; otherwise, b_data contains the
linear address of the block buffer.

The b_state field may store several flags. Some of them are of general use and are
listed in Table 15-5. Each filesystem may also define its own private buffer head flags.

Managing the Buffer Heads
The buffer heads have their own slab allocator cache, whose kmem_cache_s descriptor
is stored in the bh_cachep variable. The alloc_buffer_head() and free_buffer_head()
functions are used to get and release a buffer head, respectively.

The b_count field of the buffer head is a usage counter for the corresponding block
buffer. The counter is increased right before each operation on the block buffer and
decreased right after. The block buffers kept in the page cache are examined both
periodically and when free memory becomes scarce, and only the block buffers hav-
ing null usage counters may be reclaimed (see Chapter 17).

When a kernel control path wishes to access a block buffer, it should first increase the
usage counter. The function that locates a block inside the page cache (_ _getblk();
see the section “Searching Blocks in the Page Cache” later in this chapter) does this
automatically, hence the higher-level functions do not usually increase the block
buffer’s usage counter.

Table 15-5. The buffer head’s general flags

Flag Description

BH_Uptodate Set if the buffer contains valid data

BH_Dirty Set if the buffer is dirty—that is, it contains data that must be written to the block device

BH_Lock Set if the buffer is locked, which usually happens when the buffer is involved in a disk transfer

BH_Req Set if data transfer for initializing the buffer has already been requested

BH_Mapped Set if the buffer is mapped to disk—that is, if the b_bdev and b_blocknr fields of the corre-
sponding buffer head are significant

BH_New Set if the corresponding block has just been allocated and has never been accessed

BH_Async_Read Set if the buffer is being read asynchronously

BH_Async_Write Set if the buffer is being written asynchronously

BH_Delay Set if the buffer is not yet allocated on disk

BH_Boundary Set if the block to be submitted after this one will not be adjacent to this one

BH_Write_EIO Set if there was an I/O error when writing this block

BH_Ordered Set if the block should be written strictly after the blocks submitted before it (used by journaling
filesystems)

BH_Eopnotsupp Set if the block device driver does not support the operation requested

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

614 | Chapter 15: The Page Cache

When a kernel control path stops accessing a block buffer, it should invoke either
_ _brelse() or _ _bforget() to decrease the corresponding usage counter. The dif-
ference between these two functions is that _ _bforget() also removes the block
from any list of indirect blocks (b_assoc_buffers buffer head field; see the previous
section “Block Buffers and Buffer Heads”) and marks the buffer as clean, thus forc-
ing the kernel to forget any change in the buffer that has yet to be written on disk.

Buffer Pages
Whenever the kernel must individually address a block, it refers to the buffer page
that holds the block buffer and checks the corresponding buffer head.

Here are two common cases in which the kernel creates buffer pages:

• When reading or writing pages of a file that are not stored in contiguous disk
blocks. This happens either because the filesystem has allocated noncontiguous
blocks to the file, or because the file contains “holes” (see the section “File
Holes” in Chapter 18).

• When accessing a single disk block (for instance, when reading a superblock or
an inode block).

In the first case, the buffer page’s descriptor is inserted in the radix tree of a regular
file. The buffer heads are preserved because they store precious information: the
block device and the logical block number that specify the position of the data in the
disk. We will see how the kernel makes use of this type of buffer page in Chapter 16.

In the second case, the buffer page’s descriptor is inserted in the radix tree rooted at
the address_space object of the inode in the bdev special filesystem associated with
the block device (see the section “The address_space Object” earlier in this chapter).
This kind of buffer pages must satisfy a strong constraint: all the block buffers must
refer to adjacent blocks of the underlying block device.

An instance of where this is useful is when the VFS wants to read the 1,024-byte
inode block containing the inode of a given file. Instead of allocating a single buffer,
the kernel must allocate a whole page storing four buffers; these buffers will contain
the data of a group of four adjacent blocks on the block device, including the
requested inode block.

In this chapter we will focus our attention on the second type of buffer pages, the so-
called block device buffer pages (sometimes shortened to blockdev’s pages).

All the block buffers within a single buffer page must have the same size; hence, on
the 80 × 86 architecture, a buffer page can include from one to eight buffers, depend-
ing on the block size.

When a page acts as a buffer page, all buffer heads associated with its block buffers
are collected in a singly linked circular list. The private field of the descriptor of the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Blocks in the Page Cache | 615

buffer page points to the buffer head of the first block in the page;* every buffer head
stores in the b_this_page field a pointer to the next buffer head in the list. Moreover,
every buffer head stores the address of the buffer page’s descriptor in the b_page field.
Figure 15-2 shows a buffer page containing four block buffers and the correspond-
ing buffer heads.

Allocating Block Device Buffer Pages
The kernel allocates a new block device buffer page when it discovers that the page
cache does not include a page containing the buffer for a given block (see the section
“Searching Blocks in the Page Cache” later in this chapter). In particular, the lookup
operation for the block might fail for the following reasons:

1. The radix tree of the block device does not include a page containing the data of
the block: in this case a new page descriptor must be added to the radix tree.

2. The radix tree of the block device includes a page containing the data of the block,
but this page is not a buffer page: in this case new buffer heads must be allocated
and linked to the page, thus transforming it into a block device buffer page.

3. The radix tree of the block device includes a buffer page containing the data of
the block, but the page has been split in blocks of size different from the size of
the requested block: in this case the old buffer heads must be released, and a
new set of buffer heads must be allocated and linked to the page.

* Because the private field contains valid data, the PG_private flag of the page is also set; hence, if the page
contains disk data and the PG_private flag is set, then the page is a buffer page. Notice, however, that other
kernel components not related to the block I/O subsystem use the private and PG_private fields for other
purposes.

Figure 15-2. A buffer page including four buffers and their buffer heads

Page descriptor

b_data
private
b_this_page

Buffer

Buffer

Buffer

Buffer

Page

Buffer head

Buffer head

Buffer head

Buffer head

b_page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

616 | Chapter 15: The Page Cache

In order to add a block device buffer page to the page cache, the kernel invokes the
grow_buffers() function, which receives three parameters that identify the block:

• The address bdev of the block_device descriptor

• The logical block number block—the position of the block inside the block
device

• The block size size

The function essentially performs the following actions:

1. Computes the offset index of the page of data within the block device that
includes the requested block.

2. Invokes grow_dev_page() to create a new block device buffer page, if necessary.
In turn, this function performs the following substeps:

a. Invokes find_or_create_page(), passing to it the address_space object of the
block device (bdev->bd_inode->i_mapping), the page offset index, and the
GFP_NOFS flag. As described in the earlier section “Page Cache Handling
Functions,” find_or_create_page() looks for the page in the page cache and,
if necessary, inserts a new page in the cache.

b. Now the required page is in the page cache, and the function has the address
of its descriptor. The function checks its PG_private flag; if it is NULL, the
page is not yet a buffer page (it has no associated buffer heads): it jumps to
step 2e.

c. The page is already a buffer page. Gets from the private field of its descrip-
tor the address bh of the first buffer head, and checks whether the block size
bh->size is equal to the size of the requested block; if so, the page found in
the page cache is a valid buffer page: it jumps to step 2g.

d. The page has blocks of the wrong size: it invokes try_to_free_buffers() (see
the next section) to release the previous buffer heads of the buffer page.

e. Invokes the alloc_page_buffers() function to allocate the buffer heads for
the blocks of the requested size within the page and insert them into the sin-
gly linked circular list implemented by the b_this_page fields. Moreover, the
function initializes the b_page fields of the buffer heads with the address of
the page descriptor, and the b_data fields with the offset or linear address of
the block buffer inside the page.

f. Stores the address of the first buffer head in the private field, sets the PG_
private field, and increases the usage counter of the page (the block buffers
inside the page counts as a page user).

g. Invokes the init_page_buffers() function to initialize the b_bdev, b_blocknr,
and b_bstate fields of the buffer heads linked to the page. All blocks are
adjacent on disk, hence the logical block numbers are consecutive and can
be easily derived from block.

h. Returns the page descriptor address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Blocks in the Page Cache | 617

3. Unlocks the page (the page was locked by find_or_create_page()).

4. Decreases the page’s usage counter (again, the counter was increased by find_
or_create_page()).

5. Returns 1 (success).

Releasing Block Device Buffer Pages
As we will see in Chapter 17, block device buffer pages are released when the kernel
tries to get additional free memory. Clearly a buffer page cannot be freed if it con-
tains dirty or locked buffers. To release buffer pages, the kernel invokes the try_to_
release_page() function, which receives the address page of a page descriptor and
performs the following actions:*

1. If the PG_writeback flag of the page is set, it returns 0 (no release is possible
because the page is being written back to disk).

2. If defined, it invokes the releasepage method of the block device’s address_space
object. (The method is usually not defined for block devices.)

3. Invokes the try_to_free_buffers() function, and returns its error code.

In turn, the try_to_free_buffers() function scans the buffer heads linked to the
buffer page; it performs essentially the following actions:

1. Checks the flags of all the buffer heads of buffers included in the page. If some
buffer head has the BH_Dirty or BH_Locked flag set, the function terminates by
returning 0 (failure): it is not possible to release the buffers.

2. If a buffer head is inserted in a list of indirect buffers (see the section “Block
Buffers and Buffer Heads” earlier in this chapter), the function removes it from
the list.

3. Clears the PG_private flag of the page descriptor, sets the private field to NULL,
and decreases the page’s usage counter.

4. Clears the PG_dirty flag of the page.

5. Invokes repeatedly free_buffer_head() on the buffer heads of the page to free all
of them.

6. Returns 1 (success).

Searching Blocks in the Page Cache
When the kernel needs to read or write a single block of a physical device (for instance,
a superblock), it must check whether the required block buffer is already included in
the page cache. Searching the page cache for a given block buffer—specified by the

* The try_to_release_page() function can also be invoked on buffer pages owned by regular files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

618 | Chapter 15: The Page Cache

address bdev of a block device descriptor and by a logical block number nr—is a three
stage process:

1. Get a pointer to the address_space object of the block device containing the
block (bdev->bd_inode->i_mapping).

2. Get the block size of the device (bdev->bd_block_size), and compute the index of
the page that contains the block. This is always a bit shift operation on the logi-
cal block number. For instance, if the block size is 1,024 bytes, each buffer page
contains four block buffers, thus the page’s index is nr/4.

3. Searches for the buffer page in the radix tree of the block device. After obtaining
the page descriptor, the kernel has access to the buffer heads that describe the
status of the block buffers inside the page.

Details are slightly more complicated than this, however. In order to enhance system
performance, the kernel manages a bh_lrus array of small disk caches, one for each
CPU, called the Least Recently Used (LRU) block cache. Each disk cache contains
eight pointers to buffer heads that have been recently accessed by a given CPU. The
elements in each CPU array are sorted so that the pointer to the most recently used
buffer head has index 0. The same buffer head might appear on several CPU arrays
(but never twice in the same CPU array); for each occurrence of a buffer head in the
LRU block cache, the buffer head’s b_count usage counter is increased by one.

The _ _find_get_block() function

The _ _find_get_block() function receives as its parameters the address bdev of a
block_device descriptor, the block number block, and the block size size, and
returns the address of the buffer head associated with the block buffer inside the
page cache, or NULL if no such block buffer exists. The function performs essentially
the following actions:

1. Checks whether the LRU block cache array of the executing CPU includes a
buffer head whose b_bdev, b_blocknr, and b_size fields are equal to bdev, block,
and size, respectively.

2. If the buffer head is in the LRU block cache, it reshuffles the elements in the
array so as to put the pointer to the just discovered buffer head in the first posi-
tion (index 0), increases its b_count field, and jumps to step 8.

3. Here the buffer head is not in the LRU block cache: it derives from the block
number and the block size the page index relative to the block device as:
 index = block >> (PAGE_SHIFT - bdev->bd_inode->i_blkbits);

4. Invokes find_get_page() to locate, in the page cache, the descriptor of the buffer
page containing the required block buffer. The function passes as parameters a
pointer to the address_space object of the block device (bdev->bd_inode->i_
mapping) and the page index to locate in the page cache the descriptor of the
buffer page containing the required block buffer. If there is no such page in the
cache, returns NULL (failure).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Blocks in the Page Cache | 619

5. At this point, the function has the address of a descriptor for the buffer page: it
scans the list of buffer heads linked to the buffer page, looking for the block hav-
ing logical block number equal to block.

6. Decreases the count field of the page descriptor (it was increased by find_get_
page()).

7. Moves all elements in the LRU block cache one position down, and inserts the
pointer to the buffer head of the requested block in the first position. If a buffer
head has been dropped out of the LRU block cache, it decreases its b_count
usage counter.

8. Invokes mark_page_accessed() to move the buffer page in the proper LRU list, if
necessary (see the section “The Least Recently Used (LRU) Lists” in Chapter 17).

9. Returns the buffer head pointer.

The _ _getblk() function

The _ _getblk() function receives the same parameters as __find_get_block(),
namely the address bdev of a block_device descriptor, the block number block, and
the block size size, and returns the address of a buffer head associated with the
buffer. The function never fails: even if the block does not exist at all, the _ _getblk()
obligingly allocates a block device buffer page and returns a pointer to the buffer
head that should describe the block. Notice that the block buffer returned by _ _
getblk() does not necessarily contain valid data—the BH_Uptodate flag of the buffer
head might be cleared.

The __getblk() function essentially performs the following steps:

1. Invokes _ _find_get_block() to check whether the block is already in the page
cache. If the block is found, the function returns the address of its buffer head.

2. Otherwise, it invokes grow_buffers() to allocate a new buffer page for the
requested block (see the section “Allocating Block Device Buffer Pages” earlier in
this chapter).

3. If grow_buffers() fails in allocating such a page, __getblk() tries to reclaim
some memory by invoking free_more_memory() (see Chapter 17).

4. Jumps back to step 1.

The _ _bread() function

The __bread() function receives the same parameters as __getblk(), namely the
address bdev of a block_device descriptor, the block number block, and the block
size size, and returns the address of a buffer head associated with the buffer. Con-
trary to __getblk(), the function reads the block from disk, if necessary, before
returning the buffer head. The __bread() function performs the following steps:

1. Invokes __getblk() to find in the page cache the buffer page associated with the
required block and to get a pointer to the corresponding buffer head.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

620 | Chapter 15: The Page Cache

2. If the block is already in the page cache and the buffer contains valid data (flag
BH_Uptodate set), it returns the address of the buffer head.

3. Otherwise, it increases the usage counter of the buffer head.

4. Sets the b_end_io field to the address of end_buffer_read_sync() (see the next
section).

5. Invokes submit_bh() to transmit the buffer head to the generic block layer (see
next section).

6. Invokes wait_on_buffer() to put the current process in a wait queue until the read
I/O operation is completed, that is, until the BH_Lock flag of the buffer head is
cleared.

7. Returns the address of the buffer head.

Submitting Buffer Heads to the Generic Block Layer
A couple of functions, submit_bh() and ll_rw_block(), allow the kernel to start an
I/O data transfer on one or more buffers described by their buffer heads.

The submit_bh() function

To transmit a single buffer head to the generic block layer, and thus to require the
transfer of a single block of data, the kernel makes use of the submit_bh() function.
Its parameters are the direction of data transfer (essentially READ or WRITE) and a
pointer bh to the buffer head describing the block buffer.

The submit_bh() function assumes that the buffer head is fully initialized; in particu-
lar, the b_bdev, b_blocknr, and b_size fields must be properly set to identify the block
on disk containing the requested data. If the block buffer belongs to a block device
buffer page, the initialization of the buffer head is done by __find_get_block(), as
described in the previous section. However, as we will see in the next chapter,
submit_bh() can also be invoked on blocks belonging to buffer pages owned by regu-
lar files.

The submit_bh() function is little else than a glue function that creates a bio request
from the contents of the buffer head and then invokes generic_make_request() (see
the section “Submitting a Request” in Chapter 14). The main steps performed by it
are the following:

1. Sets the BH_Req flag of the buffer head to record that the block has been submit-
ted at least one time; moreover, if the direction of the data transfer is WRITE,
clears the BH_Write_EIO flag.

2. Invokes bio_alloc() to allocate a new bio descriptor (see the section “The Bio
Structure” in Chapter 14).

3. Initializes the fields of the bio descriptor according to the contents of the buffer
head:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Blocks in the Page Cache | 621

a. Sets the bi_sector field to the number of the first sector in the block (bh->b_
blocknr * bh->b_size / 512);

b. Sets the bi_bdev field with the address of the block device descriptor (bh->b_
bdev);

c. Sets the bi_size field with the block size (bh->b_size);

d. Initializes the first element of the bi_io_vec array so that the segment corre-
sponds to the block buffer: bi_io_vec[0].bv_page is set to bh->b_page, bi_io_
vec[0].bv_len is set to bh->b_size, and bi_io_vec[0].bv_offset is set to the
offset of the block buffer in the page as specified by bh->b_data;

e. Sets bi_vcnt to 1 (just one segment on the bio), and bi_idx to 0 (the current
segment to be transferred);

f. Sets the bi_end_io field to the address of end_bio_bh_io_sync(), and sets the
bi_private field to the address of the buffer head; the function will be
invoked when the data transfer terminates (see below).

4. Increases the reference counter of the bio (it becomes equal to 2).

5. Invokes submit_bio(), which sets the bi_rw flag with the direction of the data
transfer, updates the page_states per-CPU variable to keep track of the number
of sectors read and written, and invokes the generic_make_request() function on
the bio descriptor.

6. Decreases the usage counter of the bio; the bio descriptor is not freed, because it
is now inserted in a queue of the I/O scheduler.

7. Returns 0 (success).

When the I/O data transfer on the bio terminates, the kernel executes the bi_end_io
method, in this particular case the end_bio_bh_io_sync() function. The latter func-
tion essentially gets the address of the buffer head from the bi_private field of the
bio, then invokes the b_end_io method of the buffer head—it was properly set before
invoking submit_bh()—and finally invokes bio_put() to destroy the bio structure.

The ll_rw_block() function

Sometimes the kernel must trigger the data transfer of several data blocks at once,
which are not necessarily physically adjacent. The ll_rw_block() function receives as
its parameters the direction of data transfer (essentially READ or WRITE), the number of
blocks to be transferred, and an array of pointers to buffer heads describing the cor-
responding block buffers. The function iterates over all buffer heads; for each of
them, it executes the following actions:

1. Tests and sets the BH_Lock flag of the buffer head; if the buffer was already
locked, the data transfer has been activated by another kernel control path, so
just skips the buffer by jumping to step 9.

2. Increases by one the usage counter b_count of the buffer head.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

622 | Chapter 15: The Page Cache

3. If the data transfer direction is WRITE, it sets the b_end_io method of the buffer
head to point to the address of the end_buffer_write_sync() function; other-
wise, it sets the b_end_io method to point to the address of the end_buffer_read_
sync() function.

4. If the data transfer direction is WRITE, it tests and clears the BH_Dirty flag of the
buffer head. If the flag was not set, there is no need to write the block on disk, so
it jumps to step 7.

5. If the data transfer direction is READ or READA (read-ahead), it checks whether the
BH_Uptodate flag of the buffer head is set; if so, there is no need to read the block
from disk, so it jumps to step 7.

6. Here the block has to be read or written: it invokes the submit_bh() function to
pass the buffer head to the generic block layer, then jumps to step 9.

7. Unlocks the buffer head by clearing the BH_Lock flag, and awakens every process
that was waiting for the block being unlocked.

8. Decreases the b_count field of the buffer head.

9. If there are other buffer heads in the array to be processed, it selects the next one
and jumps back to step 1; otherwise, it terminates.

Notice that if the ll_rw_block() function passes a buffer head to the generic block
layer, it leaves the buffer locked and its reference counter increased, so that the
buffer cannot be accessed and cannot be freed until the data transfer completes. The
kernel executes the b_end_io completion method of the buffer head when the data
transfer for the block terminates. Assuming that there was no I/O error, the end_
buffer_write_sync() and end_buffer_read_sync() functions simply set the BH_
Uptodate field of the buffer head, unlock the buffer, and decrease its usage counter.

Writing Dirty Pages to Disk
As we have seen, the kernel keeps filling the page cache with pages containing data
of block devices. Whenever a process modifies some data, the corresponding page is
marked as dirty—that is, its PG_dirty flag is set.

Unix systems allow the deferred writes of dirty pages into block devices, because this
noticeably improves system performance. Several write operations on a page in cache
could be satisfied by just one slow physical update of the corresponding disk sec-
tors. Moreover, write operations are less critical than read operations, because a pro-
cess is usually not suspended due to delayed writings, while it is most often
suspended because of delayed reads. Thanks to deferred writes, each physical block
device will service, on the average, many more read requests than write ones.

A dirty page might stay in main memory until the last possible moment—that is,
until system shutdown. However, pushing the delayed-write strategy to its limits has
two major drawbacks:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing Dirty Pages to Disk | 623

• If a hardware or power supply failure occurs, the contents of RAM can no longer
be retrieved, so many file updates that were made since the system was booted
are lost.

• The size of the page cache, and hence of the RAM required to contain it, would
have to be huge—at least as big as the size of the accessed block devices.

Therefore, dirty pages are flushed (written) to disk under the following conditions:

• The page cache gets too full and more pages are needed, or the number of dirty
pages becomes too large.

• Too much time has elapsed since a page has stayed dirty.

• A process requests all pending changes of a block device or of a particular file to
be flushed; it does this by invoking a sync(), fsync(), or fdatasync() system
call (see the section “The sync(), fsync(), and fdatasync() System Calls” later in
this chapter).

Buffer pages introduce a further complication. The buffer heads associated with each
buffer page allow the kernel to keep track of the status of each individual block
buffer. The PG_dirty flag of the buffer page should be set if at least one of the associ-
ated buffer heads has the BH_Dirty flag set. When the kernel selects a dirty buffer
page for flushing, it scans the associated buffer heads and effectively writes to disk
only the contents of the dirty blocks. As soon as the kernel flushes all dirty blocks in
a buffer page to disk, it clears the PG_dirty flag of the page.

The pdflush Kernel Threads
Earlier versions of Linux used a kernel thread called bdflush to systematically scan
the page cache looking for dirty pages to flush, and they used a second kernel thread
called kupdate to ensure that no page remains dirty for too long. Linux 2.6 has
replaced both of them with a group of general purpose kernel threads called pdflush.

These kernel threads have a flexible structure. They act on two parameters: a pointer
to a function to be executed by the thread and a parameter for the function. The
number of pdflush kernel threads in the system is dynamically adjusted: new threads
are created when they are too few and existing threads are killed when they are too
many. Because the functions executed by these kernel threads can block, creating sev-
eral pdflush kernel threads instead of a single one, leads to better system performance.

Births and deaths are governed by the following rules:

• There must be at least two pdflush kernel threads and at most eight.

• If there were no idle pdflush during the last second, a new pdflush should be cre-
ated.

• If more than one second elapsed since the last pdflush became idle, a pdflush
should be removed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

624 | Chapter 15: The Page Cache

Each pdflush kernel thread has a pdflush_work descriptor (see Table 15-6). The
descriptors of idle pdflush kernel threads are collected in the pdflush_list list; the
pdflush_lock spin lock protects that list from concurrent accesses in multiprocessor
systems. The nr_pdflush_threads variable* stores the total number of pdflush kernel
threads (idle and busy). Finally, the last_empty_jifs variable stores the last time (in
jiffies) since the pdflush_list list of pdflush threads became empty.

Each pdflush kernel thread executes the _ _pdflush() function, which essentially
loops in an endless cycle until the kernel thread dies. Let’s suppose that the pdflush
kernel thread is idle; then, the process is sleeping in TASK_INTERRUPTIBLE state. As
soon as the kernel thread is woken up, _ _pdflush() accesses its pdflush_work
descriptor and executes the callback function stored in the fn field, passing to it the
argument stored in the arg0 field. When the callback function terminates, _ _
pdflush() checks the value of the last_empty_jifs variable: if there was no idle
pdflush kernel thread for more than one second and if there are less than eight
pdflush kernel threads, _ _pdflush() starts another kernel thread. Otherwise, if the
last entry in the pdflush_list list is idle for more than one second, and there are
more than two pdflush kernel threads, _ _pdflush() terminates: as explained in the
section “Kernel Threads” in Chapter 3, the corresponding kernel thread executes the
_exit() system call and it is thus destroyed. Otherwise, _ _pdflush() reinserts the
pdflush_work descriptor of the kernel thread in the pdflush_list list and puts the ker-
nel thread to sleep.

The pdflush_operation() function is used to activate an idle pdflush kernel thread.
This function acts on two parameters: a pointer fn to the function that must be exe-
cuted and an argument arg0; it performs the following steps:

1. Extracts from the pdflush_list list a pointer pdf to the pdflush_work descriptor of
an idle pdflush kernel thread. If the list is empty, it returns -1. If the list contained
just one element, it sets the value of the last_empty_jifs variable to jiffies.

2. Stores in pdf->fn and in pdf->arg0 the parameters fn and arg0.

* The value of this variable can be read from the /proc/sys/vm/nr_pdflush_threads file.

Table 15-6. The fields of the pdflush_work descriptor

Type Field Description

struct task_struct * who Pointer to kernel thread descriptor

void(*)(unsigned long) fn Callback function to be executed by the kernel thread

unsigned long arg0 Argument to callback function

struct list head list Links for the pdflush_list list

unsigned long when_i_went_
to_sleep

Time in jiffies when kernel thread became available

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing Dirty Pages to Disk | 625

3. Invokes wake_up_process() to wake up the idle pdflush kernel thread, that is,
pdf->who.

What kinds of jobs are delegated to the pdflush kernel threads? There are a few of
them, all related to flushing of dirty data. In particular, pdflush usually executes one
of the following callback functions:

• background_writeout(): systematically walks the page cache looking for dirty
pages to be flushed (see the next section “Looking for Dirty Pages To Be
Flushed”).

• wb_kupdate(): checks that no page in the page cache remains dirty for too long
(see the section “Retrieving Old Dirty Pages” later in this chapter).

Looking for Dirty Pages To Be Flushed
Every radix tree could include dirty pages to be flushed. Retrieving all of them thus
involves an exhaustive search among all address_space objects associated with
inodes having an image on disk. Because the page cache might include a large num-
ber of pages, scanning the whole cache in a single run might keep the CPU and the
disks busy for a long time. Therefore, Linux adopts a sophisticated mechanism that
splits the page cache scanning in several runs of execution.

The wakeup_bdflush() function receives as argument the number of dirty pages in the
page cache that should be flushed; the value zero means that all dirty pages in the
cache should be written back to disk. The function invokes pdflush_operation() to
wake up a pdflush kernel thread (see the previous section) and delegate to it the exe-
cution of the background_writeout() callback function. The latter function effec-
tively retrieves the specified number of dirty pages from the page cache and writes
them back to disk.

The wakeup_bdflush() function is executed when either memory is scarce or a user
makes an explicit request for a flush operation. In particular, the function is invoked
when:

• The User Mode process issues a sync() system call (see the section “The sync(),
fsync(), and fdatasync() System Calls” later in this chapter).

• The grow_buffers() function fails to allocate a new buffer page (see the earlier
section “Allocating Block Device Buffer Pages”).

• The page frame reclaiming algorithm invokes free_more_memory() or try_to_
free_pages() (see Chapter 17).

• The mempool_alloc() function fails to allocate a new memory pool element (see
the section “Memory Pools” in Chapter 8).

Moreover, a pdflush kernel thread executing the background_writeout() callback
function is woken up by every process that modifies the contents of pages in the page
cache and causes the fraction of dirty pages to rise above some dirty background

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

626 | Chapter 15: The Page Cache

threshold. The background threshold is typically set to 10% of all pages in the sys-
tem, but its value can be adjusted by writing in the /proc/sys/vm/dirty_background_
ratio file.

The background_writeout() function relies on a writeback_control structure, which
acts as a two-way communication device: on one hand, it tells an auxiliary function
called writeback_inodes() what to do; on the other hand, it stores some statistics
about the number of pages written to disk. The most important fields of this struc-
ture are the following:

sync_mode
Specifies the synchronization mode: WB_SYNC_ALL means that if a locked inode is
encountered, it must be waited upon and not just skipped over; WB_SYNC_HOLD
means that locked inodes are put in a list for later consideration; and WB_SYNC_
NONE means that locked inodes are simply skipped.

bdi
If not NULL, it points to a backing_dev_info structure; in this case, only dirty
pages belonging to the underlying block device will be flushed.

older_than_this
If not null, it means that inodes younger than the specified value should be
skipped.

nr_to_write
Number of dirty pages yet to be written in this run of execution.

nonblocking
If this flag is set, the process cannot be blocked.

The background_writeout() function acts on a single parameter: nr_pages, the mini-
mum number of pages that should be flushed to disk. It essentially executes the fol-
lowing steps:

1. Reads from the page_state per-CPU variable the number of pages and dirty
pages currently stored in the page cache. If the fraction of dirty pages is below a
given threshold and at least nr_pages have been flushed to disk, the function ter-
minates. The value of this threshold is typically set to about 40% of the number
of pages in the system; it could be adjusted by writing into the /proc/sys/vm/
dirty_ratio file.

2. Invokes writeback_inodes() to try to write 1,024 dirty pages (see below).

3. Checks the number of pages effectively written and decreases the number of
pages yet to be written.

4. If less than 1,024 pages have been written or if pages have been skipped, proba-
bly the request queue of the block device is congested: the function puts the cur-
rent process to sleep in a special wait queue for 100 milliseconds or until the
queue becomes uncongested.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing Dirty Pages to Disk | 627

5. Goes back to step 1.

The writeback_inodes() function acts on a single parameter, namely a pointer wbc to
a writeback_control descriptor. The nr_to_write field of this descriptor contains the
number of pages to be flushed to disk. When the function returns, the same field
contains the number of pages remaining to be flushed; if everything went smoothly,
this field will be set to 0.

Let us suppose that writeback_inodes() is called with the wbc->bdi and wbc->older_
than_this pointers set to NULL, the WB_SYNC_NONE synchronization mode, and the wbc-
>nonblocking flag set—these are the values set by background_writeout(). The func-
tion scans the list of superblocks rooted at the super_blocks variable (see the section
“Superblock Objects” in Chapter 12). The scanning ends when either the whole list
has been traversed, or the target number of pages to be flushed has been reached. For
each superblock sb, the function executes the following steps:

1. Checks whether the sb->s_dirty or sb->s_io lists are empty: the first list collects
the dirty inodes of the superblock, while the second list collects the inodes wait-
ing to be transferred to disk (see below). If both lists are empty, the inodes on
this filesystem have no dirty pages, so the function considers the next super-
block in the list.

2. Here the superblock has dirty inodes. Invokes sync_sb_inodes() on the sb super-
block. This function:

a. Puts all the inodes of sb->s_dirty into the list pointed to by sb->s_io and
clears the list of dirty inodes.

b. Gets the next inode pointer from sb->s_io. If this list is empty, it returns.

c. If the inode was dirtied after sync_sb_inodes() started, it skips the inode’s
dirty pages and returns. Notice that some dirty inodes might remain in the
sb->s_io list.

d. If the current process is a pdflush kernel thread, it checks whether another
pdflush kernel thread running on another CPU is already trying to flush dirty
pages for files belonging to this block device. This can be done by an atomic
test and set operation on the BDI_pdflush flag of the inode’s backing_dev_
info. Essentially, it is pointless to have more than one pdflush kernel thread
on the same request queue (see the section “The pdflush Kernel Threads”
earlier in this chapter).

e. Increases by one the inode’s usage counter.

f. Invokes _ _writeback_single_inode() to write back the dirty buffers associ-
ated with the selected inode:

1. If the inode is locked, it moves inode into the list of dirty inodes (inode-
>i_sb->s_dirty) and returns 0. (Since we are assuming that the wbc->
sync_mode field is not WB_SYNC_ALL, the function does not block waiting
for the inode to unlock.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

628 | Chapter 15: The Page Cache

2. Uses the writepages method of the inode’s address space, or the mpage_
writepages() function if no such method exists, to write up to wbc->nr_
to_write dirty pages. This function uses the find_get_pages_tag() func-
tion to retrieve quickly all dirty pages in the inode’s address space (see the
section “The Tags of the Radix Tree” earlier in this chapter). Details will
be given in the next chapter.

3. If the inode is dirty, it uses the superblock’s write_inode method to
write the inode to disk. The functions that implement this method usu-
ally rely on submit_bh() to transfer a single block of data (see the sec-
tion “Submitting Buffer Heads to the Generic Block Layer” earlier in
this chapter).

4. Checks the status of the inode; accordingly, moves the inode back into
the sb->s_dirty list if some page of the inode is still dirty, or in the
inode_unused list if the inode’s reference counter is zero, or in the inode_
in_use list otherwise (see the section “Inode Objects” in Chapter 12).

5. Returns the error code of the function invoked in step 2f2.

g. Back into the sync_sb_inodes() function. If the current process is the pdflush
kernel thread, it clears the BDI_pdflush flag set in step 2d.

h. If some pages were skipped in the inode just processed, then the inode
includes locked buffers: moves all inodes remaining in the sb->s_io list back
into the sb->s_dirty list: they will be reconsidered at a later time.

i. Decreases by one the usage counter of the inode.

j. If wbc->nr_to_write is greater than 0, goes back to step 2b to look for other
dirty inodes of the same superblock. Otherwise, the sync_sb_inodes() func-
tion terminates.

3. Back into the writeback_inodes() function. If wbc->nr_to_write is greater than
zero, it jumps to step 1 and continues with the next superblock in the global list.
Otherwise, it returns.

Retrieving Old Dirty Pages
As stated earlier, the kernel tries to avoid the risk of starvation that occurs when
some pages are not flushed for a long period of time. Hence, if a page remains dirty
for a predefined amount of time, the kernel explicitly starts an I/O data transfer that
writes its contents to disk.

The job of retrieving old dirty pages is delegated to a pdflush kernel thread that is peri-
odically woken up. During the kernel initialization, the page_writeback_init() func-
tion sets up the wb_timer dynamic timer so that it decays after dirty_writeback_
centisecs hundreds of a second (usually 500, but this value can be adjusted by writ-
ing in the /proc/sys/vm/dirty_writeback_centisecs file). The timer function, which is

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The sync(), fsync(), and fdatasync() System Calls | 629

called wb_timer_fn(), essentially invokes the pdflush_operation() function passing to
it the address of the wb_kupdate() callback function.

The wb_kupdate() function walks the page cache looking for “old” dirty inodes; it
executes the following steps:

1. Invokes the sync_supers() function to write the dirty superblocks to disk (see
the next section). Although not strictly related to the flushing of the pages in the
page cache, this invocation ensures that no superblock remains dirty for more
than, usually, five seconds.

2. Stores in the older_than_this field of a writeback_control descriptor a pointer to
a value in jiffies corresponding to the current time minus 30 seconds. Thirty sec-
onds is the longest time for which a page is allowed to remain dirty.

3. Determines from the per-CPU page_state variable the rough number of dirty
pages currently in the page cache.

4. Invokes repeatedly writeback_inodes() until either the number of pages written
to disk reaches the value determined in the previous step, or all pages older than
30 seconds have been written. During this cycle the function might sleep if some
request queue becomes congested.

5. Uses mod_timer() to restart the wb_timer dynamic timer: it will decay once again
dirty_writeback_centisecs hundreds of seconds since the invocation of this
function (or one second since now if this execution lasted too long).

The sync(), fsync(), and fdatasync() System Calls
In this section, we examine briefly the three system calls available to user applica-
tions to flush dirty buffers to disk:

sync()
Allows a process to flush all dirty buffers to disk

fsync()
Allows a process to flush all blocks that belong to a specific open file to disk

fdatasync()
Very similar to fsync(), but doesn’t flush the inode block of the file

The sync () System Call
The service routine sys_sync() of the sync() system call invokes a series of auxiliary
functions:

wakeup_bdflush(0);
sync_inodes(0);
sync_supers();
sync_filesystems(0);
sync_filesystems(1);
sync_inodes(1);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

630 | Chapter 15: The Page Cache

As described in the previous section, wakeup_bdflush() starts a pdflush kernel thread,
which flushes to disk all dirty pages contained in the page cache.

The sync_inodes() function scans the list of superblocks looking for dirty inodes to
be flushed; it acts on a wait parameter that specifies whether it must wait until flush-
ing has been performed or not. The function scans the superblocks of all currently
mounted filesystems; for each superblock containing dirty inodes, sync_inodes()
first invokes sync_sb_inodes() to flush the corresponding dirty pages (we described
this function earlier in the section “Looking for Dirty Pages To Be Flushed”), then
invokes sync_blockdev() to explicitly flush the dirty buffer pages owned by the block
device that includes the superblock. This is done because the write_inode super-
block method of many disk-based filesystems simply marks the block buffer corre-
sponding to the disk inode as dirty; the sync_blockdev() function makes sure that
the updates made by sync_sb_inodes() are effectively written to disk.

The sync_supers() function writes the dirty superblocks to disk, if necessary, by
using the proper write_super superblock operations. Finally, the sync_filesystems()
executes the sync_fs superblock method for all writable filesystems. This method is
simply a hook offered to a filesystem in case it needs to perform some peculiar opera-
tion at each sync; this method is only used by journaling filesystems such as Ext3
(see Chapter 18).

Notice that sync_inodes() and sync_filesystems() are invoked twice, once with the
wait parameter equal to 0 and the second time with the parameter equal to 1. This is
done on purpose: first, they quickly flush to disk the unlocked inodes; next, they
wait for each locked inode to become unlocked and finish writing them one by one.

The fsync () and fdatasync () System Calls
The fsync() system call forces the kernel to write to disk all dirty buffers that belong
to the file specified by the fd file descriptor parameter (including the buffer containing
its inode, if necessary). The corresponding service routine derives the address of the file
object and then invokes the fsync method. Usually, this method ends up invoking the
_ _writeback_single_inode() function to write back both the dirty pages associated with
the selected inode and the inode itself (see the section “Looking for Dirty Pages To Be
Flushed” earlier in this chapter).

The fdatasync() system call is very similar to fsync(), but writes to disk only the
buffers that contain the file’s data, not those that contain inode information. Because
Linux 2.6 does not have a specific file method for fdatasync(), this system call uses
the fsync method and is thus identical to fsync().

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

631

Chapter 16 CHAPTER 16

Accessing Files

Accessing a disk-based file is a complex activity that involves the VFS abstraction
layer (Chapter 12), handling block devices (Chapter 14), and the use of the page
cache (Chapter 15). This chapter shows how the kernel builds on all those facilities
to carry out file reads and writes. The topics covered in this chapter apply both to
regular files stored in disk-based filesystems and to block device files; these two
kinds of files will be referred to simply as “files.”

The stage we are working at in this chapter starts after the proper read or write
method of a particular file has been called (as described in Chapter 12). We show
here how each read ends with the desired data delivered to a User Mode process and
how each write ends with data marked ready for transfer to disk. The rest of the
transfer is handled by the facilities described in Chapter 14 and Chapter 15.

There are many different ways to access a file. In this chapter we will consider the
following cases:

Canonical mode
The file is opened with the O_SYNC and O_DIRECT flags cleared, and its content is
accessed by means of the read() and write() system calls. In this case, the read(
) system call blocks the calling process until the data is copied into the User
Mode address space (however, the kernel is always allowed to return fewer bytes
than requested!). The write() system call is different, because it terminates as
soon as the data is copied into the page cache (deferred write). This case is cov-
ered in the section “Reading and Writing a File.”

Synchronous mode
The file is opened with the O_SYNC flag set—or the flag is set at a later time by the
fcntl() system call. This flag affects only the write operation (read operations are
always blocking), which blocks the calling process until the data is effectively
written to disk. The section “Reading and Writing a File” covers this case, too.

Memory mapping mode
After opening the file, the application issues an mmap() system call to map the file
into memory. As a result, the file appears as an array of bytes in RAM, and the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

632 | Chapter 16: Accessing Files

application accesses directly the array elements instead of using read(), write(),
or lseek(). This case is discussed in the section “Memory Mapping.”

Direct I/O mode
The file is opened with the O_DIRECT flag set. Any read or write operation trans-
fers data directly from the User Mode address space to disk, or vice versa,
bypassing the page cache. We discuss this case in the section “Direct I/O Trans-
fers.” (The values of the O_SYNC and O_DIRECT flags can be combined in four
meaningful ways.)

Asynchronous mode
The file is accessed—either through a group of POSIX APIs or by means of
Linux-specific system calls—in such a way to perform “asynchronous I/O:” this
means the requests for data transfers never block the calling process; rather, they
are carried on “in the background” while the application continues its normal
execution. We discuss this case in the section “Asynchronous I/O.”

Reading and Writing a File
The section “The read() and write() System Calls” in Chapter 12 described how the
read() and write() system calls are implemented. The corresponding service
routines end up invoking the file object’s read and write methods, which may be
filesystem-dependent. For disk-based filesystems, these methods locate the physical
blocks that contain the data being accessed and activate the block device driver to
start the data transfer.

Reading a file is page-based: the kernel always transfers whole pages of data at once.
If a process issues a read() system call to get a few bytes, and that data is not already
in RAM, the kernel allocates a new page frame, fills the page with the suitable por-
tion of the file, adds the page to the page cache, and finally copies the requested
bytes into the process address space. For most filesystems, reading a page of data
from a file is just a matter of finding what blocks on disk contain the requested data.
Once this is done, the kernel fills the pages by submitting the proper I/O operations
to the generic block layer. In practice, the read method of all disk-based filesystems is
implemented by a common function named generic_file_read().

Write operations on disk-based files are slightly more complicated to handle,
because the file size could increase, and therefore the kernel might allocate some
physical blocks on the disk. Of course, how this is precisely done depends on the
filesystem type. However, many disk-based filesystems implement their write meth-
ods by means of a common function named generic_file_write(). Examples of such
filesystems are Ext2, System V/Coherent/Xenix, and MINIX. On the other hand, sev-
eral other filesystems, such as journaling and network filesystems, implement the
write method by means of custom functions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 633

Reading from a File
The generic_file_read() function is used to implement the read method for block
device files and for regular files of almost all disk-based filesystems. This function
acts on the following parameters:

filp
Address of the file object

buf
Linear address of the User Mode memory area where the characters read from
the file must be stored

count
Number of characters to be read

ppos
Pointer to a variable that stores the offset from which reading must start (usually
the f_pos field of the filp file object)

As a first step, the function initializes two descriptors. The first descriptor is stored in
the local variable local_iov of type iovec; it contains the address (buf) and the length
(count) of the User Mode buffer that shall receive the data read from the file. The sec-
ond descriptor is stored in the local variable kiocb of type kiocb; it is used to keep
track of the completion status of an ongoing synchronous or asynchronous I/O oper-
ation. The main fields of the kiocb descriptor are shown in Table 16-1.

Table 16-1. The main fields of the kiocb descriptor

Type Field Description

struct list_head ki_run_list Pointers for the list of I/O operations to be retried later

long ki_flags Flags of the kiocb descriptor

int ki_users Usage counter of the kiocb descriptor

unsigned int ki_key Identifier of the asynchronous I/O operation, or KIOCB_
SYNC_KEY (0xffffffff) for synchronous I/O operations

struct file * ki_filp Pointer to the file object associated with the ongoing I/O opera-
tion

struct kioctx * ki_ctx Pointer to the asynchronous I/O context descriptor for this
operation (see the section “Asynchronous I/O” later in this
chapter)

int (*)
(struct kiocb *,
struct io_event *)

ki_cancel Method invoked when canceling an asynchronous I/O opera-
tion

ssize_t (*)
(struct kiocb *)

ki_retry Method invoked when retrying an asynchronous I/O operation

void (*)
(struct kiocb *)

ki_dtor Method invoked when destroying the kiocb descriptor

struct list_head ki_list Pointers for the list of active ongoing I/O operation on an asyn-
chronous I/O context

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

634 | Chapter 16: Accessing Files

The generic_file_read() function initializes the kiocb descriptor by executing the
init_sync_kiocb macro, which sets the fields of the object for a synchronous opera-
tion. In particular, the macro sets the ki_key field to KIOCB_SYNC_KEY, the ki_filp field
to filp, and the ki_obj field to current.

Then, generic_file_read() invokes _ _generic_file_aio_read() passing to it the
addresses of the iovec and kiocb descriptors just filled. The latter function returns a
value, which is usually the number of bytes effectively read from the file; generic_
file_read() terminates by returning this value.

The _ _generic_file_aio_read() function is a general-purpose routine used by all file-
systems to implement both synchronous and asynchronous read operations. The
function receives four parameters: the address iocb of a kiocb descriptor, the address
iov of an array of iovec descriptors, the length of this array, and the address ppos of a
variable that stores the file’s current pointer. When invoked by generic_file_read(),
the array of iovec descriptors is composed of just one element describing the User
Mode buffer that will receive the data.*

We now explain the actions of the _ _generic_file_aio_read() function; for the sake
of simplicity, we restrict the description to the most common case: a synchronous
operation raised by a read() system call on a page-cached file. Later in this chapter
we describe how this function behaves in other cases. As usual, we do not discuss
how errors and anomalous conditions are handled.

union ki_obj For synchronous operations, pointer to the process descriptor
that issued the I/O operation; for asynchronous operations,
pointer to the iocb User Mode data structure

_ _u64 ki_user_data Value to be returned to the User Mode process

loff_t ki_pos Current file position of the ongoing I/O operation

unsigned short ki_opcode Type of operation (read, write, or sync)

size_t ki_nbytes Number of bytes to be transferred

char * ki_buf Current position in the User Mode buffer

size_t ki_left Number of bytes yet to be transferred

wait_queue_t ki_wait Wait queue used for asynchronous I/O operations

void * private Freely usable by the filesystem layer

* A variant of the read() system call—named readv()—allows an application to define multiple User Mode
buffers in which the kernel scatters the data read from the file; the _ _generic_file_aio_read() function han-
dles this case, too. In the following, we will assume that the data read from the file will be copied into just
one User Mode buffer; however, guessing the additional steps to be performed when using multiple buffers
is straightforward.

Table 16-1. The main fields of the kiocb descriptor (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 635

Here are the steps performed by the function:

1. Invokes access_ok() to verify that the User Mode buffer described by the iovec
descriptor is valid. Because the starting address and length have been received
from the sys_read() service routine, they must be checked before using them
(see the section “Verifying the Parameters” in Chapter 10). If the parameters are
not valid, returns the -EFAULT error code.

2. Sets up a read operation descriptor—namely, a data structure of type read_
descriptor_t that stores the current status of the ongoing file read operation rel-
ative to a single User Mode buffer. The fields of this descriptor are shown in
Table 16-2.

3. Invokes do_generic_file_read(), passing to it the file object pointer filp, the
pointer to the file offset ppos, the address of the just allocated read operation
descriptor, and the address of the file_read_actor() function (see later).

4. Returns the number of bytes copied into the User Mode buffer; that is, the value
found in the written field of the read_descriptor_t data structure.

The do_generic_file_read() function reads the requested pages from disk and cop-
ies them into the User Mode buffer. In particular, the function performs the follow-
ing actions:

1. Gets the address_space object corresponding to the file being read; its address is
stored in filp->f_mapping.

2. Gets the owner of the address_space object, that is, the inode object that will
own the pages to be filled with file’s data; its address is stored in the host field of
the address_space object. If the file being read is a block device file, the owner is
an inode in the bdev special filesystem rather than the inode pointed to by filp->
f_dentry->d_inode (see “The address_space Object” in Chapter 15).

3. Considers the file as subdivided in pages of data (4,096 bytes per page). The
function derives from the file pointer *ppos the logical number of the page that
includes the first requested byte—that is, the page’s index in the address space—
and stores it in the index local variable. The function also stores in the offset
local variable the displacement inside the page of the first requested byte.

4. Starts a cycle to read all pages that include the requested bytes; the number of
bytes to be read is stored in the count field of the read_descriptor_t descriptor.

Table 16-2. The fields of the read operation descriptor

Type Field Description

size_t written How many bytes have been copied into the User Mode buffer

size_t count How many bytes are yet to be transferred

char * arg.buf Current position in the User Mode buffer

int error Error code of the read operation (0 for no error)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

636 | Chapter 16: Accessing Files

During a single iteration, the function transfers a page of data by performing the
following substeps:

a. If index*4096+offset exceeds the file size stored in the i_size field of the
inode object, it exits from the cycle and goes to step 5.

b. Invokes cond_resched() to check the TIF_NEED_RESCHED flag of the current
process and, if the flag is set, to invoke the schedule() function.

c. If additional pages must be read in advance, it invokes page_cache_
readahead() to read them. We defer discussing read-ahead until the later
section “Read-Ahead of Files.”

d. Invokes find_get_page() passing as parameters a pointer to the address_
space object and the value of index; the function looks up the page cache to
find the descriptor of the page that stores the requested data, if any.

e. If find_get_page() returned a NULL pointer, the page requested is not in the
page cache. In that case, it performs the following actions:

1. Invokes handle_ra_miss() to tune the parameters used by the read-
ahead system.

2. Allocates a new page.

3. Inserts the descriptor of the new page into the page cache by invoking
add_to_page_cache(). Remember that this function sets the PG_locked
flag of the new page.

4. Inserts the descriptor of the new page into the LRU list by invoking lru_
cache_add() (see Chapter 17).

5. Jumps to step 4j to start reading the file’s data.

f. If the function has reached this point, the page is in the page cache. Checks
the PG_uptodate flag; if it is set, the data stored in the page is up-to-date,
hence there is no need to read it from disk: jumps to step 4m.

g. The data on the page is not valid, so it must be read from disk. The function
gains exclusive access to the page by invoking the lock_page() function. As
described in the section “Page Cache Handling Functions” in Chapter 15,
lock_page() suspends the current process if the PG_locked flag is already set,
until that bit is cleared.

h. Now the page is locked by the current process. However, another process
might have removed the page from the page cache right before the previous
step; hence, it checks whether the mapping field of the page descriptor is
NULL; in this case, it unlocks the page by invoking unlock_page(), decreases
its usage counter (it was increased by find_get_page()), and jumps back to
step 4a starting over with the same page.

i. If the function has reached this point, the page is locked and still present in
the page cache. Checks the PG_uptodate flag again, because another kernel
control path could have completed the necessary read between steps 4f

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 637

and 4g. If the flag is set, it invokes unlock_page() and jumps to step 4m to
skip the read operation.

j. Now the actual I/O operation can be started. Invokes the readpage method
of the address_space object of the file. The corresponding function takes
care of activating the I/O data transfer from the disk to the page. We dis-
cuss later what this function does for regular files and block device files.

k. If the PG_uptodate flag is still cleared, it waits until the page has been effec-
tively read by invoking the lock_page() function. The page, which was
locked in step 4g, will be unlocked as soon as the read operation finishes.
Therefore, the current process sleeps until the I/O data transfer terminates.

l. If index exceeds the file size in pages (this number is obtained by dividing
the value of the i_size field of the inode object by 4,096), it decreases the
page’s usage counter, and exits from the cycle jumping to step 5. This case
occurs when the file being read is concurrently truncated by another pro-
cess.

m. Stores in the nr local variable the number of bytes in the page that should be
copied into the User Mode buffer. This value is equal to the page size (4,096
bytes) unless either offset is not zero—this can happen only for the first or
last page of requested data—or the file does not contain all requested bytes.

n. Invokes mark_page_accessed() to set the PG_referenced or the PG_active flag,
hence denoting the fact that the page is being used and should not be
swapped out (see Chapter 17). If the same page (or part thereof) is read sev-
eral times in successive executions of do_generic_file_read(), this step is
executed only during the first read.

o. Now it is time to copy the data on the page into the User Mode buffer. To
do this, do_generic_file_read() invokes the file_read_actor() function,
whose address has been passed as a parameter. In turn, file_read_actor()
essentially executes the following steps:

1. Invokes kmap(), which establishes a permanent kernel mapping for the
page if it is in high memory (see the section “Kernel Mappings of High-
Memory Page Frames” in Chapter 8).

2. Invokes __copy_to_user(), which copies the data on the page in the
User Mode address space (see the section “Accessing the Process
Address Space” in Chapter 10). Notice that this operation might block
the process because of page faults while accessing the User Mode
address space.

3. Invokes kunmap() to release any permanent kernel mapping of the page.

4. Updates the count, written, and buf fields of the read_descriptor_t
descriptor.

p. Updates the index and offset local variables according to the number of
bytes effectively transferred in the User Mode buffer. Typically, if the last

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

638 | Chapter 16: Accessing Files

byte in the page has been copied into the User Mode buffer, index is
increased by one and offset is set to zero; otherwise, index is not increased
and offset is set to the number of bytes in the page that have been copied
into the User Mode buffer.

q. Decreases the page descriptor usage counter.

r. If the count field of the read_descriptor_t descriptor is not zero, there is
other data to be read from the file: jumps to step 4a to continue the loop
with the next page of data in the file.

5. All requested—or available—bytes have been read. The function updates the
filp->f_ra read-ahead data structure to record the fact that data is being read
sequentially from the file (see the later section “Read-Ahead of Files”).

6. Assigns to *ppos the value index*4096+offset, thus storing the next position
where a sequential access is to occur for a future invocation of the read() and
write() system calls.

7. Invokes update_atime() to store the current time in the i_atime field of the file’s
inode and to mark the inode as dirty, and returns.

The readpage method for regular files

As we saw, the readpage method is used repeatedly by do_generic_file_read() to
read individual pages from disk into memory.

The readpage method of the address_space object stores the address of the function
that effectively activates the I/O data transfer from the physical disk to the page
cache. For regular files, this field typically points to a wrapper that invokes the
mpage_readpage() function. For instance, the readpage method of the Ext3 filesystem
is implemented by the following function:

int ext3_readpage(struct file *file, struct page *page)
{
 return mpage_readpage(page, ext3_get_block);
}

The wrapper is needed because the mpage_readpage() function receives as its parame-
ters the descriptor page of the page to be filled and the address get_block of a func-
tion that helps mpage_readpage() find the right block. The wrapper is filesystem-
specific and can therefore supply the proper function to get a block. This function
translates the block numbers relative to the beginning of the file into logical block
numbers relative to positions of the block in the disk partition (for an example, see
Chapter 18). Of course, the latter parameter depends on the type of filesystem to
which the regular file belongs; in the previous example, the parameter is the address
of the ext3_get_block() function. The function passed as get_block always uses a
buffer head to store precious information about the block device (b_dev field), the
position of the requested data on the device (b_blocknr field), and the block status
(b_state field).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 639

The mpage_readpage() function chooses between two different strategies when read-
ing a page from disk. If the blocks that contain the requested data are contiguously
located on disk, then the function submits the read I/O operation to the generic
block layer by using a single bio descriptor. In the opposite case, each block in the
page is read by using a different bio descriptor. The filesystem-dependent get_block
function plays the crucial role of determining whether the next block in the file is
also the next block on the disk.

Specifically, mpage_readpage() performs the following steps:

1. Checks the PG_private field of the page descriptor: if it is set, the page is a buffer
page, that is, the page is associated with a list of buffer heads describing the
blocks that compose the page (see the section “Storing Blocks in the Page
Cache” in Chapter 15). This means that the page has already been read from
disk in the past, and that the blocks in the page are not adjacent on disk: jumps
to step 11 to read the page one block at a time.

2. Retrieves the block size (stored in the page->mapping->host->i_blkbits inode
field), and computes two values required to access all blocks on that page: the
number of blocks stored in the page and the file block number of the first block
in the page—that is, the index of the first block in the page relative to the begin-
ning of the file.

3. For each block in the page, invokes the filesystem-dependent get_block function
passed as a parameter to get the logical block number, that is, the index of the
block relative to the beginning of the disk or partition. The logical block num-
bers of all blocks in the page are stored in a local array.

4. Checks for any anomalous condition that could occur while executing the previ-
ous step. In particular, if some blocks are not adjacent on disk, or some block
falls inside a “file hole” (see the section “File Holes” in Chapter 18), or a block
buffer has been already filled by the get_block function, then jumps to step 11 to
read the page one block at a time.

5. If the function has reached this point, all blocks on the page are adjacent on
disk. However, the page could be the last page of data in the file, hence some of
the blocks in the page might not have an image on disk. If so, it fills the corre-
sponding block buffers in the page with zeros; otherwise, it sets the PG_
mappedtodisk flag of the page descriptor.

6. Invokes bio_alloc() to allocate a new bio descriptor consisting of a single seg-
ment and to initialize its bi_bdev and bi_sector fields with the address of the
block device descriptor and the logical block number of the first block in the
page, respectively. Both pieces of information have been determined in step 3
above.

7. Sets the bio_vec descriptor of the bio’s segment with the initial address of the
page, the offset of the first byte to be read (zero), and the total number of bytes
to be read.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

640 | Chapter 16: Accessing Files

8. Stores the address of the mpage_end_io_read() function in the bio->bi_end_io
field (see below).

9. Invokes submit_bio(), which sets the bi_rw flag with the direction of the data
transfer, updates the page_states per-CPU variable to keep track of the number
of read sectors, and invokes the generic_make_request() function on the bio
descriptor (see the section “Issuing a Request to the I/O Scheduler” in
Chapter 14).

10. Returns the value zero (success).

11. If the function jumps here, the page contains blocks that are not adjacent on
disk. If the page is up-to-date (PG_uptodate flag set), the function invokes unlock_
page() to unlock the page; otherwise, it invokes block_read_full_page() to start
reading the page one block at a time (see below).

12. Returns the value zero (success).

The mpage_end_io_read() function is the completion method of the bio; it is exe-
cuted as soon as the I/O data transfer terminates. Assuming that there was no I/O
error, the function essentially sets the PG_uptodate flag of the page descriptor,
invokes unlock_page() to unlock the page and to wake up any process sleeping for
this event, and invokes bio_put() to destroy the bio descriptor.

The readpage method for block device files

In the sections “VFS Handling of Device Files” in Chapter 13 and “Opening a Block
Device File” in Chapter 14, we discussed how the kernel handles requests to open a
block device file. We saw how the init_special_inode() function sets up the device
inode and how the blkdev_open() function completes the opening phase.

Block devices use an address_space object that is stored in the i_data field of the cor-
responding block device inode in the bdev special filesystem. Unlike regular files—
whose readpage method in the address_space object depends on the filesystem type
to which the file belongs—the readpage method of block device files is always the
same. It is implemented by the blkdev_readpage() function, which calls block_read_
full_page():

int blkdev_readpage(struct file * file, struct * page page)
{
 return block_read_full_page(page, blkdev_get_block);
}

As you can see, the function is once again a wrapper, this time for the block_read_
full_page() function. This time the second parameter points to a function that
translates the file block number relative to the beginning of the file into a logical
block number relative to the beginning of the block device. For block device files,
however, the two numbers coincide; therefore, the blkdev_get_block() function per-
forms the following steps:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 641

1. Checks whether the number of the first block in the page exceeds the index of the
last block in the block device (this index is obtained by dividing the size of the
block device stored in bdev->bd_inode->i_size by the block size stored in bdev->
bd_block_size; bdev points to the descriptor of the block device). If so, it returns
-EIO for a write operation, or zero for a read operation. (Reading beyond the end
of a block device is not allowed, either, but the error code should not be returned
here: the kernel could just be trying to dispatch a read request for the last data of
a block device, and the corresponding buffer page is only partially mapped.)

2. Sets the b_dev field of the buffer head to bdev.

3. Sets the b_blocknr field of the buffer head to the file block number, which was
passed as a parameter of the function.

4. Sets the BH_Mapped flag of the buffer head to state that the b_dev and b_blocknr
fields of the buffer head are significant.

The block_read_full_page() function reads a page of data one block at a time. As we
have seen, it is used both when reading block device files and when reading pages of
regular files whose blocks are not adjacent on disk. It performs the following steps:

1. Checks the PG_private flag of the page descriptor; if it is set, the page is associ-
ated with a list of buffer heads describing the blocks that compose the page (see
the section “Storing Blocks in the Page Cache” in Chapter 15). Otherwise, the
function invokes create_empty_buffers() to allocate buffer heads for all block
buffers included in the page. The address of the buffer head for the first buffer in
the page is stored in the page->private field. The b_this_page field of each buffer
head points to the buffer head of the next buffer in the page.

2. Derives from the file offset relative to the page (page->index field) the file block
number of the first block in the page.

3. For each buffer head of the buffers in the page, it performs the following sub-
steps:

a. If the BH_Uptodate flag is set, it skips the buffer and continues with the next
buffer in the page.

b. If the BH_Mapped flag is not set and the block is not beyond the end of the file,
it invokes the filesystem-dependent get_block function whose address has
been passed as a parameter. For a regular file, the function looks in the on-
disk data structures of the filesystem and finds the logical block number of the
buffer relative to the beginning of the disk or partition. Conversely, for a block
device file, the function regards the file block number as the logical block
number. In both cases the function stores the logical block number in the b_
blocknr field of the corresponding buffer head and sets the BH_Mapped flag.*

* When accessing a regular file, the get_block function might not find the block if it falls in a “file hole” (see
the section “File Holes” in Chapter 18). In this case, the function fills the block buffer with zeros and sets the
BH_Uptodate flag of the buffer head.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

642 | Chapter 16: Accessing Files

c. Tests again the BH_Uptodate flag because the filesystem-dependent get_block
function could have triggered a block I/O operation that updated the buffer.
If BH_Uptodate is set, it continues with the next buffer in the page.

d. Stores the address of the buffer head in arr local array, and continues with
the next buffer in the page.

4. If no file hole has been encountered in the previous step, the function sets the
PG_mappedtodisk flag of the page.

5. Now the arr local array stores the addresses of the buffer heads that correspond
to the buffers whose content is not up-to-date. If this array is empty, all buffers
in the page are valid. So the function sets the PG_uptodate flag of the page
descriptor, unlocks the page by invoking unlock_page(), and returns.

6. The arr local array is not empty. For each buffer head in the array, block_read_
full_page() performs the following substeps:

a. Sets the BH_Lock flag. If the flag was already set, the function waits until the
buffer is released.

b. Sets the b_end_io field of the buffer head to the address of the end_buffer_
async_read() function (see below) and sets the BH_Async_Read flag of the
buffer head.

7. For each buffer head in the arr local array, it invokes the submit_bh() function
on it, specifying the operation type READ. As we saw earlier, this function triggers
the I/O data transfer of the corresponding block.

8. Returns 0.

The end_buffer_async_read() function is the completion method of the buffer head;
it is executed as soon as the I/O data transfer on the block buffer terminates. Assum-
ing that there was no I/O error, the function sets the BH_Uptodate flag of the buffer
head and clears the BH_Async_Read flag. Then, the function gets the descriptor of the
buffer page containing the block buffer (its address is stored in the b_page field of the
buffer head) and checks whether all blocks in the page are up-to-date; if so, the func-
tion sets the PG_uptodate flag of the page and invokes unlock_page().

Read-Ahead of Files
Many disk accesses are sequential. As we will see in Chapter 18, regular files are
stored on disk in large groups of adjacent sectors, so that they can be retrieved
quickly with few moves of the disk heads. When a program reads or copies a file, it
often accesses it sequentially, from the first byte to the last one. Therefore, many
adjacent sectors on disk are likely to be fetched when handling a series of a process’s
read requests on the same file.

Read-ahead consists of reading several adjacent pages of data of a regular file or
block device file before they are actually requested. In most cases, read-ahead signifi-
cantly enhances disk performance, because it lets the disk controller handle fewer

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 643

commands, each of which refers to a larger chunk of adjacent sectors. Moreover, it
improves system responsiveness. A process that is sequentially reading a file does not
usually have to wait for the requested data because it is already available in RAM.

However, read-ahead is of no use when an application performs random accesses to
files; in this case, it is actually detrimental because it tends to waste space in the page
cache with useless information. Therefore, the kernel reduces—or stops—read-ahead
when it determines that the most recently issued I/O access is not sequential to the
previous one.

Read-ahead of files requires a sophisticated algorithm for several reasons:

• Because data is read page by page, the read-ahead algorithm does not have to
consider the offsets inside the page, but only the positions of the accessed pages
inside the file.

• Read-ahead may be gradually increased as long as the process keeps accessing
the file sequentially.

• Read-ahead must be scaled down or even disabled when the current access is not
sequential with respect to the previous one (random access).

• Read-ahead should be stopped when a process keeps accessing the same pages
over and over again (only a small portion of the file is being used), or when
almost all pages of the file are already in the page cache.

• The low-level I/O device driver should be activated at the proper time, so that
the future pages will have been transferred when the process needs them.

The kernel considers a file access as sequential with respect to the previous file access
if the first page requested is the page following the last page requested in the previ-
ous access.

While accessing a given file, the read-ahead algorithm makes use of two sets of
pages, each of which corresponds to a contiguous portion of the file. These two sets
are called the current window and the ahead window.

The current window consists of pages requested by the process or read in advance by
the kernel and included in the page cache. (A page in the current window is not nec-
essarily up-to-date, because its I/O data transfer could be still in progress.) The cur-
rent window contains both the last pages sequentially accessed by the process and
possibly some of the pages that have been read in advance by the kernel but that
have not yet been requested by the process.

The ahead window consists of pages—following the ones in the current window—
that are being currently being read in advance by the kernel. No page in the ahead
window has yet been requested by the process, but the kernel assumes that sooner or
later the process will request them.

When the kernel recognizes a sequential access and the initial page belongs to the
current window, it checks whether the ahead window has already been set up. If not,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

644 | Chapter 16: Accessing Files

the kernel creates a new ahead window and triggers the read operations for the corre-
sponding pages. In the ideal case, the process still requests pages from the current
window while the pages in the ahead window are being transferred. When the pro-
cess requests a page included in the ahead window, the ahead window becomes the
new current window.

The main data structure used by the read-ahead algorithm is the file_ra_state
descriptor whose fields are listed in Table 16-3. Each file object includes such a
descriptor in its f_ra field.

When a file is opened, all the fields of its file_ra_state descriptor are set to zero
except the prev_page and ra_pages fields.

The prev_page field stores the index of the last page requested by the process in the
previous read operation; initially, the field contains the value -1.

The ra_pages field represents the maximum size in pages for the current window,
that is, the maximum read-ahead allowed for the file. The initial (default) value for
this field is stored in the backing_dev_info descriptor of the block device that
includes the file (see the section “Request Queue Descriptors” in Chapter 14). An
application can tune the read-ahead algorithm for a given opened file by modifying
the ra_pages field; this can be done by invoking the posix_fadvise() system call,
passing to it the commands POSIX_FADV_NORMAL (set read-ahead maximum size to
default, usually 32 pages), POSIX_FADV_SEQUENTIAL (set read-ahead maximum size to
two times the default), and POSIX_FADV_RANDOM (set read-ahead maximum size to zero,
thus permanently disabling read-ahead).

Table 16-3. The fields of the file_ra_state descriptor

Type Field Description

unsigned long start Index of first page in the current window

unsigned long size Number of pages included in the current window (-1 for read-ahead tem-
porarily disabled, 0 for empty current window)

unsigned long flags Flags used to control the read-ahead

unsigned long cache_hit Number of consecutive cache hits (pages requested by the process and
found in the page cache)

unsigned long prev_page Index of the last page requested by the process

unsigned long ahead_start Index of the first page in the ahead window

unsigned long ahead_size Number of pages in the ahead window (0 for an empty ahead window)

unsigned long ra_pages Maximum size in pages of a read-ahead window (0 for read-ahead perma-
nently disabled)

unsigned long mmap_hit Read-ahead hit counter (used for memory mapped files)

unsigned long mmap_miss Read-ahead miss counter (used for memory mapped files)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 645

The flags field contains two flags called RA_FLAG_MISS and RA_FLAG_INCACHE that play
an important role. The first flag is set when a page that has been read in advance is
not found in the page cache (likely because it has been reclaimed by the kernel in
order to free memory; see Chapter 17): in this case, the size of the next ahead win-
dow to be created is somewhat reduced. The second flag is set when the kernel deter-
mines that the last 256 pages requested by the process have all been found in the
page cache (the value of consecutive cache hits is stored in the ra->cache_hit field).
In this case, read-ahead is turned off because the kernel assumes that all the pages
required by the process are already in the cache.

When is the read-ahead algorithm executed? This happens in the following cases:

• When the kernel handles a User Mode request to read pages of file data; this
event triggers the invocation of the page_cache_readahead() function (see step 4c
in the description of the do_generic_file_read() function in the section “Read-
ing from a File” earlier in this chapter).

• When the kernel allocates a page for a file memory mapping (see the filemap_
nopage() function in the section “Demand Paging for Memory Mapping” later in
this chapter, which again invokes the page_cache_readahead() function).

• When a User Mode application executes the readahead() system call, which
explicitly triggers some read-ahead activity on a file descriptor.

• When a User Mode application executes the posix_fadvise() system call with
the POSIX_FADV_NOREUSE or POSIX_FADV_WILLNEED commands, which inform the
kernel that a given range of file pages will be accessed in the near future.

• When a User Mode application executes the madvise() system call with the
MADV_WILLNEED command, which informs the kernel that a given range of pages in
a file memory mapping region will be accessed in the near future.

The page_cache_readahead() function

The page_cache_readahead() function takes care of all read-ahead operations that are
not explicitly triggered by ad-hoc system calls. It replenishes the current and ahead
windows, updating their sizes according to the number of read-ahead hits, that is,
according to how successful the read-ahead strategy was in the past accesses to the
file.

The function is invoked when the kernel must satisfy a read request for one or more
pages of a file, and acts on five parameters:

mapping
Pointer to the address_space object that describes the owner of the page

ra
Pointer to the file_ra_state descriptor of the file containing the page

filp
Address of the file object

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

646 | Chapter 16: Accessing Files

offset
Offset of the page within the file

req_size
Number of pages yet to be read to complete the current read operation*

Figure 16-1 shows the flow diagram of page_cache_readahead(). The function essen-
tially acts on the fields of the file_ra_state descriptor; thus, although the descrip-
tion of the actions in the flow diagram is quite informal, you can easily determine the
actual steps performed by the function. For instance, in order to check whether the
requested page is the same as the page previously read, the function checks whether
the values of the ra->prev_page field and of the offset parameter coincide (see
Table 16-3 earlier).

When the process accesses the file for the first time and the first requested page is the
page at offset zero in the file, the function assumes that the process will perform
sequential accesses. Thus, the function creates a new current window starting from
the first page. The length of the initial current window—always a power of two—is
somewhat related to the number of pages requested by the process in the first read
operation: the higher the number of requested pages, the larger the current window,
up to the maximum value stored in the ra->ra_pages field. Conversely, when the pro-
cess accesses the file for the first time but the first requested page is not at offset zero,
the function assumes that the process will not perform sequential accesses. Thus, the
function temporarily disables read-ahead (ra->size field is set to -1). However, a
new current window is created when the function recognizes a sequential access
while read-ahead is temporarily disabled.

If the ahead window does not already exist, it is created as soon as the function recog-
nizes that the process has performed a sequential access in the current window. The
ahead window always starts from the page following the last page of the current win-
dow. Its length, however, is related to the length of the current window as follows: if
the RA_FLAG_MISS flag is set, the length of the ahead window is the length of the current
window minus 2, or four pages if the result is less than four; otherwise, the length of
the ahead window is either four times or two times the length of the current window. If
the process continues to access the file in a sequential way, eventually the ahead win-
dow becomes the new current window, and a new ahead window is created. Thus,
read-ahead is aggressively enhanced if the process reads the file sequentially.

As soon as the function recognizes a file access that is not sequential with respect to the
previous one, the current and ahead windows are cleared (emptied) and the read-ahead
is temporarily disabled. Read-ahead is restarted from scratch as soon as the process
performs a read operation that is sequential with respect to the previous file access.

* Actually, if the read operation involves a number of pages larger than the maximum size of the read-ahead
window, the page_cache_readahead() function is invoked several times. Thus, the req_size parameter might
be smaller than the number of pages yet to be read to complete the read operation.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 647

Figure 16-1. The flow diagram of the page_cache_readahead() function

Read-ahead perma-
nently disabled, or
file already in cache?

Terminate.

YES

First access to file,
and first requested
page at offset 0?

NO

Access to the same page as
in the previous invocation
and just one page required?

NO

First page of the request
right after last page
of the previous request
(sequential access)?

YES

Read-ahead
temporarily
disabled?

YES

Set the current window starting
from the first required page and
length depending on the number
of required pages. Start I/O on
the current window.

YES

YES

Were all the 256 pages
lastly requested already
in the page cache?

Reset the current window
and the ahead window. Mark
the file as already in cache.

YES

Number of required pages
larger than the maximum
size of the current window?

NO

Create a new ahead window
after the current window. Start
I/O on the ahead window.

YES

NO

Were all the 256 pages
lastly requested already
in the page cache?

NO

Reset the current window
and the ahead window. Mark
the file as already in cache.

Empty ahead
 window?

NO

Create a new ahead window
after the current window. Start
I/O on the ahead window.

Some of the required page
in the ahead window?

Were all the 256 pages
lastly requested already
in the page cache?

YES

Replace the current window with
the ahead window. Create a new
ahead window. Start I/O on the ahead
window.

YES

NO

Random access: reset the current
window and the ahead window.
Start I/O on the required pages.

Were all the 256 pages
lastly requested already
in the page cache?NO

YES

NO

NO

NO

YES

NO

YES

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

648 | Chapter 16: Accessing Files

Every time page_cache_readahead() creates a new window, it starts the read opera-
tions for the included pages. In order to read a chunk of pages, page_cache_
readahead() invokes the blockable_page_cache_readahead() function. To reduce ker-
nel overhead, the latter function adopts the following clever features:

• No reading is performed if the request queue that services the block device is
read-congested (it does not make sense to increase congestion and block read-
ahead).

• The page cache is checked against each page to be read; if the page is already in
the page cache, it is simply skipped over.

• All the page frames needed by the read request are allocated at once before per-
forming the read from disk. If not all page frames can be obtained, the read-
ahead operation is performed only on the available pages. Again, there is little
sense in deferring read-ahead until all page frames become available.

• Whenever possible, the read operations are submitted to the generic block layer
by using multi-segment bio descriptors (see the section “Segments” in
Chapter 14). This is done by the specialized readpages method of the address_
space object, if defined; otherwise, it is done by repeatedly invoking the readpage
method. The readpage method is described in the earlier section “Reading from a
File” for the single-segment case only, but it is easy to adapt the description for
the multi-segment case.

The handle_ra_miss() function

In some cases, the kernel must correct the read-ahead parameters, because the read-
ahead strategy does not seem very effective. Let us consider the do_generic_file_
read() function described in the section “Reading from a File” earlier in this chap-
ter. The page_cache_readahead() function is invoked in step 4c. The flow diagram in
Figure 16-1 depicts two cases: either the requested page is in the current window or
in the ahead window, hence it should have been read in advance, or it is not, and the
function invokes blockable_page_cache_readahead() to read it. In both cases, do_
generic_file_read() should find the page in the page cache in step 4d. If it is not
found, this means that the page frame reclaiming algorithm has removed the page
from the cache. In this case, do_generic_file_read() invokes the handle_ra_miss()
function, which tunes the read-ahead algorithm by setting the RA_FLAG_MISS flag and
by clearing the RA_FLAG_INCACHE flag.

Writing to a File
Recall that the write() system call involves moving data from the User Mode
address space of the calling process into the kernel data structures, and then to disk.
The write method of the file object permits each filesystem type to define a special-
ized write operation. In Linux 2.6, the write method of each disk-based filesystem is
a procedure that basically identifies the disk blocks involved in the write operation,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 649

copies the data from the User Mode address space into some pages belonging to the
page cache, and marks the buffers in those pages as dirty.

Many filesystems (including Ext2 or JFS) implement the write method of the file
object by means of the generic_file_write() function, which acts on the following
parameters:

file
File object pointer

buf
Address in the User Mode address space where the characters to be written into
the file must be fetched

count
Number of characters to be written

ppos
Address of a variable storing the file offset from which writing must start

The function performs the following steps:

1. Initializes a local variable of type iovec containing the address and length of the
User Mode buffer (see also the description of the generic_file_read() function
in the section “Reading from a File” earlier in this chapter).

2. Determines the address inode of the inode object that corresponds to the file to
be written (file->f_mapping->host) and acquires the semaphore inode->i_sem.
Thanks to this semaphore, only one process at a time can issue a write() system
call on the file.

3. Invokes the init_sync_kiocb macro to initialize a local variable of type kiocb. As
explained in the section “Reading from a File” earlier in this chapter, the macro
sets the ki_key field to KIOCB_SYNC_KEY (synchronous I/O operation), the ki_filp
field to file, and the ki_obj field to current.

4. Invokes __generic_file_aio_write_nolock() (see below) to mark the affected
pages as dirty, passing the address of the local variables of type iovec and kiocb,
the number of segments for the User Mode buffer—only one in this case—and
the parameter ppos.

5. Releases the inode->i_sem semaphore.

6. Checks the O_SYNC flag of the file, the S_SYNC flag of the inode, and the MS_
SYNCHRONOUS flag of the superblock; if at least one of them is set, it invokes the
sync_page_range() function to force the kernel to flush all pages in the page
cache that have been touched in step 4, blocking the current process until the I/
O data transfers terminate. In turn, sync_page_range() executes either the
writepages method of the address_space object, if defined, or the mpage_
writepages() function (see the section “Writing Dirty Pages to Disk” later in this
chapter) to start the I/O transfers for the dirty pages; then, it invokes generic_
osync_inode() to flush to disk the inode and the associated buffers, and finally

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

650 | Chapter 16: Accessing Files

invokes wait_on_page_bit() to suspend the current process until all PG_
writeback bits of the flushed pages are cleared.

7. Returns the code returned by __generic_file_aio_write_nolock(), usually the
number of bytes effectively written.

The __generic_file_aio_write_nolock() function receives four parameters: the
address iocb of a kiocb descriptor, the address iov of an array of iovec descriptors,
the length of this array, and the address ppos of a variable that stores the file’s cur-
rent pointer. When invoked by generic_file_write(), the array of iovec descriptors
is composed of just one element describing the User Mode buffer that contains the
data to be written.*

We now explain the actions of the _ _generic_file_aio_write_nolock() function; for
the sake of simplicity, we restrict the description to the most common case: a com-
mon mode operation raised by a write() system call on a page-cached file. Later in
this chapter we describe how this function behaves in other cases. As usual, we do
not discuss how errors and anomalous conditions are handled.

The function executes the following steps:

1. Invokes access_ok() to verify that the User Mode buffer described by the iovec
descriptor is valid (the starting address and length have been received from the
sys_write() service routine, thus they must be checked before using them; see
the section “Verifying the Parameters” in Chapter 10). If the parameters are not
valid, it returns the -EFAULT error code.

2. Determines the address inode of the inode object that corresponds to the file to
be written (file->f_mapping->host). Remember that if the file is a block device
file, this is an inode in the bdev special filesystem (see Chapter 14).

3. Sets current->backing_dev_info to the address of the backing_dev_info descrip-
tor of the file (file->f_mapping->backing_dev_info). Essentially, this setting
allows the current process to write back the dirty pages owned by file->f_
mapping even if the corresponding request queue is congested; see Chapter 17.

4. If the O_APPEND flag of file->flags is on and the file is regular (not a block device
file), it sets *ppos to the end of the file so that all new data is appended to it.

5. Performs several checks on the size of the file. For instance, the write operation
must not enlarge a regular file so much as to exceed the per-user limit stored in
current->signal->rlim[RLIMIT_FSIZE] (see the section “Process Resource Lim-
its” in Chapter 3) and the filesystem limit stored in inode->i_sb->s_maxbytes.

* A variant of the write() system call—named writev()—allows an application to define multiple User Mode
buffers from which the kernel fetches the data to be written on the file; the generic_file_aio_write_nolock()
function handles this case too. In the following pages, we will assume that the data will be fetched from just
one User Mode buffer; however, guessing the additional steps to be performed when using multiple buffers is
straightforward.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 651

Moreover, if the file is not a “large file” (flag O_LARGEFILE of file->f_flags
cleared), its size cannot exceed 2 GB. If any of these constraints is not enforced,
it reduces the number of bytes to be written.

6. If set, it clears the suid flag of the file; also clears the sgid flag if the file is execut-
able (see the section “Access Rights and File Mode” in Chapter 1). We don’t
want users to be able to modify setuid files.

7. Stores the current time of day in the inode->mtime field (the time of last file write
operation) and in the inode->ctime field (the time of last inode change), and
marks the inode object as dirty.

8. Starts a cycle to update all the pages of the file involved in the write operation.
During each iteration, it performs the following substeps:

a. Invokes find_lock_page() to search the page in the page cache (see the sec-
tion “Page Cache Handling Functions” in Chapter 15). If this function finds
the page, it increases its usage counter and sets its PG_locked flag.

b. If the page is not in the page cache, it allocates a new page frame and
invokes add_to_page_cache() to insert the page into the page cache; as
explained in the section “Page Cache Handling Functions” in Chapter 15,
this function also increases the usage counter and sets the PG_locked flag.
Moreover, the function inserts the new page into the inactive list of the
memory zone (see Chapter 17).

c. Invokes the prepare_write method of the address_space object of the inode
(file->f_mapping). The corresponding function takes care of allocating and
initializing buffer heads for the page. We’ll discuss in subsequent sections
what this function does for regular files and block device files.

d. If the buffer is in high memory, it establishes a kernel mapping of the User
Mode buffer (see the section “Kernel Mappings of High-Memory Page
Frames” in Chapter 8). Then, it invokes _ _copy_from_user() to copy the
characters from the User Mode buffer to the page, and releases the kernel
mapping.

e. Invokes the commit_write method of the address_space object of the inode
(file->f_mapping). The corresponding function marks the underlying buff-
ers as dirty so they are written to disk later. We discuss what this function
does for regular files and block device files in the next two sections.

f. Invokes unlock_page() to clear the PG_locked flag and wake up any process
that is waiting for the page.

g. Invokes mark_page_accessed() to update the page status for the memory
reclaiming algorithm (see the section “The Least Recently Used (LRU) Lists”
in Chapter 17).

h. Decreases the page usage counter to undo the increment in step 8a or 8b.

i. In this iteration, yet another page has been dirtied: it checks whether the ratio
of dirty pages in the page cache has risen above a fixed threshold (usually,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

652 | Chapter 16: Accessing Files

40% of the pages in the system); if so, it invokes writeback_inodes() to start
flushing a few tens of pages to disk (see the section “Looking for Dirty Pages
To Be Flushed” in Chapter 15).

j. Invokes cond_resched() to check the TIF_NEED_RESCHED flag of the current
process and, if the flag is set, to invoke the schedule() function.

9. Now all pages of the file involved in the write operation have been handled.
Updates the value of *ppos to point right after the last character written.

10. Sets current->backing_dev_info to NULL (see step 3).

11. Terminates by returning the number of bytes effectively written.

The prepare_write and commit_write methods for regular files

The prepare_write and commit_write methods of the address_space object specialize
the generic write operation implemented by generic_file_write() for regular files
and block device files. Both of them are invoked once for every page of the file that is
affected by the write operation.

Each disk-based filesystem defines its own prepare_write method. As with read oper-
ations, this method is simply a wrapper for a common function. For instance, the
Ext2 filesystem usually implements the prepare_write method by means of the fol-
lowing function:

int ext2_prepare_write(struct file *file, struct page *page,
 unsigned from, unsigned to)
{
 return block_prepare_write(page, from, to, ext2_get_block);
}

The ext2_get_block() function was already mentioned in the earlier section “Read-
ing from a File”; it translates the block number relative to the file into a logical block
number, which represents the position of the data on the physical block device.

The block_prepare_write() function takes care of preparing the buffers and the
buffer heads of the file’s page by performing essentially the following steps:

1. Checks if the page is a buffer page (flag PG_Private set); if this flag is cleared,
invokes create_empty_buffers() to allocate buffer heads for all buffers included
in the page (see the section “Buffer Pages” in Chapter 15).

2. For each buffer head relative to a buffer included in the page and affected by the
write operation, the following is performed:

a. Resets the BH_New flag, if it is set (see below).

b. If the BH_Mapped flag is not set, the function performs the following substeps:

1. Invokes the filesystem-dependent function whose address get_block was
passed as a parameter. This function looks in the on-disk data struc-
tures of the filesystem and finds the logical block number of the buffer
(relative to the beginning of the disk partition rather than the beginning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 653

of the regular file). The filesystem-dependent function stores this num-
ber in the b_blocknr field of the corresponding buffer head and sets its
BH_Mapped flag. The get_block function could allocate a new physical
block for the file (for instance, if the accessed block falls inside a “hole”
of the regular file; see the section “File Holes” in Chapter 18). In this
case, it sets the BH_New flag.

2. Checks the value of the BH_New flag; if it is set, invokes unmap_
underlying_metadata() to check whether some block device buffer page
in the page cache includes a buffer referencing the same block on disk.*

This function essentially invokes _ _find_get_block() to look up the old
block in the page cache (see the section “Searching Blocks in the Page
Cache” in Chapter 15). If such a block is found, the function clears its
BH_Dirty flag and waits until any I/O data transfer on that buffer com-
pletes. Moreover, if the write operation does not rewrite the whole
buffer in the page, it fills the unwritten portion with zero’s. Then it con-
siders the next buffer in the page.

c. If the write operation does not rewrite the whole buffer and its BH_Delay and
BH_Uptodate flags are not set (that is, the block has been allocated in the on-
disk filesystem data structures and the buffer in RAM does not contain a
valid image of the data), the function invokes ll_rw_block() on the block to
read its content from disk (see the section “Submitting Buffer Heads to the
Generic Block Layer” in Chapter 15).

3. Blocks the current process until all read operations triggered in step 2c have been
completed.

4. Returns 0.

Once the prepare_write method returns, the generic_file_write() function updates
the page with the data stored in the User Mode address space. Next, it invokes the
commit_write method of the address_space object. This method is implemented by the
generic_commit_write() function for almost all disk-based non-journaling filesystems.

The generic_commit_write() function performs essentially the following steps:

1. Invokes the __block_commit_write() function. In turn, this function does the fol-
lowing:

a. Considers all buffers in the page that are affected by the write operation; for
each of them, sets the BH_Uptodate and BH_Dirty flags of the corresponding
buffer head.

* Although unlikely, this case might happen if a user writes blocks directly on the block device file, thus
bypassing the filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

654 | Chapter 16: Accessing Files

b. Marks the corresponding inode as dirty. As seen in the section “Looking for
Dirty Pages To Be Flushed” in Chapter 15, this activity may require adding
the inode to the list of dirty inodes of the superblock.

c. If all buffers in the buffer page are now up-to-date, it sets the PG_uptodate
flag of the page.

d. Sets the PG_dirty flag of the page, and tags the page as dirty in its radix tree
(see the section “The Radix Tree” in Chapter 15).

2. Checks whether the write operation enlarged the file. In this case, the function
updates the i_size field of the file’s inode.

3. Returns 0.

The prepare_write and commit_write methods for block device files

Write operations into block device files are very similar to the corresponding opera-
tions on regular files. In fact, the prepare_write method of the address_space object
of block device files is usually implemented by the following function:

int blkdev_prepare_write(struct file *file, struct page *page,
 unsigned from, unsigned to)
{
 return block_prepare_write(page, from, to, blkdev_get_block);
}

As you can see, the function is simply a wrapper to the block_prepare_write() func-
tion already discussed in the previous section. The only difference, of course, is in
the second parameter, which points to the function that must translate the file block
number relative to the beginning of the file to a logical block number relative to the
beginning of the block device. Remember that for block device files, the two num-
bers coincide. (See the earlier section “Reading from a File” for a discussion of the
blkdev_get_block() function.)

The commit_write method for block device files is implemented by the following sim-
ple wrapper function:

int blkdev_commit_write(struct file *file, struct page *page,
 unsigned from, unsigned to)
{
 return block_commit_write(page, from, to);
}

As you can see, the commit_write method for block device files does essentially the
same things as the commit_write method for regular files (we described the block_
commit_write() function in the previous section). The only difference is that the
method does not check whether the write operation has enlarged the file; you simply
cannot enlarge a block device file by appending characters to its last position.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing a File | 655

Writing Dirty Pages to Disk
The net effect of the write() system call consists of modifying the contents of some
pages in the page cache—optionally allocating the pages and adding them to the
page cache if they were not already present. In some cases (for instance, if the file has
been opened with the O_SYNC flag), the I/O data transfers start immediately (see
step 6 of generic_file_write() in the section “Writing to a File” earlier in this chap-
ter). Usually, however, the I/O data transfer is delayed, as explained in the section
“Writing Dirty Pages to Disk” in Chapter 15.

When the kernel wants to effectively start the I/O data transfer, it ends up invoking
the writepages method of the file’s address_space object, which searches for dirty
pages in the radix-tree and flushes them to disk. For instance, the Ext2 filesystem
implements the writepages method by means of the following function:

int ext2_writepages(struct address_space *mapping,
 struct writeback_control *wbc)
{
 return mpage_writepages(mapping, wbc, ext2_get_block);
}

As you can see, this function is a simple wrapper for the general-purpose mpage_
writepages() function; as a matter of fact, if a filesystem does not define the
writepages method, the kernel invokes directly mpage_writepages() passing NULL as
third argument. The ext2_get_block() function was already mentioned in the earlier
section “Reading from a File;” it is the filesystem-dependent function that translates
a file block number into a logical block number.

The writeback_control data structure is a descriptor that controls how the writeback
operation has to be performed; we have already described it in the section “Looking
for Dirty Pages To Be Flushed” in Chapter 15.

The mpage_writepages() function essentially performs the following actions:

1. If the request queue is write-congested and the process does not want to block, it
returns without writing any page to disk.

2. Determines the file’s initial page to be considered. If the writeback_control
descriptor specifies the initial position in the file, the function translates it into a
page index. Otherwise, if the writeback_control descriptor specifies that the pro-
cess does not want to wait for the I/O data transfer to complete, it sets the initial
page index to the value stored in mapping->writeback_index (that is, scanning
begins from the last page considered in the previous writeback operation).
Finally, if the process must wait until I/O data transfers complete, scanning
starts from the first page of the file.

3. Invokes find_get_pages_tag() to look up the descriptor of the dirty pages in the
page cache (see the section “The Tags of the Radix Tree” in Chapter 15).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

656 | Chapter 16: Accessing Files

4. For each page descriptor retrieved in the previous step, the function performs the
following steps:

a. Invokes lock_page() to lock up the page.

b. Checks that the page is still valid and in the page cache (because another
kernel control path could have acted upon the page between steps 3 and 4a).

c. Checks the PG_writeback flag of the page. If it is set, the page is already being
flushed to disk. If the process must wait for the I/O data transfer to com-
plete, it invokes wait_on_page_bit() to block the current process until the
PG_writeback flag is cleared; when this function terminates, any previously
ongoing writeback operation is terminated. Otherwise, if the process does
not want to wait, it checks the PG_dirty flag: if it is now cleared, the on-
going writeback will take care of the page, thus unlocks it and jumps back to
step 4a to continue with the next page.

d. If the get_block parameter is NULL (no writepages method defined), it
invokes the mapping->writepage method of the address_space object of the
file to flush the page to disk. Otherwise, if the get_block parameter is not
NULL, it invokes the mpage_writepage() function. See step 8 for details.

5. Invokes cond_resched() to check the TIF_NEED_RESCHED flag of the current pro-
cess and, if the flag is set, to invoke the schedule() function.

6. If the function has not scanned all pages in the given range, or if the number of
pages effectively written to disk is smaller than the value originally specified in
the writeback_control descriptor, it jumps back to step 3.

7. If the writeback_control descriptor does not specify the initial position in the
file, it sets the mapping->writeback_index field with the index of the last scanned
page.

8. If the mpage_writepage() function has been invoked in step 4d, and if that func-
tion returned the address of a bio descriptor, it invokes mpage_bio_submit() (see
below).

A typical filesystem such as Ext2 implements the writepage method as a wrapper for
the general-purpose block_write_full_page() function, passing to it the address of
the filesystem-dependent get_block function. In turn, the block_write_full_page()
function is similar to block_read_full_page() described in the section “Reading from
a File” earlier in this chapter: it allocates buffer heads for the page (if the page was
not already a buffer page), and invokes the submit_bh() function on each of them,
specifying the WRITE operation. As far as block device files are concerned, they imple-
ment the writepage method by using blkdev_writepage(), which is a wrapper for
block_write_full_page().

Many non-journaling filesystems rely on the mpage_writepage() function rather than
on the custom writepage method. This can improve performance because the mpage_
writepage() function tries to submit the I/O transfers by collecting as many pages as

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Mapping | 657

possible in the same bio descriptor; in turn, this allows the block device drivers to
exploit the scatter-gather DMA capabilities of the modern hard disk controllers.

To make a long story short, the mpage_writepage() function checks whether the page
to be written contains blocks that are not adjacent to disk, or whether the page
includes a file hole, or whether some block on the page is not dirty or not up-to-date.
If at least one of these conditions holds, the function falls back on the filesystem-
dependent writepage method, as above. Otherwise, the function adds the page as a
segment of a bio descriptor. The address of the bio descriptor is passed as parameter
to the function; if it is NULL, mpage_writepage() initializes a new bio descriptor and
returns its address to the calling function, which in turn passes it back in the future
invocations of mpage_writepage(). In this way, several pages can be added to the same
bio. If a page is not adjacent to the last added page in the bio, mpage_writepage()
invokes mpage_bio_submit() to start the I/O data transfer on the bio, and allocates a
new bio for the page.

The mpage_bio_submit() function sets the bi_end_io method of the bio to the address
of mpage_end_io_write(), then invokes submit_bio() to start the transfer (see the sec-
tion “Submitting Buffer Heads to the Generic Block Layer” in Chapter 15). Once the
data transfer successfully terminates, the completion function mpage_end_io_write()
wakes up any process waiting for the page transfer to complete, and destroys the bio
descriptor.

Memory Mapping
As already mentioned in the section “Memory Regions” in Chapter 9, a memory
region can be associated with some portion of either a regular file in a disk-based file-
system or a block device file. This means that an access to a byte within a page of the
memory region is translated by the kernel into an operation on the corresponding
byte of the file. This technique is called memory mapping.

Two kinds of memory mapping exist:

Shared
Each write operation on the pages of the memory region changes the file on disk;
moreover, if a process writes into a page of a shared memory mapping, the
changes are visible to all other processes that map the same file.

Private
Meant to be used when the process creates the mapping just to read the file, not
to write it. For this purpose, private mapping is more efficient than shared map-
ping. But each write operation on a privately mapped page will cause it to stop
mapping the page in the file. Thus, a write does not change the file on disk, nor
is the change visible to any other processes that access the same file. However,
pages of a private memory mapping that have not been modified by the process
are affected by file updates performed by other processes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

658 | Chapter 16: Accessing Files

A process can create a new memory mapping by issuing an mmap() system call (see
the section “Creating a Memory Mapping” later in this chapter). Programmers must
specify either the MAP_SHARED flag or the MAP_PRIVATE flag as a parameter of the sys-
tem call; as you can easily guess, in the former case the mapping is shared, while in
the latter it is private. Once the mapping is created, the process can read the data
stored in the file by simply reading from the memory locations of the new memory
region. If the memory mapping is shared, the process can also modify the corre-
sponding file by simply writing into the same memory locations. To destroy or
shrink a memory mapping, the process may use the munmap() system call (see the
later section “Destroying a Memory Mapping”).

As a general rule, if a memory mapping is shared, the corresponding memory region
has the VM_SHARED flag set; if it is private, the VM_SHARED flag is cleared. As we’ll see
later, an exception to this rule exists for read-only shared memory mappings.

Memory Mapping Data Structures
A memory mapping is represented by a combination of the following data structures:

• The inode object associated with the mapped file

• The address_space object of the mapped file

• A file object for each different mapping performed on the file by different
processes

• A vm_area_struct descriptor for each different mapping on the file

• A page descriptor for each page frame assigned to a memory region that maps
the file

Figure 16-2 illustrates how the data structures are linked. On the left side of the
image we show the inode, which identifies the file. The i_mapping field of each inode
object points to the address_space object of the file. In turn, the page_tree field of
each address_space object points to the radix tree of pages belonging to the address
space (see the section “The Radix Tree” in Chapter 15), while the i_mmap field points
to a second tree called the radix priority search tree (PST) of memory regions belong-
ing to the address space. The main use of PST is for performing “reverse mapping,”
that is, for identifying quickly all processes that share a given page. We’ll cover in
detail PSTs in the next chapter, because they are used for page frame reclaiming. The
link between file objects relative to the same file and the inode is established by
means of the f_mapping field.

Each memory region descriptor has a vm_file field that links it to the file object of
the mapped file (if that field is null, the memory region is not used in a memory map-
ping). The position of the first mapped location is stored into the vm_pgoff field of
the memory region descriptor; it represents the file offset as a number of page-size
units. The length of the mapped file portion is simply the length of the memory
region, which can be computed from the vm_start and vm_end fields.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Mapping | 659

Pages of shared memory mappings are always included in the page cache; pages of
private memory mappings are included in the page cache as long as they are unmodi-
fied. When a process tries to modify a page of a private memory mapping, the kernel
duplicates the page frame and replaces the original page frame with the duplicate in
the process Page Table; this is one of the applications of the Copy On Write mecha-
nism that we discussed in Chapter 8. The original page frame still remains in the
page cache, although it no longer belongs to the memory mapping since it is replaced
by the duplicate. In turn, the duplicate is not inserted into the page cache because it
no longer contains valid data representing the file on disk.

Figure 16-2 also shows a few page descriptors of pages included in the page cache
that refer to the memory-mapped file. Notice that the first memory region in the fig-
ure is three pages long, but only two page frames are allocated for it; presumably, the
process owning the memory region has never accessed the third page.

The kernel offers several hooks to customize the memory mapping mechanism for
every different filesystem. The core of memory mapping implementation is dele-
gated to a file object’s method named mmap. For most disk-based filesystems and for
block device files, this method is implemented by a general function called generic_
file_mmap(), which is described in the next section.

Figure 16-2. Data structures for file memory mapping

address_space
object

struct
page

struct
page

struct
page

mapping
mapping

mapping

page
frame

page
frame

page
frame

File
image

index index index

struct
vm_area_struct

struct
file

struct
vm_area_struct

struct
file

vm_file

Memory regions

i_mapping

vm_pgoff vm_pgoff

struct
inode

i_mmap
Radix priority

search tree

page_tree Radix
tree

f_mapping f_mapping

vm_file

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

660 | Chapter 16: Accessing Files

File memory mapping depends on the demand paging mechanism described in the
section “Demand Paging” in Chapter 9. In fact, a newly established memory mapping
is a memory region that doesn’t include any page; as the process references an address
inside the region, a Page Fault occurs and the Page Fault handler checks whether the
nopage method of the memory region is defined. If nopage is not defined, the memory
region doesn’t map a file on disk; otherwise, it does, and the method takes care of
reading the page by accessing the block device. Almost all disk-based filesystems and
block device files implement the nopage method by means of the filemap_nopage()
function.

Creating a Memory Mapping
To create a new memory mapping, a process issues an mmap() system call, passing
the following parameters to it:

• A file descriptor identifying the file to be mapped.

• An offset inside the file specifying the first character of the file portion to be
mapped.

• The length of the file portion to be mapped.

• A set of flags. The process must explicitly set either the MAP_SHARED flag or the
MAP_PRIVATE flag to specify the kind of memory mapping requested.*

• A set of permissions specifying one or more types of access to the memory
region: read access (PROT_READ), write access (PROT_WRITE), or execution access
(PROT_EXEC).

• An optional linear address, which is taken by the kernel as a hint of where the
new memory region should start. If the MAP_FIXED flag is specified and the kernel
cannot allocate the new memory region starting from the specified linear
address, the system call fails.

The mmap() system call returns the linear address of the first location in the new
memory region. For compatibility reasons, in the 80 × 86 architecture, the kernel
reserves two entries in the system call table for mmap(): one at index 90 and the other
at index 192. The former entry corresponds to the old_mmap() service routine (used
by older C libraries), while the latter one corresponds to the sys_mmap2() service rou-
tine (used by recent C libraries). The two service routines differ only in how the six
parameters of the system call are passed. Both of them end up invoking the do_mmap_
pgoff() function described in the section “Allocating a Linear Address Interval” in

* The process could also set the MAP_ANONYMOUS flag to specify that the new memory region is anonymous—
that is, not associated with any disk-based file (see the section “Demand Paging” in Chapter 9). A process
can also create a memory region that is both MAP_SHARED and MAP_ANONYMOUS: in this case, the region maps a
special file in the tmpfs filesystem (see the section “IPC Shared Memory” in Chapter 19), which can be
accessed by all the process’s descendants.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Mapping | 661

Chapter 9. We now complete that description by detailing the steps performed only
when creating a memory region that maps a file. We thus describe the case where the
file parameter (pointer to a file object) of do_mmap_pgoff() is non-null. For the sake
of clarity, we refer to the enumeration used to describe do_mmap_pgoff() and point
out the additional steps performed under the new condition.

Step 1
Checks whether the mmap file operation for the file to be mapped is defined; if
not, it returns an error code. A NULL value for mmap in the file operation table indi-
cates that the corresponding file cannot be mapped (for instance, because it is a
directory).

Step 2
The get_unmapped_area() function invokes the get_unmapped_area method of the
file object, if it is defined, so as to allocate an interval of linear addresses suitable
for the memory mapping of the file. The disk-based filesystems do not define
this method; in this case, as explained in the section “Memory Region Han-
dling” in Chapter 9, the get_unmapped_area() function ends up invoking the get_
unmapped_area method of the memory descriptor.

Step 3
In addition to the usual consistency checks, it compares the kind of memory
mapping requested (stored in the flags parameter of the mmap() system call) and
the flags specified when the file was opened (stored in the file->f_mode field). In
particular:

• If a shared writable memory mapping is required, it checks that the file was
opened for writing and that it was not opened in append mode (O_APPEND
flag of the open() system call).

• If a shared memory mapping is required, it checks that there is no manda-
tory lock on the file (see the section “File Locking” in Chapter 12).

• For every kind of memory mapping, it checks that the file was opened for
reading.

If any of these conditions is not fulfilled, an error code is returned.

Moreover, when initializing the value of the vm_flags field of the new memory
region descriptor, it sets the VM_READ, VM_WRITE, VM_EXEC, VM_SHARED, VM_MAYREAD,
VM_MAYWRITE, VM_MAYEXEC, and VM_MAYSHARE flags according to the access rights of
the file and the kind of requested memory mapping (see the section “Memory
Region Access Rights” in Chapter 9). As an optimization, the VM_SHARED and VM_
MAYWRITE flags are cleared for nonwritable shared memory mapping. This can be
done because the process is not allowed to write into the pages of the memory
region, so the mapping is treated the same as a private mapping; however, the
kernel actually allows other processes that share the file to read the pages in this
memory region.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

662 | Chapter 16: Accessing Files

Step 10
Initializes the vm_file field of the memory region descriptor with the address of
the file object and increases the file’s usage counter. Invokes the mmap method for
the file being mapped, passing as parameters the address of the file object and
the address of the memory region descriptor. For most filesystems, this method
is implemented by the generic_file_mmap() function, which performs the fol-
lowing operations:

a. Stores the current time in the i_atime field of the file’s inode and marks the
inode as dirty.

b. Initializes the vm_ops field of the memory region descriptor with the address
of the generic_file_vm_ops table. All methods in this table are null, except
the nopage method, which is implemented by the filemap_nopage() func-
tion, and the populate method, which is implemented by the filemap_
populate() function (see “Non-Linear Memory Mappings” later in this
chapter).

Step 11
Increases the i_writecount field of the file’s inode, that is, the usage counter for
writing processes.

Destroying a Memory Mapping
When a process is ready to destroy a memory mapping, it invokes munmap(); this sys-
tem call can also be used to reduce the size of each kind of memory region. The
parameters used are:

• The address of the first location in the linear address interval to be removed.

• The length of the linear address interval to be removed.

The sys_munmap() service routine of the system call essentially invokes the do_
munmap() function already described in the section “Releasing a Linear Address Inter-
val” in Chapter 9. Notice that there is no need to flush to disk the contents of the
pages included in a writable shared memory mapping to be destroyed. In fact, these
pages continue to act as a disk cache because they are still included in the page
cache.

Demand Paging for Memory Mapping
For reasons of efficiency, page frames are not assigned to a memory mapping right
after it has been created, but at the last possible moment—that is, when the process
attempts to address one of its pages, thus causing a Page Fault exception.

We saw in the section “Page Fault Exception Handler” in Chapter 9 how the kernel
verifies whether the faulty address is included in some memory region of the pro-
cess; if so, the kernel checks the Page Table entry corresponding to the faulty address

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Mapping | 663

and invokes the do_no_page() function if the entry is null (see the section “Demand
Paging” in Chapter 9).

The do_no_page() function performs all the operations that are common to all types
of demand paging, such as allocating a page frame and updating the Page Tables. It
also checks whether the nopage method of the memory region involved is defined. In
the section “Demand Paging” in Chapter 9, we described the case in which the
method is undefined (anonymous memory region); now we complete the descrip-
tion by discussing the main actions performed by the function when the method is
defined:

1. Invokes the nopage method, which returns the address of a page frame that con-
tains the requested page.

2. If the process is trying to write into the page and the memory mapping is pri-
vate, it avoids a future Copy On Write fault by making a copy of the page just
read and inserting it into the inactive list of pages (see Chapter 17). If the private
memory mapping region does not already have a slave anonymous memory
region that includes the new page, it either adds a new slave anonymous mem-
ory region or extends an existing one (see the section “Memory Regions” in
Chapter 9). In the following steps, the function uses the new page instead of the
page returned by the nopage method, so that the latter is not modified by the
User Mode process.

3. If some other process has truncated or invalidated the page (the truncate_count
field of the address_space descriptor is used for this kind of check), the function
retries getting the page by jumping back to step 1.

4. Increases the rss field of the process memory descriptor to indicate that a new
page frame has been assigned to the process.

5. Sets up the Page Table entry corresponding to the faulty address with the
address of the page frame and the page access rights included in the memory
region vm_page_prot field.

6. If the process is trying to write into the page, it forces the Read/Write and Dirty
bits of the Page Table entry to 1. In this case, either the page frame is exclusively
assigned to the process, or the page is shared; in both cases, writing to it should
be allowed.

The core of the demand paging algorithm consists of the memory region’s nopage
method. Generally speaking, it must return the address of a page frame that contains
the page accessed by the process. Its implementation depends on the kind of mem-
ory region in which the page is included.

When handling memory regions that map files on disk, the nopage method must first
search for the requested page in the page cache. If the page is not found, the method
must read it from disk. Most filesystems implement the nopage method by means of
the filemap_nopage() function, which receives three parameters:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

664 | Chapter 16: Accessing Files

area
Descriptor address of the memory region, including the required page

address
Linear address of the required page

type
Pointer to a variable in which the function writes the type of page fault detected
by the function (VM_FAULT_MAJOR or VM_FAULT_MINOR)

The filemap_nopage() function executes the following steps:

1. Gets the file object address file from the area->vm_file field. Derives the
address_space object address from file->f_mapping. Derives the inode object
address from the host field of the address_space object.

2. Uses the vm_start and vm_pgoff fields of area to determine the offset within the
file of the data corresponding to the page starting from address.

3. Checks whether the file offset exceeds the file size. When this happens, it returns
NULL, which means failure in allocating the new page, unless the Page Fault was
caused by a debugger tracing another process through the ptrace() system call.
We are not going to discuss this special case.

4. If the VM_RAND_READ flag of the memory region is set (see below), we may assume
that the process is reading the pages of the memory mapping in a random way.
In this case, it ignores read-ahead by jumping to step 10.

5. If the VM_SEQ_READ flag of the memory region is set (see below), we may assume
that the process is reading the pages of the memory mapping in a strictly sequen-
tial way. In this case, it invokes page_cache_readahead() to perform read-ahead
starting from the faulty page (see the section “Read-Ahead of Files” earlier in this
chapter).

6. Invokes find_get_page() to look in the page cache for the page identified by the
address_space object and the file offset. If the page is found, it jumps to step 11.

7. If the function has reached this point, the page has not been found in the page
cache. Checks the VM_SEQ_READ flag of the memory region:

• If the flag is set, the kernel is aggressively reading in advance the pages of the
memory region, hence the read-ahead algorithm has failed: it invokes
handle_ra_miss() to tune up the read-ahead parameters (see the section
“Read-Ahead of Files” earlier in this chapter), then jumps to step 10.

• Otherwise, if the flag is clear, it increases by one the mmap_miss counter in
the file_ra_state descriptor of the file. If the number of misses is much
larger than the number of hits (stored in the mmap_hit counter), it ignores
read-ahead by jumping to step 10.

8. If read-ahead is not permanently disabled (ra_pages field in the file_ra_state
descriptor greater than zero), it invokes do_page_cache_readahead() to read a set
of pages surrounding the requested page.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Mapping | 665

9. Invokes find_get_page() to check whether the requested page is in the page
cache; if it is there, jumps to step 11.

10. Invokes page_cache_read(). This function checks whether the requested page is
already in the page cache and, if it is not there, allocates a new page frame, adds
it to the page cache, and executes the mapping->a_ops->readpage method to
schedule an I/O operation that reads the page’s contents from disk.

11. Invokes the grab_swap_token() function to possibly assign the swap token to the
current process (see the section “The Swap Token” in Chapter 17).

12. The requested page is now in the page cache. Increases by one the mmap_hit
counter of the file_ra_state descriptor of the file.

13. If the page is not up-to-date (PG_uptodate flag clear), it invokes lock_page() to
lock up the page, executes the mapping->a_ops->readpage method to trigger the
I/O data transfer, and invokes wait_on_page_bit() to sleep until the page is
unlocked—that is, until the data transfer completes.

14. Invokes mark_page_accessed() to mark the requested page as accessed (see next
chapter).

15. If an up-to-date version of the page was found in the page cache, it sets *type to
VM_FAULT_MINOR; otherwise sets it to VM_FAULT_MAJOR.

16. Returns the address of the requested page.

A User Mode process can tailor the read-ahead behavior of the filemap_nopage()
function by using the madvise() system call. The MADV_RANDOM command sets the VM_
RAND_READ flag of the memory region to specify that the pages of the memory region
will be accessed in random order; the MADV_SEQUENTIAL command sets the VM_SEQ_
READ flag to specify that the pages will be accessed in strictly sequential order; finally,
the MADV_NORMAL command resets both the VM_RAND_READ and VM_SEQ_READ flags to
specify that the pages will be accessed in a unspecified order.

Flushing Dirty Memory Mapping Pages to Disk
The msync() system call can be used by a process to flush to disk dirty pages belong-
ing to a shared memory mapping. It receives as its parameters the starting address of
an interval of linear addresses, the length of the interval, and a set of flags that have
the following meanings:

MS_SYNC
Asks the system call to suspend the process until the I/O operation completes. In
this way, the calling process can assume that when the system call terminates, all
pages of its memory mapping have been flushed to disk.

MS_ASYNC (complement of MS_SYNC)
Asks the system call to return immediately without suspending the calling
process.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

666 | Chapter 16: Accessing Files

MS_INVALIDATE
Asks the system call to invalidate other memory mappings of the same file (not
really implemented, because useless in Linux).

The sys_msync() service routine invokes msync_interval() on each memory region
included in the interval of linear addresses. In turn, the latter function performs the
following operations:

1. If the vm_file field of the memory region descriptor is NULL, or if the VM_SHARED
flag is clear, it returns 0 (the memory region is not a writable shared memory
mapping of a file).

2. Invokes the filemap_sync() function, which scans the Page Table entries corre-
sponding to the linear address intervals included in the memory region. For each
page found, it resets the Dirty flag in the corresponding page table entry and
invokes flush_tlb_page() to flush the corresponding translation lookaside buff-
ers; then, it sets the PG_dirty flag in the page descriptor to mark the page as
dirty.

3. If the MS_ASYNC flag is set, it returns. Therefore, the practical effect of the MS_
ASYNC flag consists of setting the PG_dirty flags of the pages in the memory
region; the system call does not actually start the I/O data transfers.

4. If the function has reached this point, the MS_SYNC flag is set, hence the function
must flush the pages in the memory region to disk and put the current process to
sleep until all I/O data transfers terminate. In order to do this, the function
acquires the i_sem semaphore of the file’s inode.

5. Invokes the filemap_fdatawrite() function, which receives the address of the
file’s address_space object. This function essentially sets up a writeback_control
descriptor with the WB_SYNC_ALL synchronization mode, and checks whether the
address space has a built-in writepages method. If so, it invokes the correspond-
ing function and returns. In the opposite case, it executes the mpage_writepages()
function. (See the section “Writing Dirty Pages to Disk” earlier in this chapter.)

6. Checks whether the fsync method of the file object is defined; if so, executes it.
For regular files, this method usually limits itself to flushing the inode object of
the file to disk. For block device files, however, the method invokes sync_
blockdev(), which activates the I/O data transfer of all dirty buffers of the device.

7. Executes the filemap_fdatawait() function. We recall from the section “The
Tags of the Radix Tree” in Chapter 15 that a radix tree in the page cache identi-
fies all pages that are currently being written to disk by means of the PAGECACHE_
TAG_WRITEBACK tag. The function quickly scans the portion of the radix tree that
covers the given interval of linear addresses looking for pages having the PG_
writeback flag set; for each such page, the function invokes wait_on_page_bit()
to sleep until the PG_writeback flag is cleared—that is, until the ongoing I/O
data transfer on the page terminates.

8. Releases the i_sem semaphore of the file and returns.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Memory Mapping | 667

Non-Linear Memory Mappings
The Linux 2.6 kernel offers yet another kind of access method for regular files: the
non-linear memory mappings. Basically, a non-linear memory mapping is a file mem-
ory mapping as described previously, but its memory pages are not mapped to
sequential pages on the file; rather, each memory page maps a random (arbitrary)
page of file’s data.

Of course, a User Mode application might achieve the same result by invoking the
mmap() system call repeatedly, each time on a different 4096-byte-long portion of the
file. However, this approach is not very efficient for non-linear mapping of large files,
because each mapping page requires its own memory region.

In order to support non-linear memory mapping, the kernel makes use of a few addi-
tional data structures. First of all, the VM_NONLINEAR flag of the memory region
descriptor specifies that the memory region contains a non-linear mapping. All
descriptors of non-linear mapping memory regions for a given file are collected in a
doubly linked circular list rooted at the i_mmap_nonlinear field of the address_space
object.

To create a non-linear memory mapping, the User Mode application first creates a
normal shared memory mapping with the mmap() system call. Then, the application
remaps some of the pages in the memory mapping region by invoking remap_file_
pages(). The sys_remap_file_pages() service routine of the system call receives four
parameters:

start
A linear address inside a shared file memory mapping region of the calling pro-
cess

size
Size of the remapped portion of the file in bytes

prot
Unused (must be zero)

pgoff
Page index of the initial file’s page to be remapped

flags
Flags controlling the non-linear memory mapping

The service routine remaps the portion of the file’s data identified by the pgoff and
size parameters starting from the start linear address. If either the memory region is
not shared or it is not large enough to include all the pages requested for the map-
ping, the system call fails and an error code is returned. Essentially, the service rou-
tine inserts the memory region in the i_mmap_nonlinear list of the file and invokes the
populate method of the memory region.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

668 | Chapter 16: Accessing Files

For all regular files, the populate method is implemented by the filemap_populate()
function, which executes the following steps:

1. Checks whether the MAP_NONBLOCK flag in the flags parameter of the remap_file_
pages() system call is clear; if so, it invokes do_page_cache_readahead() to read
in advance the pages of the file to be remapped.

2. For each page to be remapped, performs the following substeps:

a. Checks whether the page descriptor is already included in the page cache; if
it is not there and the MAP_NONBLOCK flag is cleared, it reads the page from
disk.

b. If the page descriptor is in the page cache, it updates the Page Table entry of
the corresponding linear address so that it points to the page frame, and
updates the counter of pages in the memory region descriptor.

c. Otherwise, if the page descriptor has not been found in the page cache, it
stores the offset of the file’s page in the 32 highest-order bits of the Page
Table entry for the corresponding linear address; also, clears the Present bit
of the Page Table entry and sets the Dirty bit.

As explained in the section “Demand Paging” in Chapter 9, when handling a
demand-paging fault the handle_pte_fault() function checks the Present and Dirty
bits in the Page Table entry; if they have the values corresponding to a non-linear
memory mapping, handle_pte_fault() invokes the do_file_page() function, which
extracts the index of the requested file’s page from the high-order bits of the Page
Table entry; then, do_file_page() invokes the populate method of the memory
region to read the page from disk and update the Page Table entry itself.

Because the memory pages of a non-linear memory mapping are included in the page
cache according to the page index relative to the beginning of the file—rather than
the index relative to the beginning of the memory region—non-linear memory map-
pings are flushed to disk exactly like linear memory mappings (see the section
“Flushing Dirty Memory Mapping Pages to Disk” earlier in this chapter).

Direct I/O Transfers
As we have seen, in Version 2.6 of Linux, there is no substantial difference between
accessing a regular file through the filesystem, accessing it by referencing its blocks
on the underlying block device file, or even establishing a file memory mapping.
There are, however, some highly sophisticated programs (self-caching applications)
that would like to have full control of the whole I/O data transfer mechanism. Con-
sider, for example, high-performance database servers: most of them implement their
own caching mechanisms that exploit the peculiar nature of the queries to the data-
base. For these kinds of programs, the kernel page cache doesn’t help; on the con-
trary, it is detrimental for the following reasons:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Direct I/O Transfers | 669

• Lots of page frames are wasted to duplicate disk data already in RAM (in the
user-level disk cache).

• The read() and write() system calls are slowed down by the redundant instruc-
tions that handle the page cache and the read-ahead; ditto for the paging opera-
tions related to the file memory mappings.

• Rather than transferring the data directly between the disk and the user mem-
ory, the read() and write() system calls make two transfers: between the disk
and a kernel buffer and between the kernel buffer and the user memory.

Because block hardware devices must be handled through interrupts and Direct
Memory Access (DMA), and this can be done only in Kernel Mode, some sort of ker-
nel support is definitely required to implement self-caching applications.

Linux offers a simple way to bypass the page cache: direct I/O transfers. In each I/O
direct transfer, the kernel programs the disk controller to transfer the data directly
from/to pages belonging to the User Mode address space of a self-caching applica-
tion.

As we know, each data transfer proceeds asynchronously. While it is in progress, the
kernel may switch the current process, the CPU may return to User Mode, the pages
of the process that raised the data transfer might be swapped out, and so on. This
works just fine for ordinary I/O data transfers because they involve pages of the disk
caches. Disk caches are owned by the kernel, cannot be swapped out, and are visible
to all processes in Kernel Mode.

On the other hand, direct I/O transfers should move data within pages that belong to
the User Mode address space of a given process. The kernel must take care that these
pages are accessible by every process in Kernel Mode and that they are not swapped
out while the data transfer is in progress. Let us see how this is achieved.

When a self-caching application wishes to directly access a file, it opens the file speci-
fying the O_DIRECT flag (see the section “The open() System Call” in Chapter 12).
While servicing the open() system call, the dentry_open() function checks whether
the direct_IO method is implemented for the address_space object of the file being
opened, and returns an error code in the opposite case. The O_DIRECT flag can also be
set for a file already opened by using the F_SETFL command of the fcntl() system call.

Let us consider first the case where the self-caching application issues a read() sys-
tem call on a file opened with O_DIRECT. As mentioned in the section “Reading from a
File” earlier in this chapter, the read file method is usually implemented by the
generic_file_read() function, which initializes the iovec and kiocb descriptors and
invokes _ _generic_file_aio_read(). The latter function verifies that the User Mode
buffer described by the iovec descriptor is valid, then checks whether the O_DIRECT
flag of the file is set. When invoked by a read() system call, the function executes a
code fragment essentially equivalent to the following:

if (filp->f_flags & O_DIRECT) {
 if (count == 0 || *ppos > filp->f_mapping->host->i_size)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

670 | Chapter 16: Accessing Files

 return 0;
 retval = generic_file_direct_IO(READ, iocb, iov, *ppos, 1);
 if (retval > 0)
 *ppos += retval;
 file_accessed(filp);
 return retval;
}

The function checks the current values of the file pointer, the file size, and the number
of requested characters, and then invokes the generic_file_direct_IO() function,
passing to it the READ operation type, the iocb descriptor, the iovec descriptor, the cur-
rent value of the file pointer, and the number of User Mode buffers specified in the io_
vec descriptor (one). When generic_file_direct_IO() terminates, _ _generic_file_
aio_read() updates the file pointer, sets the access timestamp on the file’s inode, and
returns.

Something similar happens when a write() system call is issued on a file having the
O_DIRECT flag set. As mentioned in the section “Writing to a File” earlier in this chap-
ter, the write method of the file ends up invoking generic_file_aio_write_nolock():
this function checks whether the O_DIRECT flag is set and, if so, invokes the generic_
file_direct_IO() function, this time specifying the WRITE operation type.

The generic_file_direct_IO() function acts on the following parameters:

rw
Type of operation: READ or WRITE

iocb
Pointer to a kiocb descriptor (see Table 16-1)

iov
Pointer to an array of iovec descriptors (see the section “Reading from a File”
earlier in this chapter)

offset
File offset

nr_segs
Number of iovec descriptors in the iov array

The steps performed by generic_file_direct_IO() are the following:

1. Gets the address file of the file object from the ki_filp field of the kiocb
descriptor, and the address mapping of the address_space object from the file->
f_mapping field.

2. If the type of operation is WRITE and if one or more processes have created a
memory mapping associated with a portion of the file, it invokes unmap_mapping_
range() to unmap all pages of the file. This function also ensures that if any Page
Table entry corresponding to a page to be unmapped has the Dirty bit set, then
the corresponding page is marked as dirty in the page cache.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Asynchronous I/O | 671

3. If the radix tree rooted at mapping is not empty (mapping->nrpages greater than
zero), it invokes the filemap_fdatawrite() and filemap_fdatawait() functions to
flush all dirty pages to disk and to wait until the I/O operations complete (see
the section “Flushing Dirty Memory Mapping Pages to Disk” earlier in this chap-
ter). (Even if the self-caching application is accessing the file directly, there could
be other applications in the system that access the file through the page cache.
To avoid data loss, the disk image is synchronized with the page cache before
starting the direct I/O transfer.)

4. Invokes the direct_IO method of the mapping address space (see the following
paragraphs).

5. If the operation type was WRITE, it invokes invalidate_inode_pages2() to scan all
pages in the radix tree of mapping and to release them. The function also clears
the User Mode Page Table entries that refer to those pages.

In most cases, the direct_IO method is a wrapper for the _ _blockdev_direct_IO()
function. This function is quite complex and invokes a large number of auxiliary data
structures and functions; however, it executes essentially the same kind of operations
already described in this chapter: it splits the data to be read or written in suitable
blocks, locates the data on disk, and fills up one or more bio descriptors that describe
the I/O operations to be performed. Of course, the data will be read or written directly
in the User Mode buffers specified by the iovec descriptors in the iov array. The bio
descriptors are submitted to the generic block layer by invoking the submit_bio()
function (see the section “Submitting Buffer Heads to the Generic Block Layer” in
Chapter 15). Usually, the _ _blockdev_direct_IO() function does not return until all
direct I/O transfers have been completed; thus, once the read() or write() system call
returns, the self-caching application can safely access the buffers containing the file
data.

Asynchronous I/O
The POSIX 1003.1 standard defines a set of library functions—listed in Table 16-4—
for accessing the files in an asynchronous way. “Asynchronous” essentially means
that when a User Mode process invokes a library function to read or write a file, the
function terminates as soon as the read or write operation has been enqueued, possi-
bly even before the actual I/O data transfer takes place. The calling process can thus
continue its execution while the data is being transferred.

Table 16-4. The POSIX library functions for asynchronous I/O

Function Description

aio_read() Asynchronously reads some data from a file

aio_write() Asynchronously writes some data into a file

aio_fsync() Requests a flush operation for all outstanding asynchronous I/O operations (does not block)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

672 | Chapter 16: Accessing Files

Using asynchronous I/O is quite simple. The application opens the file by means of
the usual open() system call. Then, it fills up a control block of type struct aiocb
with the information describing the requested operation. The most commonly used
fields of the struct aiocb control block are:

aio_fildes
The file descriptor of the file (as returned by the open() system call)

aio_buf
The User Mode buffer for the file’s data

aio_nbytes
How many bytes should be transferred

aio_offset
Position in the file where the read or write operation will start (it is independent
of the “synchronous” file pointer)

Finally, the application passes the address of the control block to either aio_read()
or aio_write(); both functions terminate as soon as the requested I/O data transfer
has been enqueued by the system library or kernel. The application can later check
the status of the outstanding I/O operation by invoking aio_error(), which returns
EINPROGRESS if the data transfer is still in progress, 0 if it is successfully completed, or
an error code in case of failure. The aio_return() function returns the number of
bytes effectively read or written by a completed asynchronous I/O operation, or -1 in
case of failure.

Asynchronous I/O in Linux 2.6
Asynchronous I/O can be implemented by a system library without any kernel sup-
port at all. Essentially, the aio_read() or aio_write() library function clones the cur-
rent process and lets the child invoke the synchronous read() or write() system
calls; then, the parent terminates the aio_read() or aio_write() function and contin-
ues the execution of the program, hence it does not wait for the synchronous opera-
tion started by the child to finish. However, this “poor man’s” version of the POSIX
functions is significantly slower than a version that uses a kernel-level implementa-
tion of asynchronous I/O.

aio_error() Gets the error code for an outstanding asynchronous I/O operation

aio_return() Gets the return code for a completed asynchronous I/O operation

aio_cancel() Cancels an outstanding asynchronous I/O operation

aio_suspend() Suspends the process until at least one of several outstanding I/O operations completes

Table 16-4. The POSIX library functions for asynchronous I/O (continued)

Function Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Asynchronous I/O | 673

The Linux 2.6 kernel version supports a set of system calls for asynchronous I/O.
However, in Linux 2.6.11 this feature is a work in progress, and asynchronous I/O
works properly only for files opened with the O_DIRECT flag set (see the previous sec-
tion). The system calls for asynchronous I/O are listed in Table 16-5.

The asynchronous I/O context

If a User Mode process wants to make use of the io_submit() system call to start an
asynchronous I/O operation, it must create beforehand an asynchronous I/O context.

Basically, an asynchronous I/O context (in short, AIO context) is a set of data struc-
tures that keep track of the on-going progresses of the asynchronous I/O operations
requested by the process. Each AIO context is associated with a kioctx object, which
stores all information relevant for the context. An application might create several
AIO contexts; all kioctx descriptors of a given process are collected in a singly linked
list rooted at the ioctx_list field of the memory descriptor (see Table 9-2 in
Chapter 9).

We are not going to discuss in detail the kioctx object; however, we should pinpoint
an important data structure referenced by the kioctx object: the AIO ring.

The AIO ring is a memory buffer in the address space of the User Mode process that
is also accessible by all processes in Kernel Mode. The User Mode starting address
and length of the AIO ring are stored in the ring_info.mmap_base and ring_info.
mmap_size fields of the kioctx object, respectively. The descriptors of all page frames
composing the AIO ring are stored in an array pointed to by the ring_info.ring_
pages field.

The AIO ring is essentially a circular buffer where the kernel writes the completion
reports of the outstanding asynchronous I/O operations. The first bytes of the AIO
ring contain an header (a struct aio_ring data structure); the remaining bytes store
io_event data structures, each of which describes a completed asynchronous I/O
operation. Because the pages of the AIO ring are mapped in the User Mode address
space of the process, the application can check directly the progress of the outstand-
ing asynchronous I/O operations, thus avoiding using a relatively slow system call.

The io_setup() system call creates a new AIO context for the calling process. It
expects two parameters: the maximum number of outstanding asynchronous I/O

Table 16-5. Linux system calls for asynchronous I/O

System call Description

io_setup() Initializes an asynchronous context for the current process

io_submit() Submits one or more asynchronous I/O operations

io_getevents() Gets the completion status of some outstanding asynchronous I/O operations

io_cancel() Cancels an outstanding I/O operation

io_destroy() Removes an asynchronous context for the current process

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

674 | Chapter 16: Accessing Files

operations, which ultimately determines the size of the AIO ring, and a pointer to a
variable that will store a handle to the context; this handle is also the base address of
the AIO ring. The sys_io_setup() service routine essentially invokes do_mmap() to
allocate a new anonymous memory region for the process that will contain the AIO
ring (see the section “Allocating a Linear Address Interval” in Chapter 9), and cre-
ates and initializes a kioctx object describing the AIO context.

Conversely, the io_destroy() system call removes an AIO context; it also destroys
the anonymous memory region containing the corresponding AIO ring. The system
call blocks the current process until all outstanding asynchronous I/O operations are
complete.

Submitting the asynchronous I/O operations

To start some asynchronous I/O operations, the application invokes the io_submit()
system call. The system call has three parameters:

ctx_id
The handle returned by io_setup(), which identifies the AIO context

iocbpp
The address of an array of pointers to descriptors of type iocb, each of which
describes one asynchronous I/O operation

nr
The length of the array pointed to by iocbpp

The iocb data structure includes the same fields as the POSIX aiocb descriptor (aio_
fildes, aio_buf, aio_nbytes, aio_offset) plus the aio_lio_opcode field that stores the
type of the requested operation (typically read, write, or sync).

The service routine sys_io_submit() performs essentially the following steps:

1. Verifies that the array of iocb descriptors is valid.

2. Searches the kioctx object corresponding to the ctx_id handle in the list rooted
at the ioctx_list field of the memory descriptor.

3. For each iocb descriptor in the array, it executes the following substeps:

a. Gets the address of the file object corresponding to the file descriptor stored
in the aio_fildes field.

b. Allocates and initializes a new kiocb descriptor for the I/O operation.

c. Checks that there is a free slot in the AIO ring to store the completion result
of the operation.

d. Sets the ki_retry method of the kiocb descriptor according to the type of the
operation (see below).

e. Executes the aio_run_iocb() function, which essentially invokes the ki_
retry method to start the I/O data transfer for the corresponding asynchro-
nous I/O operation. If the ki_retry method returns the value -EIOCBRETRY,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Asynchronous I/O | 675

the asynchronous I/O operation has been submitted but not yet fully satis-
fied: the aio_run_iocb() function will be invoked again on this kiocb at a
later time (see below). Otherwise, it invokes aio_complete() to add a com-
pletion event for the asynchronous I/O operation in the ring of the AIO con-
text.

If the asynchronous I/O operation is a read request, the ki_retry method of the cor-
responding kiocb descriptor is implemented by aio_pread(). This function essen-
tially executes the aio_read method of the file object, then updates the ki_buf and
ki_left fields of the kiocb descriptor (see Table 16-1 earlier in this chapter) accord-
ing to the value returned by the aio_read method. Finally, aio_pread() returns the
number of bytes effectively read from the file, or the value -EIOCBRETRY if the func-
tion determines that not all requested bytes have been transferred. For most filesys-
tems, the aio_read method of the file object ends up invoking the _ _generic_file_
aio_read() function. Assuming that the O_DIRECT flag of the file is set, this function
ends up invoking the generic_file_direct_IO() function, as described in the previ-
ous section. In this case, however, the _ _blockdev_direct_IO() function does not
block the current process waiting for the I/O data transfer to complete; instead, the
function returns immediately. Because the asynchronous I/O operation is still out-
standing, the aio_run_iocb() will be invoked again, this time by the aio kernel thread
of the aio_wq work queue. The kiocb descriptor keeps track of the progress of the I/O
data transfer; eventually all requested data will be transferred and the completion
result will be added to the AIO ring.

Similarly, if the asynchronous I/O operation is a write request, the ki_retry method
of the kiocb descriptor is implemented by aio_pwrite(). This function essentially
executes the aio_write method of the file object, then updates the ki_buf and ki_
left fields of the kiocb descriptor (see Table 16-1 earlier in this chapter) according to
the value returned by the aio_write method. Finally, aio_pwrite() returns the num-
ber of bytes effectively written to the file, or the value -EIOCBRETRY if the function
determines that not all requested bytes have been transferred. For most filesystems,
the aio_write method of the file object ends up invoking the generic_file_aio_
write_nolock() function. Assuming that the O_DIRECT flag of the file is set, this func-
tion ends up invoking the generic_file_direct_IO() function, as above.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

676

Chapter 17CHAPTER 17

Page Frame Reclaiming

In previous chapters, we explained how the kernel handles dynamic memory by
keeping track of free and busy page frames. We have also discussed how every pro-
cess in User Mode has its own address space and has its requests for memory satis-
fied by the kernel one page at a time, so that page frames can be assigned to the
process at the very last possible moment. Last but not least, we have shown how the
kernel makes use of dynamic memory to implement both memory and disk caches.

In this chapter, we complete our description of the virtual memory subsystem by dis-
cussing page frame reclaiming. We’ll start in the first section, “The Page Frame
Reclaiming Algorithm,” explaining why the kernel needs to reclaim page frames and
what strategy it uses to achieve this. We then make a technical digression in the sec-
tion “Reverse Mapping” to discuss the data structures used by the kernel to locate
quickly all the Page Table entries that point to the same page frame. The section
“Implementing the PFRA” is devoted to the page frame reclaiming algorithm used by
Linux. The last main section, “Swapping,” is almost a chapter by itself: it covers the
swap subsystem, a kernel component used to save anonymous (not mapping data of
files) pages on disk.

The Page Frame Reclaiming Algorithm
One of the fascinating aspects of Linux is that the checks performed before allocating
dynamic memory to User Mode processes or to the kernel are somewhat perfunctory.

No rigorous check is made, for instance, on the total amount of RAM assigned to the
processes created by a single user (the limits mentioned in the section “Process
Resource Limits” in Chapter 3 mostly affect single processes). Similarly, no limit is
placed on the size of the many disk caches and memory caches used by the kernel.

This lack of controls is a design choice that allows the kernel to use the available
RAM in the best possible way. When the system load is low, the RAM is filled mostly
by the disk caches and the few running processes can benefit from the information

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Page Frame Reclaiming Algorithm | 677

stored in them. However, when the system load increases, the RAM is filled mostly
by pages of the processes and the caches are shrunken to make room for additional
processes.

As we saw in previous chapters, both memory and disk caches grab more and more
page frames but never release any of them. This is reasonable because cache systems
don’t know if and when processes will reuse some of the cached data and are there-
fore unable to identify the portions of cache that should be released. Moreover,
thanks to the demand paging mechanism described in Chapter 9, User Mode pro-
cesses get page frames as long as they proceed with their execution; however,
demand paging has no way to force processes to release the page frames whenever
they are no longer used.

Thus, sooner or later all the free memory will be assigned to processes and caches.
The page frame reclaiming algorithm of the Linux kernel refills the lists of free blocks
of the buddy system by “stealing” page frames from both User Mode processes and
kernel caches.

Actually, page frame reclaiming must be performed before all the free memory has
been used up. Otherwise, the kernel might be easily trapped in a deadly chain of
memory requests that leads to a system crash. Essentially, to free a page frame the
kernel must write its data to disk; however, to accomplish this operation, the kernel
requires another page frame (for instance, to allocate the buffer heads for the I/O
data transfer). If no free page frame exists, no page frame can be freed.

One of the goals of page frame reclaiming is thus to conserve a minimal pool of free
page frames so that the kernel may safely recover from “low on memory” conditions.

Selecting a Target Page
The objective of the page frame reclaiming algorithm (PFRA) is to pick up page
frames and make them free. Clearly the page frames selected by the PFRA must be
non-free, that is, they must not be already included in one of the free_area arrays
used by the buddy system (see the section “The Buddy System Algorithm” in
Chapter 8).

The PFRA handles the page frames in different ways, according to their contents. We
can distinguish between unreclaimable pages, swappable pages, syncable pages, and
discardable pages. These types are explained in Table 17-1.

Table 17-1. The types of pages considered by the PFRA

Type of pages Description Reclaim action

Unreclaimable

Free pages (included in buddy system lists)
Reserved pages (with PG_reserved flag set)
Pages dynamically allocated by the kernel
Pages in the Kernel Mode stacks of the processes
Temporarily locked pages (with PG_locked flag set)
Memory locked pages (in memory regions with VM_LOCKED flag set)

(No reclaiming allowed or
needed)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

678 | Chapter 17: Page Frame Reclaiming

In the above table, a page is said to be mapped if it maps a portion of a file. For
instance, all pages in the User Mode address spaces belonging to file memory map-
pings are mapped, as well as any other page included in the page cache. In almost all
cases, mapped pages are syncable: in order to reclaim the page frame, the kernel
must check whether the page is dirty and, if necessary, write the page contents in the
corresponding disk file.

Conversely, a page is said to be anonymous if it belongs to an anonymous memory
region of a process (for instance, all pages in the User Mode heap or stack of a pro-
cess are anonymous). In order to reclaim the page frame, the kernel must save the
page contents in a dedicated disk partition or disk file called “swap area” (see the
later section “Swapping”); therefore, all anonymous pages are swappable.

Usually, the pages of special filesystems are not reclaimable. The only exceptions are
the pages of the tmpfs special filesystem, which can be reclaimed by saving them in a
swap area. As we’ll see in Chapter 19, the tmpfs special filesystem is used by the IPC
shared memory mechanism.

When the PFRA must reclaim a page frame belonging to the User Mode address space
of a process, it must take into consideration whether the page frame is shared or non-
shared. A shared page frame belongs to multiple User Mode address spaces, while a
non-shared page frame belongs to just one. Notice that a non-shared page frame might
belong to several lightweight processes referring to the same memory descriptor.

Shared page frames are typically created when a process spawns a child; as explained
in the section “Copy On Write” in Chapter 9, the page tables of the child are copied
from those of the parent, thus parent and child share the same page frames. Another
common case occurs when two or more processes access the same file by means of a
shared memory mapping (see the section “Memory Mapping” in Chapter 16).*

Swappable
Anonymous pages in User Mode address spaces
Mapped pages of tmpfs filesystem (e.g., pages of IPC shared memory)

Save the page contents in a
swap area

Syncable

Mapped pages in User Mode address spaces
Pages included in the page cache and containing data of disk files
Block device buffer pages
Pages of some disk caches (e.g., the inode cache)

Synchronize the page with
its image on disk, if neces-
sary

Discardable
Unused pages included in memory caches (e.g., slab allocator caches)
Unused pages of the dentry cache

Nothing to be done

* It should be noted, however, that when a single process accesses a file through a shared memory mapping,
the corresponding pages are non-shared as far as the PFRA is concerned. Similarly, a page belonging to a pri-
vate memory mapping may be treated as shared by the PFRA (for instance, because two processes read the
same file portion and none of them modified the data in the page).

Table 17-1. The types of pages considered by the PFRA (continued)

Type of pages Description Reclaim action

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Page Frame Reclaiming Algorithm | 679

Design of the PFRA
While it is easy to identify the page candidates for memory reclaiming—roughly
speaking, any page belonging to a disk or memory cache, or to the User Mode
address space of a process—selecting the proper target pages is perhaps the most
sensitive issue in kernel design.

As a matter of fact, the hardest job of a developer working on the virtual memory
subsystem consists of finding an algorithm that ensures acceptable performance both
for desktop machines (on which memory requests are quite limited but system
responsiveness is crucial) and for high-level machines such as large database servers
(on which memory requests tend to be huge).

Unfortunately, finding a good page frame reclaiming algorithm is a rather empirical
job, with very little support from theory. The situation is somewhat similar to evalu-
ating the factors that determine the dynamic priority of a process: the main objective
is to tune the parameters in such a way to achieve good system performance, with-
out asking too many questions about why it works well. Often, it’s just a matter of
“let’s try this approach and see what happens.” An unpleasant side effect of this
empirical design is that the code changes quickly. For that reason, we cannot ensure
that the memory reclaiming algorithm we are going to describe—the one used in
Linux 2.6.11—will be exactly the same, by the time you’ll read this chapter, as the
one adopted by the most up-to-date version of the Linux 2.6 kernel. However, the
general ideas and the main heuristic rules described here should continue to hold.

Looking too close to the trees’ leaves might lead us to miss the whole forest. There-
fore, let us present a few general rules adopted by the PFRA. These rules are embed-
ded in the functions that will be described later in this chapter.

Free the “harmless” pages first
Pages included in disk and memory caches not referenced by any process should
be reclaimed before pages belonging to the User Mode address spaces of the pro-
cesses; in the former case, in fact, the page frame reclaiming can be done with-
out modifying any Page Table entry. As we will see in the section “The Least
Recently Used (LRU) Lists” later in this chapter, this rule is somewhat mitigated
by introducing a “swap tendency factor.”

Make all pages of a User Mode process reclaimable
With the exception of locked pages, the PFRA must be able to steal any page of a
User Mode process, including the anonymous pages. In this way, processes that
have been sleeping for a long period of time will progressively lose all their page
frames.

Reclaim a shared page frame by unmapping at once all page table entries that reference it
When the PFRA wants to free a page frame shared by several processes, it clears
all page table entries that refer to the shared page frame, and then reclaims the
page frame.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

680 | Chapter 17: Page Frame Reclaiming

Reclaim “unused” pages only
The PFRA uses a simplified Least Recently Used (LRU) replacement algorithm to
classify pages as in-use and unused.* If a page has not been accessed for a long
time, the probability that it will be accessed in the near future is low and it can
be considered “unused;” on the other hand, if a page has been accessed recently,
the probability that it will continue to be accessed is high and it must be consid-
ered as “in-use.” The PFRA reclaims only unused pages. This is just another
application of the locality principle mentioned in the section “Hardware Cache”
in Chapter 2.

The main idea behind the LRU algorithm is to associate a counter storing the age
of the page with each page in RAM—that is, the interval of time elapsed since
the last access to the page. This counter allows the PFRA to reclaim only the old-
est page of any process. Some computer platforms provide sophisticated sup-
port for LRU algorithms;† unfortunately, 80 × 86 processors do not offer such a
hardware feature, thus the Linux kernel cannot rely on a page counter that keeps
track of the age of every page. To cope with this restriction, Linux takes advan-
tage of the Accessed bit included in each Page Table entry, which is automati-
cally set by the hardware when the page is accessed; moreover, the age of a page
is represented by the position of the page descriptor in one of two different lists
(see the section “The Least Recently Used (LRU) Lists” later in this chapter).

Therefore, the page frame reclaiming algorithm is a blend of several heuristics:

• Careful selection of the order in which caches are examined.

• Ordering of pages based on aging (least recently used pages should be freed
before pages accessed recently).

• Distinction of pages based on the page state (for example, non-dirty pages are
better candidates than dirty pages because they don’t have to be written to disk).

Reverse Mapping
As stated in the previous section, one of the objectives of the PFRA is to be able to
free a shared page frame. To that end, the Linux 2.6 kernel is able to locate quickly
all the Page Table entries that point to the same page frame. This activity is called
reverse mapping.

A trivial solution for reverse mapping would be to include in each page descriptor
additional fields to link together all the Page Table entries that point to the page

* The PFRA could also be considered as a “used-once” algorithm, which has its roots in the 2Q buffer man-
agement replacement algorithm proposed by T. Johnson and D. Shasha in 1994.

† For instance, the CPUs of some mainframes automatically update the value of a counter included in each
page table entry to specify the age of the corresponding page.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reverse Mapping | 681

frame associated with the page descriptor. However, keeping such lists up-to-date
would increase significantly the kernel overhead; for that reason, more sophisticated
solutions have been devised. The technique used in Linux 2.6 is named object-based
reverse mapping. Essentially, for any reclaimable User Mode page, the kernel stores
the backward links to all memory regions in the system (the “objects”) that include
the page itself. Each memory region descriptor stores a pointer to a memory descrip-
tor, which in turn includes a pointer to a Page Global Directory. Therefore, the back-
ward links enable the PFRA to retrieve all Page Table entries referencing a given a
page. Because there are fewer memory region descriptors than page descriptors,
updating the backward links of a shared page is less time consuming. Let’s see how
this scheme is worked out.

First of all, the PFRA must have a way to determine whether the page to be reclaimed
is shared or non-shared, and whether it is mapped or anonymous. In order to do
this, the kernel looks at two fields of the page descriptor: _mapcount and mapping.

The _mapcount field stores the number of Page Table entries that refer to the page
frame. The counter starts from -1: this value means that no Page Table entry refer-
ences the page frame. Thus, if the counter is zero, the page is non-shared, while if it
is greater than zero the page is shared. The page_mapcount() function receives the
address of a page descriptor and returns the value of its _mapcount plus one (thus, for
instance, it returns one for a non-shared page included in the User Mode address
space of some process).

The mapping field of the page descriptor determines whether the page is mapped or
anonymous, as follows:

• If the mapping field is NULL, the page belongs to the swap cache (see the section
“The Swap Cache” later in this chapter).

• If the mapping field is not NULL and its least significant bit is 1, it means the page
is anonymous and the mapping field encodes the pointer to an anon_vma descrip-
tor (see the next section, “Reverse Mapping for Anonymous Pages”).

• If the mapping field is non-NULL and its least significant bit is 0, the page is
mapped; the mapping field points to the address_space object of the correspond-
ing file (see the section “The address_space Object” in Chapter 15).

Every address_space object used by Linux is aligned in RAM so that its starting lin-
ear address is a multiple of four. Therefore, the least significant bit of the mapping
field can be used as a flag denoting whether the field contains a pointer to an
address_space object or to an anon_vma descriptor. This is a dirty programming trick,
but the kernel uses a lot of page descriptors, thus these data structures should be as
small as possible. The PageAnon() function receives as its parameter the address of a
page descriptor and returns 1 if the least significant bit of the mapping field is set, 0
otherwise.

The try_to_unmap() function, which receives as its parameter a pointer to a page
descriptor, tries to clear all the Page Table entries that point to the page frame

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

682 | Chapter 17: Page Frame Reclaiming

associated with that page descriptor. The function returns SWAP_SUCCESS (zero) if
the function succeeded in removing any reference to the page frame from all Page
Table entries, it returns SWAP_AGAIN (one) if some reference could not be removed,
and returns SWAP_FAIL (two) in case of errors. The function is quite short:

int try_to_unmap(struct page *page)
{
 int ret;
 if (PageAnon(page))
 ret = try_to_unmap_anon(page);
 else
 ret = try_to_unmap_file(page);
 if (!page_mapped(page))
 ret = SWAP_SUCCESS;
 return ret;
}

The try_to_unmap_anon() and try_to_unmap_file() functions take care of anony-
mous pages and mapped pages, respectively. These functions will be described in the
forthcoming sections.

Reverse Mapping for Anonymous Pages
Anonymous pages are often shared among several processes. The most common case
occurs when forking a new process: as explained in the section “Copy On Write” in
Chapter 9, all page frames owned by the parent—including the anonymous pages—
are assigned also to the child. Another (quite unusual) case occurs when a process
creates a memory region specifying both the MAP_ANONYMOUS and MAP_SHARED flag: the
pages of such a region will be shared among the future descendants of the process.

The strategy to link together all the anonymous pages that refer to the same page
frame is simple: the anonymous memory regions that include the page frame are col-
lected in a doubly linked circular list. Be warned that, even if an anonymous mem-
ory region includes different pages, there always is just one reverse mapping list for
all the page frames in the region.

When the kernel assigns the first page frame to an anonymous region, it creates a
new anon_vma data structure, which includes just two fields: lock, a spin lock for pro-
tecting the list against race conditions, and head, the head of the doubly linked circu-
lar list of memory region descriptors. Then, the kernel inserts the vm_area_struct
descriptor of the anonymous memory region in the anon_vma’s list; to that end, the
vm_area_struct data structure includes two fields related to this list: anon_vma_node
stores the pointers to the next and previous elements in the list, while anon_vma
points to the anon_vma data structure. Finally, the kernel stores the address of the
anon_vma data structure in the mapping field of the descriptor of the anonymous page,
as described previously. See Figure 17-1.

When a page frame already referenced by one process is inserted into a Page Table
entry of another process (for instance, as a consequence of a fork() system call, see

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reverse Mapping | 683

the section “The clone(), fork(), and vfork() System Calls” in Chapter 3); the kernel
simply inserts the anonymous memory region of the second process in the doubly
linked circular list of the anon_vma data structure pointed to by the anon_vma field of
the first process’s memory region. Therefore, any anon_vma’s list typically includes
memory regions owned by different processes.*

As shown in Figure 17-1, the anon_vma’s list allows the kernel to quickly locate all
Page Table entries that refer to the same anonymous page frame. In fact, each region
descriptor stores in the vm_mm field the address of the memory descriptor, which in
turn includes a field pgd containing the address of the Page Global Directory of the
process. The Page Table entry can then be determined by considering the starting lin-
ear address of the anonymous page, which is easily obtained from the memory region
descriptor and the index field of the page descriptor.

The try_to_unmap_anon() function

When reclaiming an anonymous page frame, the PFRA must scan all memory
regions in the anon_vma’s list and carefully check whether each region actually
includes an anonymous page whose underlying page frame is the target page frame.

Figure 17-1. Object-based reverse mapping for anonymous pages

* An anon_vma’s list may also include several adjacent anonymous memory regions owned by the same process.
Usually this occurs when an anonymous memory region is split in two or more regions by the mprotect()
system call.

anon_vma

vm_area_struct vm_area_struct

mm_struct page tables page tables

page
descr.

pgdpgd

anon_vma_node
vm_mm vm_mm

mapping

index

anonymous memory region anonymous memory region

vm_start vm_start

anon_vma

shared
page

shared
page

anon_vma

mm_struct

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

684 | Chapter 17: Page Frame Reclaiming

This job is done by the try_to_unmap_anon() function, which receives as its parame-
ter the descriptor of the target page frame and performs essentially the following
steps:

1. Acquires the lock spin lock of the anon_vma data structure pointed to by the
mapping field of the page descriptor.

2. Scans the anon_vma’s list of memory region descriptors; for each vma memory
region descriptor found in that list, it invokes the try_to_unmap_one() function
passing as parameters vma and the page descriptor (see below). If for some rea-
son this function returns a SWAP_FAIL value, or if the _mapcount field of the page
descriptor indicates that all Page Table entries referencing the page frame have
been found, the scanning terminates before reaching the end of the list.

3. Releases the spin lock obtained in step 1.

4. Returns the value computed by the last invocation of try_to_unmap_one(): SWAP_
AGAIN (partial success) or SWAP_FAIL (failure).

The try_to_unmap_one() function

The try_to_unmap_one() function is called repeatedly both from try_to_unmap_anon()
and from try_to_unmap_file(). It acts on two parameters: a pointer page to a target
page descriptor and a pointer vma to a memory region descriptor. The function essen-
tially performs the following actions:

1. Computes the linear address of the page to be reclaimed from the starting linear
address of the memory region (vma->vm_start), the offset of the memory region
in the mapped file (vma->vm_pgoff), and the offset of the page inside the mapped
file (page->index). For anonymous pages, the vma->vm_pgoff field is either zero or
equal to vm_start/PAGE_SIZE; correspondingly, the page->index field is either the
index of the page inside the region or the linear address of the page divided by
PAGE_SIZE.

2. If the target page is anonymous, it checks whether its linear address falls inside
the memory region; if not, it terminates by returning SWAP_AGAIN. (As explained
when introducing reverse mapping for anonymous pages, the anon_vma’s list may
include memory regions that do not contain the target page.)

3. Gets the address of the memory descriptor from vma->vm_mm, and acquires the
vma->vm_mm->page_table_lock spin lock that protects the page tables.

4. Invokes successively pgd_offset(), pud_offset(), pmd_offset(), and pte_offset_
map() to get the address of the Page Table entry that corresponds to the linear
address of the target page.

5. Performs a few checks to verify that the target page is effectively reclaimable. If
any of the following checks fails, the function jumps to step 12 to terminate by
returning a proper error number, either SWAP_AGAIN or SWAP_FAIL:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reverse Mapping | 685

a. Checks that the Page Table entry points to the target page; if not, the func-
tion returns SWAP_AGAIN. This can happen in the following cases:

• The Page Table entry refers to a page frame assigned with COW, but
the anonymous memory region identified by vma still belongs to the
anon_vma list of the original page frame.

• The mremap() system call may remap memory regions and move the
pages into the User Mode address space by directly modifying the page
table entries. In this particular case, object-based reverse mapping does
not work, because the index field of the page descriptor cannot be used
to determine the actual linear address of the page.

• The file memory mapping is non-linear (see the section “Non-Linear
Memory Mappings” in Chapter 16).

b. Checks that the memory region is not locked (VM_LOCKED) or reserved (VM_
RESERVED); if one of these restrictions is in place, the function returns SWAP_
FAIL.

c. Checks that the Accessed bit inside the Page Table entry is cleared; if not,
the function clears the bit and returns SWAP_FAIL. If the Accessed bit is set,
the page is considered in-use, thus it should not be reclaimed.

d. Checks whether the page belongs to the swap cache (see the section “The
Swap Cache” later in this chapter) and it is currently being handled by get_
user_pages() (see the section “Allocating a Linear Address Interval” in
Chapter 9); in this case, to avoid a nasty race condition, the function returns
SWAP_FAIL.

6. The page can be reclaimed: if the Dirty bit in the Page Table entry is set, sets the
PG_dirty flag of the page.

7. Clears the Page Table entry and flushes the corresponding TLBs.

8. If the page is anonymous, the function inserts a swapped-out page identifier in
the Page Table entry so that further accesses to this page will swap in the page
(see the section “Swapping” later in this chapter). Moreover, it decreases the
counter of anonymous pages stored in the anon_rss field of the memory descrip-
tor.

9. Decreases the counter of page frames allocated to the process stored in the rss
field of the memory descriptor.

10. Decreases the _mapcount field of the page descriptor, because a reference to this
page frame in the User Mode Page Table entries has been deleted.

11. Decreases the usage counter of the page frame, which is stored in the _count field of
the page descriptor. If the counter becomes negative, it removes the page descriptor
from the active or inactive list (see the section “The Least Recently Used (LRU)
Lists” later in this chapter), and invokes free_hot_page() to release the page frame
(see the section “The Per-CPU Page Frame Cache” in Chapter 8).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

686 | Chapter 17: Page Frame Reclaiming

12. Invokes pte_unmap() to release the temporary kernel mapping that could have
been allocated by pte_offset_map() in step 4 (see the section “Kernel Mappings
of High-Memory Page Frames” in Chapter 8).

13. Releases the vma->vm_mm->page_table_lock spin lock acquired in step 3.

14. Returns the proper error code (SWAP_AGAIN in case of success).

Reverse Mapping for Mapped Pages
As with anonymous pages, object-based reverse mapping for mapped pages is based
on a simple idea: it is always possible to retrieve the Page Table entries that refer to a
given page frame by accessing the descriptors of the memory regions that include the
corresponding mapped pages. Thus, the core of reverse mapping is a clever data
structure that collects all memory region descriptors relative to a given page frame.

We have seen in the previous section that descriptors for anonymous memory
regions are collected in doubly linked circular lists; retrieving all page table entries
referencing a given page frame involves a linear scanning of the elements in the list.
The number of shared anonymous page frames is never very large, hence this
approach works well.

Contrary to anonymous pages, mapped pages are frequently shared, because many
different processes may share the same pages of code. For instance, consider that
nearly all processes in the system share the pages containing the code of the stan-
dard C library (see the section “Libraries” in Chapter 20). For this reason, Linux 2.6
relies on special search trees, called “priority search trees,” to quickly locate all the
memory regions that refer to the same page frame.

There is a priority search tree for every file; its root is stored in the i_mmap field of the
address_space object embedded in the file’s inode object. It is always possible to
quickly retrieve the root of the search tree, because the mapping field in the descrip-
tor of a mapped page points to the address_space object.

The priority search tree

The priority search tree (PST) used by Linux 2.6 is based on a data structure intro-
duced by Edward McCreight in 1985 to represent a set of overlapping intervals.
McCreight’s tree is a hybrid of a heap and a balanced search tree, and it is used to
perform queries on the set of intervals—e.g., “what intervals are contained in a given
interval?” and “what intervals intersect a given interval?”—in an amount of time
directly proportional to the height of the tree and the number of intervals in the
answer.

Each interval in a PST corresponds to a node of the tree, and it is characterized by
two indices: the radix index, which corresponds to the starting point of the interval,
and the heap index, which corresponds to the final point. The PST is essentially a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reverse Mapping | 687

search tree on the radix index, with the additional heap-like property that the heap
index of a node is never smaller than the heap indices of its children.

The Linux priority search tree differs from McCreight’s data structure in two impor-
tant aspects: first, the Linux tree is not always kept balanced (the balancing algo-
rithm is costly both in memory space and in execution time); second, the Linux tree
is adapted so as to store memory regions instead of linear intervals.

Each memory region can be considered as an interval of file pages identified by the
initial position in the file (the radix index) and the final position (the heap index).
However, memory regions tend to start from the same pages (typically, from page
index 0). Unfortunately, McCreight’s original data structure cannot store intervals
having the very same starting point. As a partial solution, each node of a PST carries
an additional size index—other than the radix and heap indices—corresponding to
the size of the memory region in pages minus one. The size index allows the search
program to distinguish different memory regions that start at the same file position.

The size index, however, increases significantly the number of different nodes that
may end up in a PST. In particular, if there are too many nodes having the same
radix index but different heap indices, the PST could not contain all of them. To
solve this problem, the PST may include overflow subtrees rooted at the leaves of the
PST and containing nodes having a common radix tree.

Furthermore, different processes may own memory regions that map exactly the
same portion of the same file (just consider the example of the standard C library
mentioned above). In that case, all nodes corresponding to these memory regions
have the same radix, heap, and size indices. When the kernel must insert in a PST a
memory region having the same indices as the ones of a node already existing, it
inserts the memory region descriptor in a doubly linked circular list rooted at the
older PST node.

Figure 17-2 shows a simple example of priority search tree. In the left side of the fig-
ure, we show seven memory regions covering the first six pages of a file; each inter-
val is labeled with the radix index, size index, and heap index. In the right side of the
figure, we draw the corresponding PST. Notice that no child node has a heap index
greater than the heap index of the parent. Also observe that the radix index of the left
child of any node is never greater than the radix index of the right child; in case of tie
between the radix indices, the ordering is given by the size index. Let us suppose that
the PFRA must retrieve all memory regions that include the page at index five. The
search algorithm starts at the root (0,5,5): because the corresponding interval
includes the page, this is the first retrieved memory region. Then the algorithm visits
the left child (0,4,4) of the root and compares the heap index (four) with the page
index: because the heap index is smaller, the interval does not include the page;
moreover, thanks to the heap-like property of the PST, none of the children of this
node can include the page. Thus the algorithm directly jumps to the right child
(2,3,5) of the root. The corresponding interval includes the page, hence it is

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 17: Page Frame Reclaiming

retrieved. Then the algorithm visits the children (1,2,3) and (2,0,2), but it discovers
that neither of them include the page.

We won’t be able, for lack of space, to describe in detail the data structures and the
functions that implement the Linux PSTs. We’ll only mention that a node of a PST is
represented by a prio_tree_node data structure, which is embedded in the shared.
prio_tree_node field of each memory region descriptor. The shared.vm_set data struc-
ture is used—as an alternative to shared.prio_tree_node—to insert the memory
region descriptor in a duplicate list of a PST node. PST nodes can be inserted and
removed by executing the vma_prio_tree_insert() and vma_prio_tree_remove() func-
tions; both of them receive as their parameters the address of a memory region
descriptor and the address of a PST root. Queries on the PST can be performed by exe-
cuting the vma_prio_tree_foreach macro, which implements a loop over all memory
region descriptors that includes at least one page in a specified range of linear
addresses.

The try_to_unmap_file() function

The try_to_unmap_file() function is invoked by try_to_unmap() to perform the
reverse mapping of mapped pages. This function is quite simple to describe when the
memory mapping is linear (see the section “Memory Mapping” in Chapter 16). In
this case, it performs the following actions:

1. Gets the page->mapping->i_mmap_lock spin lock.

2. Applies the vma_prio_tree_foreach() macro to the priority search tree whose
root is stored in the page->mapping->i_mmap field. For each vm_area_struct
descriptor found by the macro, the function invokes try_to_unmap_one() to try
to clear the Page Table entry of the memory region that contains the page (see
the earlier section “Reverse Mapping for Anonymous Pages”). If for some reason
this function returns a SWAP_FAIL value, or if the _mapcount field of the page
descriptor indicates that all Page Table entries referencing the page frame have
been found, the scanning terminates immediately.

Figure 17-2. A simple example of priority search tree

radix size heap

(a) (b)

0 1 2 3 4 5

0,5,5
0,2,2
0,4,4
2,3,5
2,0,2
1,2,3
0,0,0

0,0,0 0,2,2 1,2,3 2,0,2

0,5,5

0,4,4 2,3,5

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 689

3. Releases the page->mapping->i_mmap_lock spin lock.

4. Returns either SWAP_AGAIN or SWAP_FAIL according to whether all page table
entries have been cleared.

If the mapping is non-linear (see the section “Non-Linear Memory Mappings” in
Chapter 16), the try_to_unmap_one() function may fail to clear some Page Table
entries, because the index field of the page descriptor, which as usual stores the posi-
tion of the page in the file, is no longer related to the position of the page in the
memory region. Therefore, try_to_unmap_one() cannot determine the linear address
of the page, hence it cannot get the Page Table entry address.

The only solution is an exhaustive search in all the non-linear memory regions of the
file. The doubly linked list rooted at the i_mmap_nonlinear field of the page->mapping
file’s address_space object includes the descriptors of all non-linear memory regions
of the file. For each such memory region, try_to_unmap_file() invokes the try_to_
unmap_cluster() function, which scans all Page Table entries corresponding to the
linear addresses of the memory region and tries to clear them.

Because the search might be quite time-consuming, a limited scan is performed and a
heuristic rule determines the portion of the memory region to be scanned: the vm_
private_data field of the vma_area_struct descriptor holds the current cursor in the
current scan. This means that try_to_unmap_file() might in some cases end up miss-
ing the page to be unmapped. When this occurs, try_to_unmap() discovers that the
page is still mapped and return SWAP_AGAIN instead of SWAP_SUCCESS.

Implementing the PFRA
The page frame reclaiming algorithm must take care of many kinds of pages owned
by User Mode processes, disk caches and memory caches; moreover, it has to obey
several heuristic rules. Thus, it is not surprising that the PFRA is composed of a large
number of functions. Figure 17-3 shows the main PFRA functions; an arrow denotes
a function invocation, thus for instance try_to_free_pages() invokes shrink_caches(
), shrink_slab(), and out_of_memory().

As you can see, there are several “entry points” for the PFRA. Actually, page frame
reclaiming is performed on essentially three occasions:

Low on memory reclaiming
The kernel detects a “low on memory” condition.

Hibernation reclaiming
The kernel must free memory because it is entering in the suspend-to-disk state
(we don’t further discuss this case).

Periodic reclaiming
A kernel thread is activated periodically to perform memory reclaiming, if neces-
sary.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

690 | Chapter 17: Page Frame Reclaiming

Low on memory reclaiming is activated in the following cases:

• The grow_buffers() function, invoked by _ _getblk(), fails to allocate a new
buffer page (see the section “Searching Blocks in the Page Cache” in
Chapter 15).

• The alloc_page_buffers() function, invoked by create_empty_buffers(), fails to
allocate the temporary buffer heads for a page (see the section “Reading and Writ-
ing a File” in Chapter 16).

• The _ _alloc_pages() function fails in allocating a group of contiguous page
frames in a given list of memory zones (see the section “The Buddy System Algo-
rithm” in Chapter 8).

Periodic reclaiming is activated by two different types of kernel threads:

• The kswapd kernel threads, which check whether the number of free page frames
in some memory zone has fallen below the pages_high watermark (see the later
section “Periodic Reclaiming”).

• The events kernel threads, which are the worker threads of the predefined work
queue (see the section “Work Queues” in Chapter 4); the PFRA periodically
schedules the execution of a task in the predefined work queue to reclaim all free

Figure 17-3. The main functions of the PFRA

LOW ON MEMORY RECLAIMING PERIODIC RECLAIMING

reap_work
work queue

free_more_memory()

try_to_free_pages() balance_pgdat()

kswapd() cache_reap()

slab_destroy()shrink_slab()

shrink_caches()

shrink_zone()

refill_inactive_zone()

shrink_cache()

shrink_list()

pageout()

HIBERNATION RECLAIMING

out_of_memory()

page_referenced()

Low memory on
buffer allocation

alloc_page_buffers()
__getblk()

Low memory on
page allocation

__alloc_pages()

Suspend to disk
(hibernation)

pm_suspend_disk()

kswapd
kernel thread

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 691

slabs included in the memory caches handled by the slab allocator (see the sec-
tion “The Slab Allocator” in Chapter 8).

We are now going to discuss in detail the various components of the page frame
reclaiming algorithm, including all functions shown in Figure 17-3.

The Least Recently Used (LRU) Lists
All pages belonging to the User Mode address space of processes or to the page cache
are grouped into two lists called the active list and the inactive list; they are also col-
lectively denoted as LRU lists. The former list tends to include the pages that have
been accessed recently, while the latter tends to include the pages that have not been
accessed for some time. Clearly, pages should be stolen from the inactive list.

The active list and the inactive list of pages are the core data structures of the page
frame reclaiming algorithm. The heads of these two doubly linked lists are stored,
respectively, in the active_list and inactive_list fields of each zone descriptor (see
the section “Memory Zones” in Chapter 8). The nr_active and nr_inactive fields in
the same descriptor store the number of pages in the two lists. Finally, the lru_lock
field is a spin lock that protects the two lists against concurrent accesses in SMP
systems.

If a page belongs to an LRU list, its PG_lru flag in the page descriptor is set. More-
over, if the page belongs to the active list, the PG_active flag is set, while if it belongs
to the inactive list, the PG_active flag is cleared. The lru field of the page descriptor
stores the pointers to the next and previous elements in the LRU list.

Several auxiliary functions are available to handle the LRU lists:

add_page_to_active_list()
Adds the page to the head of the zone’s active list and increases the nr_active
field of the zone descriptor.

add_page_to_inactive_list()
Adds the page to the head of the zone’s inactive list and increases the nr_
inactive field of the zone descriptor.

del_page_from_active_list()
Removes the page from the zone’s active list and decreases the nr_active field of
the zone descriptor.

del_page_from_inactive_list()
Removes the page from the zone’s inactive list and decreases the nr_inactive
field of the zone descriptor.

del_page_from_lru()
Checks the PG_active flag of a page; according to the result, removes the page
from the active or inactive list, decreases the nr_active or nr_inactive field of
the zone descriptor, and clears, if necessary, the PG_active flag.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

692 | Chapter 17: Page Frame Reclaiming

activate_page()
Checks the PG_active flag; if it is clear (the page is in the inactive list), it moves
the page into the active list: invokes del_page_from_inactive_list(), then
invokes add_page_to_active_list(), and finally sets the PG_active flag. The
zone’s lru_lock spin lock is acquired before moving the page.

lru_cache_add()
If the page is not included in an LRU list, it sets the PG_lru flag, acquires the
zone’s lru_lock spin lock, and invokes add_page_to_inactive_list() to insert
the page in the zone’s inactive list.

lru_cache_add_active()
If the page is not included in an LRU list, it sets the PG_lru and PG_active flags,
acquires the zone’s lru_lock spin lock, and invokes add_page_to_active_list()
to insert the page in the zone’s active list.

Actually, the last two functions, lru_cache_add() and lru_cache_add_active(), are
slightly more complicated. In fact, the two functions do not immediately move the
page into an LRU; instead, they accumulate the pages in temporary data structures of
type pagevec, each of which may contain up to 14 page descriptor pointers. The pages
will be effectively moved in an LRU list only when a pagevec structure is completely
filled. This mechanism enhances the system performance, because the LRU spin lock
is acquired only when the LRU lists are effectively modified.

Moving pages across the LRU lists

The PFRA collects the pages that were recently accessed in the active list so that it
will not scan them when looking for a page frame to reclaim. Conversely, the PFRA
collects the pages that have not been accessed for a long time in the inactive list. Of
course, pages should move from the inactive list to the active list and back, accord-
ing to whether they are being accessed.

Clearly, two page states (“active” and “inactive”) are not sufficient to describe all
possible access patterns. For instance, suppose a logger process writes some data in a
page once every hour. Although the page is “inactive” for most of the time, the
access makes it “active,” thus denying the reclaiming of the corresponding page
frame, even if it is not going to be accessed for an entire hour. Of course, there is no
general solution to this problem, because the PFRA has no way to predict the behav-
ior of User Mode processes; however, it seems reasonable that pages should not
change their status on every single access.

The PG_referenced flag in the page descriptor is used to double the number of
accesses required to move a page from the inactive list to the active list; it is also used
to double the number of “missing accesses” required to move a page from the active
list to the inactive list (see below). For instance, suppose that a page in the inactive
list has the PG_referenced flag set to 0. The first page access sets the value of the flag
to 1, but the page remains in the inactive list. The second page access finds the flag

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 693

set and causes the page to be moved in the active list. If, however, the second access
does not occur within a given time interval after the first one, the page frame reclaim-
ing algorithm may reset the PG_referenced flag.

As shown in Figure 17-4, the PFRA uses the mark_page_accessed(), page_referenced(
), and refill_inactive_zone() functions to move the pages across the LRU lists. In
the figure, the LRU list including the page is specified by the status of the PG_active
flag.

The mark_page_accessed() function

Whenever the kernel must mark a page as accessed, it invokes the mark_page_
accessed() function. This happens every time the kernel determines that a page is
being referenced by a User Mode process, a filesystem layer, or a device driver. For
instance, mark_page_accessed() is invoked in the following cases:

• When loading on demand an anonymous page of a process (performed by the
do_anonymous_page() function; see the section “Demand Paging” in Chapter 9).

• When loading on demand a page of a memory mapped file (performed by the
filemap_nopage() function; see the section “Demand Paging for Memory Map-
ping” in Chapter 16).

• When loading on demand a page of an IPC shared memory region (performed
by the shmem_nopage() function; see the section “IPC Shared Memory” in
Chapter 19).

• When reading a page of data from a file (performed by the do_generic_file_
read() function; see the section “Reading from a File” in Chapter 16).

• When swapping in a page (performed by the do_swap_page() function; see the
section “Swapping in Pages” later in this chapter).

• When looking up a buffer page in the page cache (see the _ _find_get_block()
function in the section “Searching Blocks in the Page Cache” in Chapter 15).

Figure 17-4. Moving pages across the LRU lists

PG_active == 0
PG_referenced == 0

PG_active == 1
PG_referenced == 0

PG_active == 0
PG_referenced == 1

PG_active == 1
PG_referenced == 1

lru_cache_add_active()

mark_page_accessed()

refill_inactive_zone()

lru_cache_add()

page_referenced()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

694 | Chapter 17: Page Frame Reclaiming

The mark_page_accessed() function executes the following code fragment:

if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
 activate_page(page);
 ClearPageReferenced(page);
} else if (!PageReferenced(page))
 SetPageReferenced(page);

As shown in Figure 17-4, the function moves the page from the inactive list to the
active list only if the PG_referenced flag is set before the invocation.

The page_referenced() function

The page_referenced()function, which is invoked once for every page scanned by the
PFRA, returns 1 if either the PG_referenced flag or some of the Accessed bits in the
Page Table entries was set; it returns 0 otherwise. This function first checks the PG_
referenced flag of the page descriptor; if the flag is set, it clears it. Next, it makes use
of the object-based reverse mapping mechanism to check and clear the Accessed bits
in all User Mode Page Table entries that refer to the page frame. To do this, the func-
tion makes use of three ancillary functions; page_referenced_anon(), page_
referenced_file(), and page_referenced_one(), which are analogous to the try_to_
unmap_xxx() functions described in the section “Reverse Mapping” earlier in this
chapter. The page_referenced() function also honors the swap token; see the sec-
tion “The Swap Token” later in this chapter.

The page_referenced() function never moves a page from the active list to the inac-
tive list; this job is done by refill_inactive_zone(). In practice, this function does a
lot more than move pages from the active to the inactive list, so we are going to
describe it in greater detail.

The refill_inactive_zone() function

As illustrated in Figure 17-3, the refill_inactive_zone() function is invoked by
shrink_zone(), which performs the reclaiming of pages in the page cache and in the
User Mode address spaces (see the section “Low On Memory Reclaiming” later in
this chapter). The function receives two parameters: a pointer zone to a memory zone
descriptor, and a pointer sc to a scan_control structure. The latter data structure is
widely used by the PFRA and contains information about the ongoing reclaiming
operation; its fields are shown in Table 17-2.

Table 17-2. The fields of the scan_control descriptor

Type Field Description

unsigned long nr_to_scan Target number of pages to be scanned in the active list.

unsigned long nr_scanned Number of inactive pages scanned in the current iteration.

unsigned long nr_reclaimed Number of pages reclaimed in the current iteration.

unsigned long nr_mapped Number of pages referenced in the User Mode address spaces.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 695

The role of refill_inactive_zone() is critical because moving a page from an active
list to an inactive list means making the page eligible to fall prey, sooner or later, to
the PFRA. If the function is too aggressive, it will move a lot of pages from the active
list to the inactive list; as a consequence, the PFRA will reclaim a large number of
page frames, and the system performance will be hit. On the other hand, if the func-
tion is too lazy, the inactive list will not be replenished with a large enough number
of unused pages, and the PFRA will fail in reclaiming memory. Thus, the function
implements an adaptive behavior: it starts by scanning, at every invocation, a small
number of pages in the active list; however, if the PFRA is having trouble in reclaim-
ing page frames, refill_inactive_zone() keeps increasing the number of active
pages scanned at every invocation. This behavior is controlled by the value of the
priority field in the scan_control data structure (a lower value means a more urgent
priority).

Another heuristic rule regulates the behavior of the refill_inactive_zone() func-
tion. The LRU lists include two kinds of pages: those belonging to the User Mode
address spaces, and those included in the page cache that do not belong to any User
Mode process. As stated earlier, the PFRA should tend to shrink the page cache
while leaving in RAM the pages owned by the User Mode processes. However, no
fixed “golden rule” may yield good performance in every scenario, thus the refill_
inactive_zone() function relies on a swap tendency heuristic value: it determines
whether the function will move all kinds of pages, or just the pages that do not
belong to the User Mode address spaces.* The swap tendency value is computed by
the function as follows:

swap tendency = mapped ratio / 2 + distress + swappiness

The mapped ratio value is the percentage of pages in all memory zones that belong to
User Mode address spaces (sc->nr_mapped) with respect to the total number of allo-
catable page frames. A high value of mapped_ratio means that the dynamic memory is
mostly used by User Mode processes, while a low value means that it is mostly used
by the page cache.

int nr_to_reclaim Target number of pages to be reclaimed.

unsigned int priority Priority of the scanning, ranging between 12 and 0. Lower priority
implies scanning more pages.

unsigned int gfp_mask GFP mask passed from calling function.

int may_writepage If set, writing a dirty page to disk is allowed (only for laptop mode).

* The name “swap tendency” is a bit misleading, because the pages in User Mode address spaces can be swap-
pable, syncable, or discardable. However, the swap tendency value certainly controls the amount of swap-
ping performed by the PFRA, because almost all swappable pages belong to the User Mode address spaces.

Table 17-2. The fields of the scan_control descriptor (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

696 | Chapter 17: Page Frame Reclaiming

The distress value is a measure of how effectively the PFRA is reclaiming page frames
in this zone; it is based on the scanning priority of the zone in the previous run of the
PFRA, which is stored in the prev_priority field of the zone descriptor. The distress
value depends on the zone’s previous priority as follows:

Finally, the swappiness value is a user-defined constant, which is usually set to 60.
The system administrator may tune this value by writing in the /proc/sys/vm/
swappiness file or by issuing the proper sysctl() system call.

Pages will be reclaimed from the address spaces of processes only if the zone’s swap
tendency is greater than or equal to 100. Thus, if the system administrator sets swap-
piness to 0, then the PFRA never reclaims pages in the User Mode address spaces
unless the zone’s previous priority is zero (an unlikely event); if the administrator
sets swappiness to 100, then the PFRA reclaims pages in the User Mode address
spaces at every invocation.

Here is a succinct description of what the refill_inactive_zone() function does:

1. Invokes lru_add_drain() to move into the active and inactive lists any page still
contained in the pagevec data structures.

2. Gets the zone->lru_lock spin lock.

3. Performs a first cycle scanning the pages in zone->active_list, starting from the
tail of the list and moving backwards. Continues until the list is empty or until
sc->nr_to_scan pages have been scanned. For each page scanned in this cycle,
the function increases by one its reference counter, removes the page descriptor
from zone->active_list, and puts it in a temporary l_hold local list. However, if
the reference counter of the page frame was zero, it puts back the page in the
active list. In fact, page frames having a reference counter equal to zero should
belong to the zone’s Buddy system; however, to free a page frame, first its usage
counter is decreased and then the page frame is removed from the LRU lists and
inserted in the buddy system’s list. Therefore, there is a small time window in
which the PFRA may see a free page in an LRU list.

4. Adds to zone->pages_scanned the number of active pages that have been
scanned.

5. Subtracts from zone->nr_active the number of pages that have been moved into
the l_hold local list.

6. Releases the zone->lru_lock spin lock.

7. Computes the swap tendency value (see above).

8. Performs a second cycle on the pages in the l_hold local list. The objective of
this cycle is to split the pages of l_hold into two local sublists called l_active

Zone prev. priority 12...7 6 5 4 3 2 1 0

Distress value 0 1 3 6 12 25 50 100

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 697

and l_inactive. A page belonging to the User Mode address space of some pro-
cess—that is, a page whose page->_mapcount is nonnegative—is added to l_
active if the swap tendency value is smaller than 100, or if the page is anony-
mous but no swap area is active, or finally if the page_referenced() function
applied to the page returns a positive value, which means that the page has been
recently accessed. In all other cases, the page is added to the l_inactive list.*

9. Gets the zone->lru_lock spin lock.

10. Performs a third cycle on the pages in the l_inactive local list to move them in
the zone->inactive_list list and updates the zone->nr_inactive field. In doing
so, it decreases the usage counters of the moved page frames to undo the incre-
ments done in step 3.

11. Performs a fourth and last cycle on the pages in the l_active local list to move
them into the zone->active_list list and updates the zone->nr_active field. In
doing so, it decreases the usage counters of the moved page frames to undo the
increments done in step 3.

12. Releases the zone->lru_lock spin lock and returns.

It should be noted that refill_inactive_zone() checks the PG_referenced flag only
for pages that belong to the User Mode address spaces (see step 8); in the opposite
case, the pages are in the tail of the active list—hence they were accessed some time
ago—and it is unlikely that they will be accessed in the near future. On the other
hand, the function does not evict a page from the active list if it is owned by some
User Mode process and has been recently used.

Low On Memory Reclaiming
Low on memory reclaiming is activated when a memory allocation fails. As shown in
Figure 17-3, the kernel invokes free_more_memory() while allocating a VFS buffer or a
buffer head, and it invokes try_to_free_pages() while allocating one or more page
frames from the buddy system.

The free_more_memory() function

The free_more_memory() function performs the following actions:

1. Invokes wakeup_bdflush() to wake a pdflush kernel thread and trigger write oper-
ations for 1024 dirty pages in the page cache (see the section “The pdflush Ker-
nel Threads” in Chapter 15). Writing dirty pages to disk may eventually make
freeable the page frames containing buffers, buffers heads, and other VFS data
structures.

* Notice that a page that does not belong to any User Mode process address space is moved into the inactive
list; however, since its PG_referenced flag is not cleared, the first access to the page causes the mark_page_
accessed() function to move the page back into the active list (see Figure 17-4).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

698 | Chapter 17: Page Frame Reclaiming

2. Invokes the service routine of the sched_yield() system call to give the pdflush
kernel thread a chance to run.

3. Starts a loop over all memory nodes in the system (see the section “Non-Uniform
Memory Access (NUMA)” in Chapter 8). For each node, invokes the try_to_free_
pages() function passing to it a list of the “low” memory zones (in the 80 × 86 archi-
tecture, ZONE_DMA and ZONE_NORMAL; see the section “Memory Zones” in Chapter 8).

The try_to_free_pages() function

The try_to_free_pages() function receives three parameters:

zones
A list of memory zones in which pages should be reclaimed (see the section
“Memory Zones” in Chapter 8)

gfp_mask
The set of allocation flags that were used by the failed memory allocation (see
the section “The Zoned Page Frame Allocator” in Chapter 8)

order
Not used

The goal of the function is to free at least 32 page frames by repeatedly invoking the
shrink_caches() and shrink_slab() functions, each time with a higher priority than
the previous invocation. The ancillary functions get the priority level—as well as
other parameters of the ongoing scan operation—in a descriptor of type scan_
control (see Table 17-2 earlier in this chapter). The lowest, initial priority level is 12,
while the highest, final priority level is 0. If try_to_free_pages() does not succeed in
reclaiming at least 32 page frames in one of the 13 repeated invocations of shrink_
caches() and shrink_slab(), the PFRA is in serious trouble, and it has just one last
resort: killing a process to free all its page frames. This operation is performed by the
out_of_memory() function (see the section “The Out of Memory Killer” later in this
chapter).

The function performs the following main steps:

1. Allocates and initializes a scan_control descriptor. In particular, stores the gfp_
mask allocation mask in the gfp_mask field.

2. For each zone in the zones lists, it sets the temp_priority field of the zone
descriptor to the initial priority (12). Moreover, it computes the total number of
pages contained in the LRU lists of the zones.

3. Performs a loop of at most 13 iterations, from priority 12 down to 0; in each iter-
ation performs the following substeps:

a. Updates some field of the scan_control descriptor. In particular, it stores in
the nr_mapped field the total number of pages owned by User Mode pro-
cesses, and in the priority field the current priority of this iteration. Also, it
sets to zero the nr_scanned and nr_reclaimed fields.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 699

b. Invokes shrink_caches() passing as arguments the zones list and the address
of the scan_control descriptor. This function scans the inactive pages of the
zones (see below).

c. Invokes shrink_slab() to reclaim pages from the shrinkable kernel caches
(see the section “Reclaiming Pages of Shrinkable Disk Caches” later in this
chapter).

d. If the current->reclaim_state field is not NULL, it adds to the nr_reclaimed
field of the scan_control descriptor the number of pages reclaimed from the
slab allocator caches; this number is stored in a small data structure pointed
to by the process descriptor field. The _ _alloc_pages() function sets up the
current->reclaim_state field before invoking the try_to_free_pages() func-
tion, and clears the field right after its termination. (Oddly, the free_more_
memory() function does not set this field.)

e. If the target has been reached (the nr_reclaimed field of the scan_control
descriptor is greater than or equal to 32), it breaks the loop and jumps to
step 4.

f. The target has not yet been reached. If at least 49 pages have been scanned
so far, the function invokes wakeup_bdflush() to activate a pdflush kernel
thread and write some dirty pages in the page cache to disk (see the section
“Looking for Dirty Pages To Be Flushed” in Chapter 15).

g. If the function has already performed four iterations without reaching the
target, it invokes blk_congestion_wait() to suspend the current process until
any WRITE request queue becomes uncongested or until a 100 ms time-out
elapses (see the section “Request Descriptors” in Chapter 14).

4. Sets the prev_priority field of each zone descriptor to the priority level used in
the last invocation of shrink_caches(); it is stored in the temp_priority field of
the zone descriptor.

5. Returns 1 if the reclaiming was successful, 0 otherwise.

The shrink_caches() function

The shrink_caches() function is invoked by try_to_free_pages(). It acts on two
parameters: the zones list of memory zones, and the address sc of a scan_control
descriptor.

The purpose of this function is simply to invoke the shrink_zone() function on each
zone in the zones list. However, before invoking shrink_zone() on a given zone,
shrink_caches() updates the temp_priority field of the zone’s descriptor by using
the value stored in the sc->priority field; this is the current priority level of the scan-
ning operation. Moreover, if the priority value of the previous invocation of the
PFRA is higher than the current priority value—that is, page frame reclaiming in this
zone is now harder to do—shrink_caches() copies the current priority level into the
prev_priority field of the zone descriptor. Finally, shrink_caches() does not invoke

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

700 | Chapter 17: Page Frame Reclaiming

shrink_zone() on a given zone if the all_unreclaimable flag in the zone descriptor is
set and the current priority level is less than 12—that is, shrink_caches() is not being
invoked in the very first iteration of try_to_free_pages(). The PFRA sets the all_
unreclaimable flag when it decides that a zone is so full of unreclaimable pages that
scanning the zone’s pages is just a waste of time.

The shrink_zone() function

The shrink_zone() function acts on two parameters: zone, a pointer to a struct_zone
descriptor, and sc, a pointer to a scan_control descriptor. The goal of this function is
to reclaim 32 pages from the zone’s inactive list; the function tries to reach this goal
by invoking repeatedly an auxiliary function called shrink_cache(), each time on
larger portion of the zone’s inactive list. Moreover, shrink_zone() replenishes the
zone’s inactive list by repeatedly invoking the refill_inactive_zone() function
described in the earlier section “The Least Recently Used (LRU) Lists.”

The nr_scan_active and nr_scan_inactive fields of the zone descriptor play a special
role here. To be efficient, the function works on batches of 32 pages. Thus, if the
function is running at a low privilege level (high value of sc->priority) and one of
the LRU lists does not contain enough pages, the function skips the scanning on that
list. However, the number of active or inactive pages thus skipped is recorded in nr_
scan_active or nr_scan_inactive, so that the skipped pages will be considered in the
next invocation of the function.

Specifically, the shrink_zone() function performs the following steps:

1. Increases the zone->nr_scan_active by a fraction of the total number of elements
in the active list (zone->nr_active). The actual increment is determined by the
current priority level and ranges from zone->nr_active/212 to zone->nr_active/20

(i.e., the whole number of active pages in the zone).

2. Increases the zone->nr_scan_inactive by a fraction of the total number of ele-
ments in the active list (zone->nr_inactive). The actual increment is determined
by the current priority level and ranges from zone->nr_inactive/212 to zone->nr_
inactive.

3. If the zone->nr_scan_active field is greater than or equal to 32, the function cop-
ies its value in the nr_active local variable and sets the field to zero; otherwise, it
sets nr_active to zero.

4. If the zone->nr_scan_inactive field is greater than or equal to 32, the function
copies its value in the nr_inactive local variable and sets the field to zero; other-
wise, it sets nr_inactive to zero.

5. Sets the sc->nr_to_reclaim field of the scan_control descriptor to 32.

6. If both nr_active and nr_inactive are 0, there is nothing to be done: the func-
tion terminates. This is an unlikely situation where User Mode processes have no
page frames allocated to them.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 701

7. If nr_active is positive, it replenishes the zone’s inactive list:
sc->nr_to_scan = min(nr_active, 32);
nr_active -= sc->nr_to_scan;
refill_inactive_zone(zone, sc);

8. If nr_inactive is positive, it tries to reclaim at most 32 pages from the inactive
list:

sc->nr_to_scan = min(nr_inactive, 32);
nr_inactive -= sc->nr_to_scan;
shrink_cache(zone, sc);

9. If shrink_zone() succeeds in reclaiming 32 pages (sc->nr_to_reclaim is now zero
or negative), it terminates. Otherwise, it jumps back to step 6.

The shrink_cache() function

The shrink_cache() function is yet another auxiliary function whose main purpose is
to extract from the zone’s inactive list a group of pages, put them in a temporary list,
and invoke the shrink_list() function to effectively perform page frame reclaiming
on every page in that list. The shrink_cache() function acts on the same parameters
as shrink_zones(), namely zone and sc, and performs the following main steps:

1. Invokes lru_add_drain() to move into the active and inactive lists any page still
contained in the pagevec data structures (see the section “The Least Recently
Used (LRU) Lists” earlier in this chapter).

2. Gets the zone->lru_lock spin lock.

3. Considers at most 32 pages in the inactive list; for each page, the function
increases its usage counter, checks whether the page is not being freed to the
buddy system (see the discussion at step 3 of refill_inactive_zone()), and
moves the page from the zone’s inactive list to a local list.

4. Decreases the counter zone->nr_inactive by the number of pages removed from
the inactive list.

5. Increases the counter zone->pages_scanned by the number of pages effectively
examined in the inactive list.

6. Releases the zone->lru_lock spin lock.

7. Invokes the shrink_list() function passing to it the (local list of) pages col-
lected in step 3 above. This function is discussed below (as you were no doubt
expecting).

8. Decreases the sc->nr_to_reclaim field by the number of pages actually reclaimed
by shrink_list().

9. Gets again the zone->lru_lock spin lock.

10. Puts back in the inactive or active list all pages of the local list that shrink_list()
did not succeed in freeing. Notice that shrink_list() might mark a page as active
by setting its PG_active flag. This operation is performed in a batch of pages using

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

702 | Chapter 17: Page Frame Reclaiming

a pagevec data structure (see the section “The Least Recently Used (LRU) Lists”
earlier in this chapter).

11. If the function scanned at least sc->nr_to_scan pages, and if it didn’t succeed in
reclaiming the target number of pages (i.e., sc->nr_to_reclaim is still positive), it
jumps back to step 3.

12. Releases the zone->lru_lock spin lock and terminates.

The shrink_list() function

We have now reached the heart of page frame reclaiming. While the purpose of the
functions illustrated so far, from try_to_free_pages() to shrink_cache(), was to
select the proper set of pages candidates for reclaiming, the shrink_list() function
effectively tries to reclaim the pages passed as a parameter in the page_list list. The
second parameter, namely sc, is the usual pointer to a scan_control descriptor.
When shrink_list() returns, page_list contains the pages that couldn’t be freed.

The function performs the following actions:

1. If the need_resched field of the current process is set, it invokes schedule().

2. Starts a cycle on every page descriptor included in the page_list list. For each list
item, it removes the page descriptor from the list and tries to reclaim the page
frame; if for some reason the page frame could not be freed, it inserts the page
descriptor in a local list.

3. Now the page_list list is empty: the function moves back the page descriptors
from the local list to the page_list list.

4. Increases the sc->nr_reclaimed field by the number of page frames reclaimed in
step 2, and returns that number.

Of course, what is really interesting in shrink_list() is the code that tries to reclaim
a page frame. The flow diagram of this code is shown in Figure 17-5.

There are only three possible outcomes for each page frame handled by shrink_list():

• The page is released to the zone’s buddy system by invoking the free_cold_page(
) function (see the section “The Per-CPU Page Frame Cache” in Chapter 8);
hence, the page is effectively reclaimed.

• The page is not reclaimed, thus it will be reinserted in the page_list list; how-
ever, shrink_list() assumes that it will be possible to reclaim the page in the
near future. Thus, the function leaves the PG_active flag in the page descriptor
cleared, so that the page will be put back in the inactive list of the memory zone
(see step 9 in the descriptor of shrink_cache() above). This event corresponds to
the small boxes labeled as “INACTIVE” in Figure 17-5.

• The page is not reclaimed, thus it will be reinserted in the page_list list; how-
ever, either the page is in active use, or shrink_list() assumes that it will be
impossible to reclaim the page in the foreseeable future. Thus, the function sets
the PG_active flag in the page descriptor, so that the page will be put in the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 703

active list of the memory zone. This event corresponds to the small boxes labeled
as “ACTIVE” in Figure 17-5.

The shrink_list() function never tries to reclaim a page that is locked (PG_locked
flag set) or under writeback (PG_writeback flag set). In order to test whether the page
was recently referenced, shrink_list() invokes page_referenced(), which was
described in the section “The Least Recently Used (LRU) Lists” earlier in this chapter.

To reclaim an anonymous page, the page must be added to the swap cache, and a
new slot in a swap area must be reserved for it; see the section “Swapping” later in
this chapter for details.

If the page is in the User Mode address space of some process (the _mapcount field in
the page descriptor is greater than or equal to zero), shrink_list() invokes the try_
to_unmap() function to locate all User Mode Page Table entries that refer to the page
frame (see the section “Reverse Mapping” earlier in this chapter). Of course, reclaim-
ing may proceed only if this function returns SWAP_SUCCESS.

Figure 17-5. The page reclaiming logic of the shrink_list() function

locked or under writeback? INACTIVE

ACTIVEreferenced? in an User Mode address space, or in swap
cache, or belongs to memory mapped file?

anonymous page
and not in swap cache?

YES

YESYES
NO

NO NO

add_to_swap()
YES FAIL

ACTIVE

in an User Mode address space?

NO

try_to_unmap()
YES

FAIL ACTIVE

INACTIVEAGAIN

dirty? page is referenced
or PFRA cannot do I/O?

YES
INACTIVE

YES

pageout()

NO

NO

ACTIVATE ACTIVE

INACTIVEKEEP

still locked, dirty,or
under writeback?

SUCCESS INACTIVE
YES

NOCLEAN

NO

buffer page? try_to_release_page()
YES FAIL

ACTIVE

non-dirty page owned only by
PFRA and page/swap cache?

NO

INACTIVE

NO

in swap cache?
YES

remove from swap cache

remove from page cache

YES

NO

free_cold_page()

SUCCESS

SUCCESS

ACTIVE
Does not reclaim the page
Sets the PG_active flag

INACTIVE
Does not reclaim the page
Clears the PG_active flag

SUCCESS

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

704 | Chapter 17: Page Frame Reclaiming

If the page is dirty, it cannot be reclaimed unless it is written to disk. To do this,
shrink_list() relies on the pageout() function, which is described next. The
reclaiming of the page frame may proceed only if either pageout() does not have to
issue a write operation, or if the write operation finishes soon.

If the page contains VFS buffers, shrink_list() invokes try_to_release_page() to
release the associated buffer heads (see the section “Releasing Block Device Buffer
Pages” in Chapter 15).

Finally, if everything went smoothly, shrink_list() checks the reference counter of
the page: if it is equal to two, the page has just two owners: the page cache (or the
swap cache, in case of anonymous pages), and the PFRA itself (the reference counter
was increased in step 3 of shrink_cache(); see earlier). In this case, the page can be
reclaimed, provided it is still not dirty. To do this, first the page is removed from the
page cache or the swap cache, according to the value of the PG_swapcache flag of the
page descriptor; then, the free_cold_page() function is executed.

The pageout() function

The pageout() function is invoked by shrink_list() when a dirty page must be writ-
ten to disk. Essentially, the function performs the following operations:

1. Checks that the page is included in the page cache or in the swap cache (see the
section “The Swap Cache” later in this chapter). Moreover, checks that the page
is owned only by the page cache—or the swap cache—and the PFRA. Returns
PAGE_KEEP if a check has failed (it does not make sense to write the page to disk if
it is not reclaimable by shrink_list()).

2. Checks that the writepage method of the address_space object is defined; returns
PAGE_ACTIVATE otherwise.

3. Checks that the current process can issue write requests to the request queue of
the block device associated with the address_space object. Essentially, the
kswapd and pdflush kernel threads may always issue the write request; normal
processes can issue the write request only if the request queue is not congested,
unless the current->backing_dev_info field points to the backing_dev_info data
structure of the block device (see step 3 of the description of the generic_file_
aio_write_nolock() function in the section “Writing to a File” in Chapter 16).

4. Checks that the page is still dirty; if not, returns PAGE_CLEAN.

5. Sets up a writeback_control descriptor and invokes the writepage method of the
address_space object to start a write back operation (see the section “Writing
Dirty Pages to Disk” in Chapter 16).

6. If the writepage method returned an error code, the function returns PAGE_
ACTIVATE.

7. Returns PAGE_SUCCESS.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 705

Reclaiming Pages of Shrinkable Disk Caches
We know from the previous chapters that the kernel uses other disk caches beside
the page cache, for instance the dentry cache and the inode cache (see the section
“The dentry Cache” in Chapter 12). When the PFRA tries to reclaim page frames, it
should also check whether some of these disk caches can be shrunk.

Every disk cache that is considered by the PFRA must have a shrinker function regis-
tered at initialization time. The shrinker function expects two parameters: the target
number of page frames to be reclaimed, and a set of GFP allocation flags; the func-
tion does what is required to reclaim the pages from the disk cache, then it returns
the number of reclaimable pages remaining in the cache.

The set_shrinker() function registers a shrinker function with the PFRA. This func-
tion allocates a descriptor of type shrinker, stores the address of the shrinker func-
tion in the descriptor, and then inserts the descriptor in a global list rooted at the
shrinker_list global variable. The set_shrinker() function also initializes the seeks
field of the shrinker descriptor: informally, it is a parameter that indicates how much
it costs to re-create one item of the cache once it is removed.

In Linux 2.6.11 there are few disk caches registered with the PFRA: besides the den-
try cache and the inode cache, only the disk quota layer, the filesystem meta informa-
tion block cache (mainly used for filesystems’ extended attributes), and the XFS
journaling filesystem register shrinker functions.

The PFRA’s function that reclaims pages from the shrinkable disk caches is called
shrink_slab() (the name is a bit misleading, because the function has little to do
with the slab allocator caches). This function is invoked by try_to_free_pages(), as
explained in the earlier section “Low On Memory Reclaiming,” and by balance_
pgdat(), which is described in the later section “Periodic Reclaiming.”

The shrink_slab() function tries to balance the cost of reclaiming from the shrink-
able disk cache with the cost of reclaiming from the LRU lists (performed by shrink_
list()). Essentially, the function walks the list in the shrinker descriptors to invoke
the shrinker functions and get the total number of reclaimable pages in the disk
caches. Then, the function scans again the list of the shrinker descriptor; for each
shrinkable disk cache, the function heuristically computes a target number of page
frames to be reclaimed—based on the number of reclaimable pages in the disk
caches, on the relative cost of re-creating a page in the disk cache, and on the num-
ber of pages in the LRU lists—and invokes the shrinker function to try to reclaim
batches of at least 128 pages.

For lack of space, we’ll limit ourselves to describe briefly the shrinker functions of
the dentry cache and of the inode cache.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

706 | Chapter 17: Page Frame Reclaiming

Reclaiming page frames from the dentry cache

The shrink_dcache_memory() function is the shrinker function for the dentry cache; it
searches the cache for unused dentry objects—that is, objects not referenced by any
process, see the section “dentry Objects” in Chapter 12—and releases them.

Because the dentry cache objects are allocated through the slab allocator, the shrink_
dcache_memory() function may lead some slabs to become free, causing some page
frames to be consequently reclaimed by cache_reap() (see the section “Periodic
Reclaiming” later in this chapter). Moreover, the dentry cache acts as a controller of
the inode cache. Therefore, when a dentry object is released, the pages storing the
corresponding inode may become unused, and thus eventually released.

The shrink_dcache_memory() function receives as its parameters the number of page
frames to reclaim and a GFP mask. It starts by checking whether the _ _GFP_FS bit in
the GFP mask is clear; if so, the function returns -1, because releasing a dentry may
trigger an operation on a disk-based filesystem. Page frame reclaiming is effectively
done by invoking prune_dcache(). This function scans the list of unused dentries—
whose head is stored in the dentry_unused variable—until it reaches the requested
number of freed objects or until the whole list is scanned. On each object that wasn’t
recently referenced, the function:

1. Removes the dentry object from the dentry hash table, from the list of dentry
objects in its parent directory, and from the list of dentry objects of the owner
inode.

2. Decreases the usage counter of the dentry’s inode by invoking the d_iput dentry
method, if defined, or the iput() function.

3. Invokes the d_release method of the dentry object, if defined.

4. Invokes the call_rcu() function to register a callback function that will remove
the dentry object (see the section “Read-Copy Update (RCU)” in Chapter 5).
The callback function, in turn, will invoke kmem_cache_free() to release the
object to the slab allocator (see the section “Freeing a Slab Object” in
Chapter 8).

5. Decreases the usage counter of the parent directory.

Finally, shrink_dcache_memory() returns a value based on the number of unused den-
tries still contained in the dentry cache. More precisely, the returned value is the
number of unused dentries multiplied by 100 and divided by the content of the
sysctl_vfs_cache_pressure global variable. By default, this variable is equal to 100,
thus the returned value is essentially the number of unused dentries. However, the
system administrator may modify the variable by writing in the /proc/sys/vm/vfs_
cache_pressure or by issuing a suitable sysctl() system call. Setting this variable to a
value smaller than 100 causes shrink_slab() to reclaim fewer pages from the dentry
cache (and the inode cache; see the next section) with respect to the pages reclaimed
from the LRU lists; conversely, setting the variable to a value greater than 100 causes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 707

shrink_slab() to reclaim more pages from the dentry and inode caches with respect
to the pages reclaimed from the LRU lists.

Reclaiming page frames from the inode cache

The shrink_icache_memory() function is invoked to remove unused inode objects
from the inode cache; here, “unused” means that the inode no longer has a control-
ling dentry object. The function is similar to the shrink_dcache_memory() described
previously. It checks the __GFP_FS bit in the gfp_mask parameter, then it invokes the
prune_icache() function, and finally it returns a value based both on the number of
unused inodes still included in the inode cache and the value of the sysctl_vfs_
cache_pressure variable, as previously.

The prune_icache() function, in turn, scans the inode_unused list (see the section
“Inode Objects” in Chapter 12); to free an inode, the function releases any private
buffer associated with the inode, it invalidates the clean page frames in the page
cache that refer to the inode and are not longer in use, and then it makes use of the
clear_inode() and destroy_inode() functions to destroy the inode object.

Periodic Reclaiming
The PFRA performs periodic reclaiming by using two different mechanisms: the
kswapd kernel threads, which invoke shrink_zone() and shrink_slab() to reclaim
pages from the LRU lists, and the cache_reap function, which is invoked periodically
to reclaim unused slabs from the slab allocator.

The kswapd kernel threads

The kswapd kernel threads are another kernel mechanism that activates page frame
reclaiming. Why is it necessary? Is it not sufficient to invoke try_to_free_pages()
when free memory becomes really scarce and another memory allocation request is
issued?

Unfortunately, this is not the case. Some memory allocation requests are performed
by interrupt and exception handlers, which cannot block the current process waiting
for a page frame to be freed; moreover, some memory allocation requests are done by
kernel control paths that have already acquired exclusive access to critical resources
and that, therefore, cannot activate I/O data transfers. In the infrequent case in
which all memory allocation requests are done by such sorts of kernel control paths,
the kernel is never able to free memory.

The kswapd kernel threads also have a beneficial effect on system performance by
keeping memory free in what would otherwise be idle time for the machine; pro-
cesses can thus get their pages much faster.

There is a different kswapd kernel thread for each memory node (see the section
“Non-Uniform Memory Access (NUMA)” in Chapter 8). Each such thread is usually

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

708 | Chapter 17: Page Frame Reclaiming

sleeping in the wait queue headed at the kswapd_wait field of the node descriptor.
However, if _ _alloc_pages() discovers that all memory zones suitable for a memory
allocation have a number of free page frames below a “warning” threshold—essen-
tially, a value based on the pages_low and protection fields of the memory zone
descriptor—then the function wakes up the kswapd kernel threads of the corre-
sponding memory nodes (see the section “The Zone Allocator” in Chapter 8.) Essen-
tially, the kernel starts to reclaim some page frames in order to avoid much more
dramatic “low on memory” conditions.

As explained in the section “The Pool of Reserved Page Frames” in Chapter 8, every
zone descriptor also includes a pages_min field—a threshold that specifies the mini-
mum number of free page frames that should always be preserved—and a pages_high
field—a threshold that specifies the “safe” number of free page frames above which
page frame reclaiming should be stopped.

The kswapd kernel thread executes the kswapd() function. It initializes the kernel
thread by binding the kernel thread to the CPUs that may access the memory node,
by storing in the current->reclaim_state field of the process descriptor the address
of a reclaim_state descriptor (see step 3d in the description of try_to_free_pages()
earlier in this chapter), and by setting the PF_MEMALLOC and PF_KSWAP flags in the
current->flags field—these flags indicate that the process is reclaiming memory and
that it is allowed to use all the free memory available when doing its job. Every time
the kswapd kernel thread is awakened, the kswapd() function performs essentially the
following steps:

1. Invokes finish_wait() to remove the kernel thread from the node’s kswapd_wait
wait queue (see the section “How Processes Are Organized” in Chapter 3).

2. Invokes balance_pgdat() to perform the memory reclaiming on the kswapd’s
memory node (see below).

3. Invokes prepare_to_wait() to set the process in the TASK_INTERRUPTIBLE state and
to put it to sleep in the node’s kswapd_wait wait queue.

4. Invokes schedule() to yield the CPU to some other runnable process.

The balance_pgdat() function performs, in turn, the following basic steps:

1. Sets up a scan_control descriptor (see Table 17-2 earlier in this chapter).

2. Sets the temp_priority field of each zone descriptor in the memory node to 12
(lowest priority).

3. Performs a loop of at most 13 iterations, from priority 12 down to 0; in each iter-
ation performs the following substeps:

a. Scans the memory zones to find the highest zone (from ZONE_DMA to ZONE_
HIGHMEM) having an insufficient number of free page frames. Each test is done
by executing the zone_watermark_ok() function described in the section
“The Zone Allocator” in Chapter 8. If all zones have a large number of free
page frames, it jumps to step 4.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 709

b. Scans again the memory zones proceeding from ZONE_DMA to the zone found
in step 3a. For each zone, it updates, if necessary, the prev_priority field of
the zone descriptor with the current priority level, and invokes successively
shrink_zone() to reclaim pages from the zone (see the earlier section “Low
On Memory Reclaiming”). Next, it invokes shrink_slab() to reclaim pages
from the shrinkable disk caches (see the earlier section “Reclaiming Pages of
Shrinkable Disk Caches”).

c. If at least 32 pages have been reclaimed, it breaks the loop and jumps to
step 4.

4. Updates the prev_priority field of each zone descriptor with the value stored in
the corresponding temp_priority field.

5. If some “low on memory” zone still exists, it invokes schedule() if the need_
resched field of the process is set; when in execution again, it jumps back to step 1.

6. Returns the number of pages reclaimed.

The cache_reap() function

The PFRA must also reclaim the pages owned by the slab allocator caches (see the
section “Memory Area Management” in Chapter 8). To do this, it relies on the
cache_reap() function, which is periodically scheduled—approximately once every
two seconds—in the predefined events work queue (see the section “Work Queues”
in Chapter 4). The address of the cache_reap() function is stored in the func field of
the reap_work per-CPU variable of type work_struct.

The cache_reap() function essentially performs the following steps:

1. Tries to acquire the cache_chain_sem semaphore, which protects the list of slab
cache descriptors; if the semaphore is already taken, it invokes schedule_
delayed_work() to schedule the next invocation of the function, and terminates.

2. Otherwise, scans the kmem_cache_t descriptors collected in the cache_chain list.
For each cache descriptor found, the function performs the following steps:

a. If the SLAB_NO_REAP flag in the cache descriptor is set, page frame reclaiming
has been disabled, hence it continues with the next cache in the list.

b. Drains the slab local cache (see the section “Local Caches of Free Slab
Objects” in Chapter 8); this operation could cause new slabs to become free.

c. Each cache has a “reap time” stored in the next_reap field of the kmem_list3
structure inside the cache descriptor (see the section “Cache Descriptor” in
Chapter 8); if jiffies is still smaller than next_reap, it continues with the
next cache in the list.

d. Sets the next “reap time” in the next_reap field to a value four seconds from
the current time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

710 | Chapter 17: Page Frame Reclaiming

e. In multiprocessor systems, the function drains the slab shared cache (see the
section “Local Caches of Free Slab Objects” in Chapter 8); this operation
could cause new slabs to become free.

f. If a new slab has been recently added to the cache—that is, if the free_
touched flag of the kmem_list3 structure inside the cache descriptor is set—it
skips this cache and continues with the next cache in the list.

g. Computes according to a heuristic formula the number of slabs to be freed.
Basically, this number depends on the upper limit of free objects in the
cache and on the number of objects packed into a single slab.

h. Repeatedly invokes slab_destroy() on the slabs included in the list of free
slabs of the cache, until the list is empty or the target number of free slab has
been reached.

i. Invokes cond_resched() to check the TIF_NEED_RESCHED flag of the current
process and to invoke schedule(), if the flag is set.

3. Releases the cache_chain_sem semaphore.

4. Invokes schedule_delayed_work() to schedule the next invocation of the func-
tion, and terminates.

The Out of Memory Killer
Despite the PFRA effort to keep a reserve of free page frames, it is possible for the
pressure on the virtual memory subsystem to become so high that all available mem-
ory becomes exhausted. This situation could quickly induce a freeze of every activity
in the system: the kernel keeps trying to free memory in order to satisfy some urgent
request, but it does not succeed because the swap areas are full and all disk caches
have already been shrunken. As a consequence, no process can proceed with its exe-
cution, thus no process will eventually free up the page frames that it owns.

To cope with this dramatic situation, the PFRA makes use of a so-called out of memory
(OOM) killer, which selects a process in the system and abruptly kills it to free its page
frames. The OOM killer is like a surgeon that amputates the limb of a man to save his
life: losing a limb is not a nice thing, but sometimes there is nothing better to do.

The out_of_memory() function is invoked by _ _alloc_pages() when the free memory
is very low and the PFRA has not succeeded in reclaiming any page frames (see the
section “The Zone Allocator” in Chapter 8). The function invokes select_bad_
process() to select a victim among the existing processes, then invokes oom_kill_
process() to perform the sacrifice.

Of course, select_bad_process() does not simply pick a process at random. The
selected process should satisfy several requisites:

• The victim should own a large number of page frames, so that the amount of
memory that can be freed is significant. (As a countermeasure against the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing the PFRA | 711

“fork-bomb” processes, the function considers the amount of memory eaten by
all children owned by the parent, too.)

• Killing the victim should lose a small amount of work—it is not a good idea to
kill a batch process that has been working for hours or days.

• The victim should be a low static priority process—the users tend to assign
lower priorities to less important processes.

• The victim should not be a process with root privileges—they usually perform
important tasks.

• The victim should not directly access hardware devices (such as the X Window
server), because the hardware could be left in an unpredictable state.

• The victim cannot be swapper (process 0), init (process 1), or any other kernel
thread.

The select_bad_process() function scans every process in the system, uses an empir-
ical formula to compute from the above rules a value that denotes how good select-
ing that process is, and returns the process descriptor address of the “best” candidate
for eviction. Then, the out_of_memory() function invokes oom_kill_process() to send
a deadly signal—usually SIGKILL; see Chapter 11—either to a child of that process
or, if this is not possible, to the process itself. The oom_kill_process() function also
kills all clones that share the same memory descriptor with the selected victim.

The Swap Token
As you might have realized while reading this chapter, the Linux VM subsystem—
and particularly the PFRA—is so complex a piece of code that is quite hard to pre-
dict its behavior with an arbitrary workload. There are cases, moreover, in which the
VM subsystem exhibits pathological behaviors. An example is the so-called swap
thrashing phenomenon: essentially, when the system is short of free memory, the
PFRA tries hard to free memory by writing pages to disk and stealing the underlying
page frames from some processes; at the same time, however, these processes want
to proceed with their executions, hence they try hard to access their pages. As a con-
sequence, the kernel assigns to the processes the page frames just freed by the PFRA
and reads their contents from disk. The net result is that pages are continuously writ-
ten to and read back from the disk; most of the time is spent accessing the disk,
hence no process makes substantial progress towards its termination.

To mitigate the likelihood of swap thrashing, a technique proposed by Jiang and
Zhang in 2004 has been implemented in the kernel version 2.6.9: essentially, a so-
called swap token is assigned to a single process in the system; the token exempts the
process from the page frame reclaiming, so the process can make substantial progress
and, hopefully, terminate even when memory is scarce.

The swap token is implemented as a swap_token_mm memory descriptor pointer.
When a process owns the swap token, swap_token_mm is set to the address of the pro-
cess’s memory descriptor.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

712 | Chapter 17: Page Frame Reclaiming

Immunity from page frame reclaiming is granted in an elegant and simple way. As we
have seen in the section “The Least Recently Used (LRU) Lists,” a page is moved
from the active to the inactive list only if it was not recently referenced. The check is
done by the page_referenced() function, which honors the swap token and returns 1
(referenced) if the page belongs to a memory region of the process that owns the
swap token. Actually, in a couple of cases the swap token is not considered: when
the PFRA is executing on behalf of the process that owns the swap token, and when
the PFRA has reached the hardest priority level in page frame reclaiming (level 0).

The grab_swap_token() function determines whether the swap token should be
assigned to the current process. It is invoked on each major page fault, namely on
just two occasions:

• When the filemap_nopage() function discovers that the required page is not in
the page cache (see the section “Demand Paging for Memory Mapping” in
Chapter 16).

• When the do_swap_page() function has read a new page from a swap area (see
the section “Swapping in Pages” later in this chapter).

The grab_swap_token() function makes some checks before assigning the token. In
particular, the token is granted if all of the following conditions hold:

• At least two seconds have elapsed since the last invocation of grab_swap_token().

• The current token-holding process has not raised a major page fault since the
last execution of grab_swap_token(), or has been holding the token since at least
swap_token_default_timeout ticks.

• The swap token has not been recently assigned to the current process.

The token holding time should ideally be rather long, even in the order of minutes,
because the goal is to allow a process to finish its execution. In Linux 2.6.11 the
token holding time is set by default to a very low value, namely one tick. However,
the system administrator can tune the value of the swap_token_default_timeout vari-
able by writing in the /proc/sys/vm/swap_token_default_timeout file or by issuing a
proper sysctl() system call.

When a process is killed, the kernel checks whether that process was holding the
swap token and, if so, releases it; this is done by the mmput() function (see the sec-
tion “The Memory Descriptor” in Chapter 9).

Swapping
Swapping has been introduced to offer a backup on disk for unmapped pages. We
know from the previous discussion that there are three kinds of pages that must be
handled by the swapping subsystem:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 713

• Pages that belong to an anonymous memory region of a process (User Mode
stack or heap)

• Dirty pages that belong to a private memory mapping of a process

• Pages that belong to an IPC shared memory region (see the section “IPC Shared
Memory” in Chapter 19)

Like demand paging, swapping must be transparent to programs. In other words, no
special instruction related to swapping needs to be inserted into the code. To under-
stand how this can be done, recall from the section “Regular Paging” in Chapter 2
that each Page Table entry includes a Present flag. The kernel exploits this flag to sig-
nal that a page belonging to a process address space has been swapped out. Besides
that flag, Linux also takes advantage of the remaining bits of the Page Table entry to
store into them a “swapped-out page identifier” that encodes the location of the
swapped-out page on disk. When a Page Fault exception occurs, the corresponding
exception handler can detect that the page is not present in RAM and invoke the
function that swaps in the missing page from disk.

The main features of the swapping subsystem can be summarized as follows:

• Set up “swap areas” on disk to store pages that do not have a disk image.

• Manage the space on swap areas allocating and freeing “page slots” as the need
occurs.

• Provide functions both to “swap out” pages from RAM into a swap area and to
“swap in” pages from a swap area into RAM.

• Make use of “swapped-out page identifiers” in the Page Table entries of pages
that are currently swapped out to keep track of the positions of data in the swap
areas.

To sum up, swapping is the crowning feature of page frame reclaiming. If we want to
be sure that all the page frames obtained by a process, and not only those containing
pages that have an image on disk, can be reclaimed at will by the PFRA, then swap-
ping has to be used. Of course, you might turn off swapping by using the swapoff
command; in this case, however, disk thrashing is likely to occur sooner when the
system load increases.

We should also mention that swapping can be used to expand the memory address
space that is effectively usable by the User Mode processes. In fact, large swap areas
allow the kernel to launch several demanding applications whose total memory
requests exceed the amount of physical RAM installed in the system. However, simu-
lation of RAM is not like RAM in terms of performance. Every access by a process to
a page that is currently swapped out is of several orders of magnitude longer than an
access to a page in RAM. In short, if performance is of great importance, swapping
should be used only as a last resort; adding RAM chips still remains the best solu-
tion to cope with increasing computing needs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

714 | Chapter 17: Page Frame Reclaiming

Swap Area
The pages swapped out from memory are stored in a swap area, which may be
implemented either as a disk partition of its own or as a file included in a larger parti-
tion. Several different swap areas may be defined, up to a maximum number speci-
fied by the MAX_SWAPFILES macro (usually set to 32).

Having multiple swap areas allows a system administrator to spread a lot of swap
space among several disks so that the hardware can act on them concurrently; it also
lets swap space be increased at runtime without rebooting the system.

Each swap area consists of a sequence of page slots: 4,096-byte blocks used to con-
tain a swapped-out page. The first page slot of a swap area is used to persistently
store some information about the swap area; its format is described by the swap_
header union composed of two structures, info and magic. The magic structure pro-
vides a string that marks part of the disk unambiguously as a swap area; it consists of
just one field, magic.magic, which contains a 10-character “magic” string. The magic
structure essentially allows the kernel to unambiguously identify a file or a partition
as a swap area; the text of the string, namely “SWAPSPACE2,” is always located at
the end of the first page slot.

The info structure includes the following fields:

bootbits
Not used by the swapping algorithm; this field corresponds to the first 1,024
bytes of the swap area, which may store partition data, disk labels, and so on.

version
Swapping algorithm version.

last_page
Last page slot that is effectively usable.

nr_badpages
Number of defective page slots.

padding[125]
Padding bytes.

badpages[1]
Up to 637 numbers specifying the location of defective page slots.

Creating and activating a swap area

The data stored in a swap area is meaningful as long as the system is on. When the
system is switched off, all processes are killed, so the data stored by processes in
swap areas is discarded. For this reason, swap areas contain very little control infor-
mation: essentially, the swap area type and the list of defective page slots. This con-
trol information easily fits in a single 4 KB page.

Usually, the system administrator creates a swap partition when creating the other
partitions on the Linux system, and then uses the mkswap command to set up the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 715

disk area as a new swap area. That command initializes the fields just described
within the first page slot. Because the disk may include some bad blocks, the pro-
gram also examines all other page slots to locate the defective ones. But executing
the mkswap command leaves the swap area in an inactive state. Each swap area can
be activated in a script file at system boot or dynamically after the system is running.

Each swap area consists of one or more swap extents, each of which is represented by
a swap_extent descriptor. Each extent corresponds to a group of pages—or more
accurately, page slots—that are physically adjacent on disk. Hence, the swap_extent
descriptor includes the index of the first page of the extent in the swap area, the
length in pages of the extent, and the starting disk sector number of the extent. An
ordered list of the extents that compose a swap area is created when activating the
swap area itself. A swap area stored in a disk partition is composed of just one
extent; conversely, a swap area stored in a regular file can be composed of several
extents, because the filesystem may not have allocated the whole file in contiguous
blocks on disk.

How to distribute pages in the swap areas

When swapping out, the kernel tries to store pages in contiguous page slots to mini-
mize disk seek time when accessing the swap area; this is an important element of an
efficient swapping algorithm.

However, if more than one swap area is used, things become more complicated.
Faster swap areas—swap areas stored in faster disks—get a higher priority. When
looking for a free slot, the search starts in the swap area that has the highest priority.
If there are several of them, swap areas of the same priority are cyclically selected to
avoid overloading one of them. If no free slot is found in the swap areas that have the
highest priority, the search continues in the swap areas that have a priority next to
the highest one, and so on.

Swap Area Descriptor
Each active swap area has its own swap_info_struct descriptor in memory. The fields
of the descriptor are illustrated in Table 17-3.

Table 17-3. Fields of a swap area descriptor

Type Field Description

unsigned int flags Swap area flags

spinlock_t sdev_lock Spin lock protecting the swap area

struct file * swap_file Pointer to the file object of the regular file or device file that
stores the swap area

struct
block_device *

bdev Descriptor of the block device containing the swap area

struct list head extent_list Head of the list of extents that compose the swap area

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

716 | Chapter 17: Page Frame Reclaiming

The flags field includes three overlapping subfields:

SWP_USED
1 if the swap area is active; 0 if it is inactive.

SWP_WRITEOK
1 if it is possible to write into the swap area; 0 if the swap area is read-only (it is
being activated or inactivated).

SWP_ACTIVE
This 2-bit field is actually the combination of SWP_USED and SWP_WRITEOK; the flag
is set when both the previous flags are set.

The swap_map field points to an array of counters, one for each swap area page slot. If
the counter is equal to 0, the page slot is free; if it is positive, the page slot is filled
with a swapped-out page. Essentially, the page slot counter denotes the number of
processes that share the swapped-out page. If the counter has the value SWAP_MAP_MAX
(equal to 32,767), the page stored in the page slot is “permanent” and cannot be
removed from the corresponding slot. If the counter has the value SWAP_MAP_BAD
(equal to 32,768), the page slot is considered defective, and thus unusable.*

int nr_extents Number of extents composing the swap area

struct
swap_extent *

curr_swap_extent Pointer to the most recently used extent descriptor

unsigned int old_block_size Natural block size of the partition containing the swap area

unsigned short * swap_map Pointer to an array of counters, one for each swap area page
slot

unsigned int lowest_bit First page slot to be scanned when searching for a free one

unsigned int highest_bit Last page slot to be scanned when searching for a free one

unsigned int cluster_next Next page slot to be scanned when searching for a free one

unsigned int cluster_nr Number of free page slot allocations before restarting from
the beginning

int prio Swap area priority

int pages Number of usable page slots

unsigned long max Size of swap area in pages

unsigned long inuse_pages Number of used page slots in the swap area

int next Pointer to next swap area descriptor

* “Permanent” page slots protect against overflows of swap_map counters. Without them, valid page slots could
become “defective” if they are referenced too many times, thus leading to data losses. However, no one really
expects that a page slot counter could reach the value 32,768. It’s just a “belt and suspenders” approach.

Table 17-3. Fields of a swap area descriptor (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 717

The prio field is a signed integer that denotes the order in which the swap sub-
system should consider each swap area.

The sdev_lock field is a spin lock that protects the swap area’s data structures—
chiefly, the swap descriptor—against concurrent accesses in SMP systems.

The swap_info array includes MAX_SWAPFILES swap area descriptors. Only the areas
whose SWP_USED flags are set are used, because they are the activated areas.
Figure 17-6 illustrates the swap_info array, one swap area, and the corresponding
array of counters.

The nr_swapfiles variable stores the index of the last array element that contains, or
that has contained, a used swap area descriptor. Despite its name, the variable does
not contain the number of active swap areas.

Descriptors of active swap areas are also inserted into a list sorted by the swap area
priority. The list is implemented through the next field of the swap area descriptor,
which stores the index of the next descriptor in the swap_info array. This use of the
field as an index is different from most fields with the name next, which are usually
pointers.

The swap_list variable, of type swap_list_t, includes the following fields:

head
Index in the swap_info array of the first list element.

next
Index in the swap_info array of the descriptor of the next swap area to be
selected for swapping out pages. This field is used to implement a Round Robin
algorithm among maximum-priority swap areas with free slots.

Figure 17-6. Swap area data structures

swap_info

0 1 0 2 1 0 32768

swap_device
or

swap_file

swap_map

Array of counters

Swap area descriptors

Swap area

Free page slot

Occupied
page slot

Defective page slot

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

718 | Chapter 17: Page Frame Reclaiming

The swaplock spin lock protects the list against concurrent accesses in multiproces-
sor systems.

The max field of the swap area descriptor stores the size of the swap area in pages, while
the pages field stores the number of usable page slots. These numbers differ because
pages does not take the first page slot and the defective page slots into consideration.

Finally, the nr_swap_pages variable contains the number of available (free and nonde-
fective) page slots in all active swap areas, while the total_swap_pages variable con-
tains the total number of nondefective page slots.

Swapped-Out Page Identifier
A swapped-out page is uniquely identified quite simply by specifying the index of the
swap area in the swap_info array and the page slot index inside the swap area.
Because the first page (with index 0) of the swap area is reserved for the swap_header
union discussed earlier, the first useful page slot has index 1. The format of a
swapped-out page identifier is illustrated in Figure 17-7.

The swp_entry(type,offset) function constructs a swapped-out page identifier from
the swap area index type and the page slot index offset. Conversely, the swp_type
and swp_offset functions extract from a swapped-out page identifier the swap area
index and the page slot index, respectively.

When a page is swapped out, its identifier is inserted as the page’s entry into the Page
Table so the page can be found again when needed. Notice that the least-significant bit
of such an identifier, which corresponds to the Present flag, is always cleared to denote
the fact that the page is not currently in RAM. However, at least one of the remaining
31 bits has to be set because no page is ever stored in slot 0 of swap area 0. It is there-
fore possible to identify three different cases from the value of a Page Table entry:

Null entry
The page does not belong to the process address space, or the underlying page
frame has not yet been assigned to the process (demand paging).

First 31 most-significant bits not all equal to 0, last bit equal to 0
The page is currently swapped out.

Least-significant bit equal to 1
The page is contained in RAM.

Figure 17-7. Swapped-out page identifier

Page slot index

31 8 7

Area number

1 0

0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 719

The maximum size of a swap area is determined by the number of bits available to
identify a slot. On the 80 × 86 architecture, the 24 bits available limit the size of a
swap area to 224 slots (that is, to 64 GB).

Because a page may belong to the address spaces of several processes (see the earlier
section “Reverse Mapping”), it may be swapped out from the address space of one
process and still remain in main memory; therefore, it is possible to swap out the
same page several times. A page is physically swapped out and stored just once, of
course, but each subsequent attempt to swap it out increases the swap_map counter.

The swap_duplicate() function is usually invoked while trying to swap out an
already swapped-out page. It simply verifies that the swapped-out page identifier
passed as its parameter is valid and increases the corresponding swap_map counter.
More precisely, it performs the following actions:

1. Uses the swp_type and swp_offset functions to extract the swap area number and
the page slot index from the parameter.

2. Checks whether the swap area number identified is active; if not, it returns 0
(invalid identifier).

3. Checks whether the page slot is valid and not free (its swap_map counter is greater
than 0 and less than SWAP_MAP_BAD); if not, it returns 0 (invalid identifier).

4. Otherwise, the swapped-out page identifier locates a valid page. Increases the
swap_map counter of the page slot if it has not already reached the value SWAP_MAP_
MAX.

5. Returns 1 (valid identifier).

Activating and Deactivating a Swap Area
Once a swap area is initialized, the superuser (or, more precisely, every user having
the CAP_SYS_ADMIN capability, as described in the section “Process Credentials and
Capabilities” in Chapter 20) may use the swapon and swapoff programs to activate
and deactivate the swap area, respectively. These programs use the swapon() and
swapoff() system calls; we’ll briefly sketch out the corresponding service routines.

The sys_swapon() service routine

The sys_swapon() service routine receives the following as its parameters:

specialfile
This parameter points to the pathname (in the User Mode address space) of the
device file (partition) or plain file used to implement the swap area.

swap_flags
This parameter consists of a single SWAP_FLAG_PREFER bit plus 31 bits of priority
of the swap area (these bits are significant only if the SWAP_FLAG_PREFER bit is on).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

720 | Chapter 17: Page Frame Reclaiming

The function checks the fields of the swap_header union that was put in the first slot
when the swap area was created. The function performs these main steps:

1. Checks that the current process has the CAP_SYS_ADMIN capability.

2. Looks in the first nr_swapfiles components of the swap_info array of swap area
descriptors for the first descriptor having the SWP_USED flag cleared, meaning that
the corresponding swap area is inactive. If an inactive swap area is found, it goes
to step 4.

3. The new swap area array index is equal to nr_swapfiles: it checks that the num-
ber of bits reserved for the swap area index is sufficiently large to encode the new
index; if not, returns an error code; otherwise, it increases by one the value of
nr_swapfiles.

4. An index of an unused swap area has been found: it initializes the descriptor’s
fields; in particular, it sets flags to SWP_USED, and sets lowest_bit and highest_
bit to 0.

5. If the swap_flags parameter specifies a priority for the new swap area, the func-
tion sets the prio field of the descriptor. Otherwise, it initializes the field to one
less than the lowest priority among all active swap areas (thus assuming that the
last activated swap area is on the slowest block device). If no other swap areas
are already active, the function assigns the value –1.

6. Copies the string pointed to by the specialfile parameter from the User Mode
address space.

7. Invokes filp_open() to open the file specified by the specialfile parameter (see
the section “The open() System Call” in Chapter 12).

8. Stores the addresses of the file object returned by filp_open() in the swap_file
field of the swap area descriptor.

9. Makes sure that the swap area is not already activated by looking at the other
active swap areas in swap_info. This is done by checking the addresses of the
address_space objects stored in the swap_file->f_mapping field of the swap area
descriptors. If the swap area is already active, it returns an error code.

10. If the specialfile parameter identifies a block device file, it performs the follow-
ing substeps:

a. Invokes bd_claim() to set the swapping subsystem as the holder of the block
device (see the section “Block Devices” in Chapter 14). If the block device
already has a holder, it returns an error code.

b. Stores the address of the block_device descriptor in the bdev field of the
swap area descriptor.

c. Stores the current block size of the device in the old_block_size field of the
swap area descriptor, then sets the block size of the device to 4,096 bytes
(the page size).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 721

11. If the specialfile parameter identifies a regular file, it performs the following
substeps:

a. Checks the S_SWAPFILE field of the i_flags field of the file’s inode. If this flag
is set, it returns an error code because the file is already being used as a swap
area.

b. Stores the descriptor address of the block device containing the file in the
bdev field of the swap area descriptor.

12. Reads the swap_header descriptor stored in slot 0 of the swap area. To that end, it
invokes read_cache_page() passing as parameters the address_space object
pointed to by swap_file->f_mapping, the page index 0, the address of the file’s
readpage method (stored in swap_file->f_mapping->a_ops->readpage), and the
pointer to the file object swap_file. Waits until the page has been read into
memory.

13. Checks that the magic string in the last 10 characters of the first page is equal to
“SWAPSPACE2.” If not, it returns an error code.

14. Initializes the lowest_bit and highest_bit fields of the swap area descriptor
according to the size of the swap area stored in the info.last_page field of the
swap_header union.

15. Invokes vmalloc() to create the array of counters associated with the new swap
area and stores its address in the swap_map field of the swap descriptor. Initializes
the elements of the array to 0 or to SWAP_MAP_BAD, according to the list of defec-
tive page slots stored in the info.bad_pages field of the swap_header union.

16. Computes the number of useful page slots by accessing the info.last_page and
info.nr_badpages fields in the first page slot, and stores it in the pages field of the
swap area descriptor. Also sets the max field with the total number of pages in the
swap area.

17. Builds the extent_list list of swap extents for the new swap area (only one if the
swap area is a disk partition), and sets properly the nr_extents and curr_swap_
extent fields in the swap area descriptor.

18. Sets the flags field of the swap area descriptor to SWP_ACTIVE.

19. Updates the nr_good_pages, nr_swap_pages, and total_swap_pages global vari-
ables.

20. Inserts the swap area descriptor in the list to which the swap_list variable
points.

21. Returns 0 (success).

The sys_swapoff() service routine

The sys_swapoff() service routine deactivates a swap area identified by the parame-
ter specialfile. It is much more complex and time-consuming than sys_swapon(),
since the partition to be deactivated might still contain pages that belong to several

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

722 | Chapter 17: Page Frame Reclaiming

processes. The function is thus forced to scan the swap area and to swap in all exist-
ing pages. Because each swap-in requires a new page frame, it might fail if there are
no free page frames left. In this case, the function returns an error code. All this is
achieved by performing the following major steps:

1. Checks that the current process has the CAP_SYS_ADMIN capability.

2. Copies the string pointed to by the specialfile parameter in kernel space.

3. Invokes filp_open() to open the file referenced by the specialfile parameter; as
usual, this function returns the address of a file object.

4. Scans the swap_list list of the swap area descriptor, and compares the address of
the file object returned by filp_open() with the addresses stored in the swap_
file fields of the active swap area descriptors. If no match is found, an invalid
parameter was passed to the function, so it returns an error code.

5. Invokes cap_vm_enough_memory() to check whether there are enough free page
frames to swap in all pages stored in the swap area. If not, the swap area cannot
be deactivated; it releases the file object and returns an error code. This is only a
rough check, but it could save the kernel from a lot of useless disk activity.
While performing this check, cap_vm_enough_memory() takes into account the
page frames allocated through slab caches having the SLAB_RECLAIM_ACCOUNT flag
set (see the section “Interfacing the Slab Allocator with the Zoned Page Frame
Allocator” in Chapter 8). The number of such pages, which are considered as
reclaimable, is stored in the slab_reclaim_pages variable.

6. Removes the swap area descriptor from the swap_list list.

7. Updates the nr_swap_pages and total_swap_pages variables by subtracting the
value in the pages field of the swap area descriptor.

8. Clears the SWP_WRITEOK flag in the flags field of the swap area descriptor; this for-
bids the PFRA from swapping out more pages in the swap area.

9. Invokes try_to_unuse() (see below) to successively force all pages left in the
swap area into RAM and to correspondingly update the Page Tables of the pro-
cesses that use these pages. While executing this function, the current process,
which is executing the swapoff command, has the PF_SWAPOFF flag set. Setting
this flag has just one consequence: in case of a dramatic shortage of page frames,
the select_bad_process() function will be forced to select and kill this process!
(See the section “The Out of Memory Killer” earlier in this chapter.)

10. Waits until the block device driver that contains the swap area is unplugged (see
the section “Activating the Block Device Driver” in Chapter 14). In this way, the
reading requests submitted by try_to_unuse() will be handled by the driver
before the swap area is deactivated.

11. If try_to_unuse() fails in allocating all requested page frames, the swap area can-
not be deactivated. Therefore, the function executes the following substeps:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 723

a. Reinserts the swap area descriptor in the swap_list list and sets its flags
field to SWP_WRITEOK.

b. Restores the original contents of the nr_swap_pages and total_swap_pages
variables by adding the value in the pages field of the swap area descriptor.

c. Invokes filp_close() to close the file opened in step 3 (see the section “The
close() System Call” in Chapter 12), and returns an error code.

12. Otherwise, all used page slots have been successfully transferred to RAM. There-
fore, the function executes the following substeps:

a. Releases the memory areas used to store the swap_map array and the extent
descriptors.

b. If the swap area is stored in a disk partition, it restores the block size to its
original value, which is stored in the old_block_size field of the swap area
descriptor; moreover, it invokes the bd_release() function so that the swap
subsystem no longer holds the block device (see step 10a in the description
of sys_swapon()).

c. If the swap area is stored in a regular file, it clears the S_SWAPFILE flag of the
file’s inode.

d. Invokes filp_close() twice, the first time on the swap_file file object, the
second time on the object returned by filp_open() in step 3.

e. Returns 0 (success).

The try_to_unuse() function

The try_to_unuse() function acts on an index parameter that identifies the swap area
to be emptied; it swaps in pages and updates all the Page Tables of processes that
have swapped out pages in this swap area. To that end, the function visits the address
spaces of all kernel threads and processes, starting with the init_mm memory descrip-
tor that is used as a marker. It is a time-consuming function that runs mostly with the
interrupts enabled. Synchronization with other processes is therefore critical.

The try_to_unuse() function scans the swap_map array of the swap area. When the
function finds a in-use page slot, it first swaps in the page, and then starts looking for
the processes that reference the page. The ordering of these two operations is crucial
to avoid race conditions. While the I/O data transfer is ongoing, the page is locked,
so no process can access it. Once the I/O data transfer completes, the page is locked
again by try_to_unuse(), so it cannot be swapped out again by another kernel con-
trol path. Race conditions are also avoided because each process looks up the page
cache before starting a swap-in or swap-out operation (see the later section “The
Swap Cache”). Finally, the swap area considered by try_to_unuse() is marked as
nonwritable (SWP_WRITEOK flag is not set), so no process can perform a swap-out on a
page slot of this area.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

724 | Chapter 17: Page Frame Reclaiming

However, try_to_unuse() might be forced to scan the swap_map array of usage
counters of the swap area several times. This is because memory regions that con-
tain references to swapped-out pages might disappear during one scan and later
reappear in the process lists.

For instance, recall the description of the do_munmap() function (in the section
“Releasing a Linear Address Interval” in Chapter 9): whenever a process releases an
interval of linear addresses, do_munmap() removes from the process list all memory
regions that include the affected linear addresses; later, the function reinserts the
memory regions that have been only partially unmapped in the process list. do_
munmap() takes care of freeing the swapped-out pages that belong to the interval of
released linear addresses. It commendably doesn’t free the swapped-out pages that
belong to the memory regions that have to be reinserted in the process list.

Hence, try_to_unuse() might fail in finding a process that references a given page
slot because the corresponding memory region is temporarily not included in the
process list. To cope with this fact, try_to_unuse() keeps scanning the swap_map array
until all reference counters are null. Eventually, the ghost memory regions referenc-
ing the swapped-out pages will reappear in the process lists, so try_to_unuse() will
succeed in freeing all page slots.

Let’s describe now the major operations executed by try_to_unuse(). It executes a
continuous loop on the reference counters in the swap_map array of the swap area
passed as its parameter. This loop is interrupted and the function returns an error
code if the current process receives a signal. For each reference counter, the function
performs the following steps:

1. If the counter is equal to 0 (no page is stored there) or to SWAP_MAP_BAD, it contin-
ues with the next page slot.

2. Otherwise, it invokes the read_swap_cache_async() function (see the section
“Swapping in Pages” later in this chapter) to swap in the page. This consists of
allocating, if necessary, a new page frame, filling it with the data stored in the
page slot, and putting the page in the swap cache.

3. Waits until the new page has been properly updated from disk and locks it.

4. While the function was executing the previous step, the process could have been
suspended. Therefore, it checks again whether the reference counter of the page
slot is null; if so, this swap page has been freed by another kernel control path,
so the function continues with the next page slot.

5. Invokes unuse_process() on every memory descriptor in the doubly linked list
whose head is init_mm (see the section “The Memory Descriptor” in Chapter 9).
This time-consuming function scans all Page Table entries of the process that
owns the memory descriptor, and replaces each occurrence of the swapped-out
page identifier with the physical address of the page frame. To reflect this move,
the function also decreases the page slot counter in the swap_map array (unless it
is equal to SWAP_MAP_MAX) and increases the usage counter of the page frame.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 725

6. Invokes shmem_unuse() to check whether the swapped-out page is used as an IPC
shared memory resource and to properly handle that case (see the section “IPC
Shared Memory” in Chapter 19).

7. Checks the value of the reference counter of the page. If it is equal to SWAP_MAP_
MAX, the page slot is “permanent.” To free it, it forces the value 1 into the refer-
ence counter.

8. The swap cache might own the page as well (it contributes to the value of the
reference counter). If the page belongs to the swap cache, it invokes the swap_
writepage() function to flush its contents to disk (if the page is dirty) and
invokes delete_from_swap_cache() to remove the page from the swap cache and
to decrease its reference counter.

9. Sets the PG_dirty flag of the page descriptor, unlocks the page frame, and
decreases its reference counter (to undo the increment done in step 5).

10. Checks the need_resched field of the current process; if it is set, it invokes
schedule() to relinquish the CPU. Deactivating a swap area is a long job, and the
kernel must ensure that the other processes in the system still continue to exe-
cute. The try_to_unuse() function continues from this step whenever the pro-
cess is selected again by the scheduler.

11. Proceeds with the next page slot, starting at step 1.

The function continues until every reference counter in the swap_map array is null.
Recall that even if the function starts examining the next page slot, the reference
counter of the previous page slot could still be positive. In fact, a “ghost” process
could still reference the page, typically because some memory regions have been tem-
porarily removed from the process list scanned in step 5. Eventually, try_to_unuse()
catches every reference. In the meantime, however, the page is no longer in the swap
cache, it is unlocked, and a copy is still included in the page slot of the swap area
being deactivated.

One might expect that this situation could lead to data loss. For instance, suppose
that some “ghost” process accesses the page slot and starts swapping the page in.
Because the page is no longer in the swap cache, the process fills a new page frame
with the data read from disk. However, this page frame would be different from the
page frames owned by the processes that are supposed to share the page with the
“ghost” process.

This problem does not arise when deactivating a swap area, because interference
from a ghost process could happen only if a swapped-out page belongs to a private
anonymous memory mapping.* In this case, the page frame is handled by means of
the Copy On Write mechanism described in Chapter 9, so it is perfectly legal to

* Actually, the page might also belong to an IPC shared memory region; Chapter 19 has a discussion of this
case.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

726 | Chapter 17: Page Frame Reclaiming

assign different page frames to the processes that reference the page. However, the
try_to_unuse() function marks the page as “dirty” (step 9); otherwise, the shrink_
list() function might later drop the page from the Page Table of some process with-
out saving it in an another swap area (see the later section “Swapping Out Pages”).

Allocating and Releasing a Page Slot
As we will see later, when freeing memory, the kernel swaps out many pages in a
short period of time. It is therefore important to try to store these pages in contigu-
ous slots to minimize disk seek time when accessing the swap area.

A first approach to an algorithm that searches for a free slot could choose one of two
simplistic, rather extreme strategies:

• Always start from the beginning of the swap area. This approach may increase
the average seek time during swap-out operations, because free page slots may
be scattered far away from one another.

• Always start from the last allocated page slot. This approach increases the aver-
age seek time during swap-in operations if the swap area is mostly free (as is usu-
ally the case), because the handful of occupied page slots may be scattered far
away from one another.

Linux adopts a hybrid approach. It always starts from the last allocated page slot
unless one of these conditions occurs:

• The end of the swap area is reached.

• SWAPFILE_CLUSTER (usually 256) free page slots were allocated after the last restart
from the beginning of the swap area.

The cluster_nr field in the swap_info_struct descriptor stores the number of free
page slots allocated. This field is reset to 0 when the function restarts allocation from
the beginning of the swap area. The cluster_next field stores the index of the first
page slot to be examined in the next allocation.*

To speed up the search for free page slots, the kernel keeps the lowest_bit and
highest_bit fields of each swap area descriptor up-to-date. These fields specify the
first and the last page slots that could be free; in other words, every page slot below
lowest_bit and above highest_bit is known to be occupied.

The scan_swap_map() function

The scan_swap_map() function is used to find a free page slot in a given swap area. It
acts on a single parameter, which points to a swap area descriptor and returns the

* As you may have noticed, the names of Linux data structures are not always appropriate. In this case, the
kernel does not really “cluster” page slots of a swap area.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 727

index of a free page slot. It returns 0 if the swap area does not contain any free slots.
The function performs the following steps:

1. It tries first to use the current cluster. If the cluster_nr field of the swap area
descriptor is positive, it scans the swap_map array of counters starting from the
element at index cluster_next and looks for a null entry. If a null entry is found,
it decreases the cluster_nr field and goes to step 4.

2. If this point is reached, either the cluster_nr field is null or the search starting
from cluster_next didn’t find a null entry in the swap_map array. It is time to try
the second stage of the hybrid search. The function reinitializes cluster_nr to
SWAPFILE_CLUSTER and restarts scanning the array from the lowest_bit index try-
ing to find a group of SWAPFILE_CLUSTER free page slots. If such a group is found,
it goes to step 4.

3. No group of SWAPFILE_CLUSTER free page slots exists. The function restarts scan-
ning the array from the lowest_bit index trying to find a single free page slot. If
no null entry is found, it sets the lowest_bit field to the maximum index in the
array, the highest_bit field to 0, and returns 0 (the swap area is full).

4. A null entry is found. Puts the value 1 in the entry, decreases nr_swap_pages,
updates the lowest_bit and highest_bit fields if necessary, increases the inuse_
pages field by one, and sets the cluster_next field to the index of the page slot
just allocated plus 1.

5. Returns the index of the allocated page slot.

The get_swap_page() function

The get_swap_page() function is used to find a free page slot by searching all the
active swap areas. The function, which returns the swapped-out page identifier of a
newly allocated page slot or 0 if all swap areas are filled, takes into consideration the
different priorities of the active swap areas.

Two passes are done in order to minimize runtime when it’s easy to find a page slot.
The first pass is partial and applies only to areas that have a single priority; the func-
tion searches such areas in a Round Robin fashion for a free slot. If no free page slot
is found, a second pass is made starting from the beginning of the swap area list; dur-
ing this second pass, all swap areas are examined. More precisely, the function per-
forms the following steps:

1. If nr_swap_pages is null or if there are no active swap areas, it returns 0.

2. Starts by considering the swap area pointed to by swap_list.next (recall that the
swap area list is sorted by decreasing priorities).

3. If the swap area is active, it invokes scan_swap_map() to allocate a free page slot. If
scan_swap_map() returns a page slot index, the function’s job is essentially done,
but it must prepare for its next invocation. Thus, it updates swap_list.next to
point to the next swap area in the swap area list, if the latter has the same priority

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

728 | Chapter 17: Page Frame Reclaiming

(thus continuing the round-robin use of these swap areas). If the next swap area
does not have the same priority as the current one, the function sets swap_list.
next to the first swap area in the list (so that the next search will start with the
swap areas that have the highest priority). The function finishes by returning the
swapped-out page identifier corresponding to the page slot just allocated.

4. Either the swap area is not writable, or it does not have free page slots. If the
next swap area in the swap area list has the same priority as the current one, the
function makes it the current one and goes to step 3.

5. At this point, the next swap area in the swap area list has a lower priority than
the previous one. The next step depends on which of the two passes the func-
tion is performing.

a. If this is the first (partial) pass, it considers the first swap area in the list and
goes to step 3, thus starting the second pass.

b. Otherwise, it checks if there is a next element in the list; if so, it considers it
and goes to step 3.

6. At this point the list is completely scanned by the second pass and no free page
slot has been found; it returns 0.

The swap_free() function

The swap_free() function is invoked when swapping in a page to decrease the corre-
sponding swap_map counter (see Table 17-3). When the counter reaches 0, the page
slot becomes free since its identifier is no longer included in any Page Table entry.
We’ll see in the later section “The Swap Cache,” however, that the swap cache
counts as an owner of the page slot.

The function acts on a single entry parameter that specifies a swapped-out page
identifier and performs the following steps:

1. Derives the swap area index and the offset page slot index from the entry
parameter and gets the address of the swap area descriptor.

2. Checks whether the swap area is active and returns right away if it is not.

3. If the swap_map counter corresponding to the page slot being freed is smaller than
SWAP_MAP_MAX, the function decreases it. Recall that entries that have the SWAP_
MAP_MAX value are considered persistent (undeletable).

4. If the swap_map counter becomes 0, the function increases the value of nr_swap_
pages, decreases the inuse_pages field, and updates, if necessary, the lowest_bit
and highest_bit fields of the swap area descriptor.

The Swap Cache
Transferring pages to and from a swap area is an activity that can induce many race
conditions. In particular, the swapping subsystem must handle carefully the follow-
ing cases:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 729

Multiple swap-ins
Two processes may concurrently try to swap in the same shared anonymous
page.

Concurrent swap-ins and swap-outs
A process may swap-in a page that is being swapped out by the PFRA.

The swap cache has been introduced to solve these kinds of synchronization prob-
lems. The key rule is that nobody can start a swap-in or swap-out without checking
whether the swap cache already includes the affected page. Thanks to the swap
cache, concurrent swap operations affecting the same page always act on the same
page frame; therefore, the kernel may safely rely on the PG_locked flag of the page
descriptor to avoid any race condition.

For example, consider two processes that share the same swapped-out page. When
the first process tries to access the page, the kernel starts the swap-in operation. The
very first step consists of checking whether the page frame is already included in the
swap cache. Let’s suppose it isn’t: then, the kernel allocates a new page frame and
inserts it into the swap cache; next, it starts the I/O operation to read the page’s con-
tents from the swap area. Meanwhile, the second process accesses the shared anony-
mous page. As above, the kernel starts a swap-in operation and checks whether the
affected page frame is already included in the swap cache. Now, it is included, thus
the kernel simply accesses the page frame descriptor and puts the current process to
sleep until the PG_locked flag is cleared, that is, until the I/O data transfer completes.

The swap cache plays a crucial role also when concurrent swap-in and swap-out
operations mix up. As explained in the section “Low On Memory Reclaiming” ear-
lier in this chapter, the shrink_list() function starts swapping out an anonymous
page only if try_to_unmap() succeeds in removing the page frame from the User
Mode Page Tables of all processes that own the page. However, one of these pro-
cesses may access the page and cause a swap-in while the swap-out write operation is
still in progress.

Before being written to disk, each page to be swapped out is stored in the swap cache
by shrink_list(). Consider a page P that is shared among two processes, A and B.
Initially, the Page Table entries of both processes contain a reference to the page
frame, and the page has two owners; this case is illustrated in Figure 17-8(a). When
the PFRA selects the page for reclaiming, shrink_list() inserts the page frame in the
swap cache. As illustrated in Figure 17-8(b), now the page frame has three owners,
while the page slot in the swap area is referenced only by the swap cache. Next, the
PFRA invokes try_to_unmap() to remove the references to the page frame from the
Page Table of the processes; once this function terminates, the page frame is refer-
enced only by the swap cache, while the page slot is referenced by the two processes
and the swap cache, as illustrated in Figure 17-8(c). Let’s suppose that, while the
page’s contents are being written to disk, process B accesses the page—that is, it tries
to access a memory cell using a linear address inside the page. Then, the page fault

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

730 | Chapter 17: Page Frame Reclaiming

handler finds the page frame in the swap cache and puts back its physical address in
the Page Table entry of process B, as illustrated in Figure 17-8(d). Conversely, if the
swap-out operation terminates without concurrent swap-in operations, the shrink_
list() function removes the page frame from the swap cache and releases the page
frame to the Buddy system, as illustrated in Figure 17-8(e).

You might consider the swap cache as a transit area containing the page descriptors
of anonymous pages that are being currently swapped-in or swapped out. When the
swap-in or swap-out terminates (in the case of shared anonymous pages, the swap-in
or swap-out must have been performed on all the processes that share the page), the
page descriptor of the anonymous page may be removed from the swap cache.*

Figure 17-8. The role of the swap cache

* In some cases, the swap cache improves also the system performance: consider a server daemon that services
requests by creating child processes. Under heavy system load, a page can get swapped out from the parent
process, and it will never be paged in for the parent process. Without the swap cache, every child process
that gets forked off needs to fault that page in from the swap area.

(a)

A

B
P

Swap area

Swap cache

(2)

(c)

A

B
P

Swap area

Swap cache

(1)

(3)

(b)

A

B
P

Swap area

Swap cache

(3)

(1)

(d)

A

B

P

Swap area

Swap cache

(2)

(2)

A

B

Swap area

Swap cache

(2)

(e)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 731

Swap cache implementation

The swap cache is implemented by the page cache data structures and procedures,
which are described in the section “The Page Cache” in Chapter 15. Recall that the
core of the page cache is a set of radix trees that allows the algorithm to quickly
derive the address of a page descriptor from the address of an address_space object
identifying the owner of the page as well as from an offset value.

Pages in the swap cache are stored as every other page in the page cache, with the fol-
lowing special treatment:

• The mapping field of the page descriptor is set to NULL.

• The PG_swapcache flag of the page descriptor is set.

• The private field stores the swapped-out page identifier associated with the
page.

Moreover, when the page is put in the swap cache, both the count field of the page
descriptor and the page slot usage counters are increased, because the swap cache
uses both the page frame and the page slot.

Finally, a single swapper_space address space is used for all pages in the swap cache,
so a single radix tree pointed to by swapper_space.page_tree addresses the pages in
the swap cache. The nrpages field of the swapper_space address space stores the num-
ber of pages contained in the swap cache.

Swap cache helper functions

The kernel uses several functions to handle the swap cache; they are based mainly on
those discussed in the section “The Page Cache” in Chapter 15. We show later how
these relatively low-level functions are invoked by higher-level functions to swap
pages in and out as needed.

The main functions that handle the swap cache are:

lookup_swap_cache()
Finds a page in the swap cache through its swapped-out page identifier passed as a
parameter and returns the page descriptor address. It returns 0 if the page is not
present in the cache. To find the required page, it invokes radix_tree_lookup(),
passing as parameters a pointer to swapper_space.page_tree—the radix tree used
for pages in the swap cache—and the swapped-out page identifier.

add_to_swap_cache()
Inserts a page into the swap cache. It essentially invokes swap_duplicate() to
check whether the page slot passed as a parameter is valid and to increase the
page slot usage counter; then, it invokes radix_tree_insert() to insert the page
into the cache; finally, it increases the page’s reference counter and sets the PG_
swapcache and PG_locked flags.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

732 | Chapter 17: Page Frame Reclaiming

_ _add_to_swap_cache()
Similar to add_to_swap_cache(), except that the function does not invoke swap_
duplicate() before inserting the page frame in the swap cache.

delete_from_swap_cache()
Removes a page from the swap cache by invoking radix_tree_delete(),
decreases the corresponding usage counter in swap_map, and decreases the page
reference counter.

free_page_and_swap_cache()
Removes a page from the swap cache if no User Mode process besides current is
referencing the corresponding page slot, and decreases the page’s usage counter.

free_pages_and_swap_cache()
Analogous to free_page_and_swap_cache(), but operates on a set of pages.

free_swap_and_cache()
Frees a swap entry, and checks whether the page referenced by the entry is in the
swap cache. If either no User Mode process, besides current, is referencing the
page or more than 50% of the swap entries are busy, the function removes the
page from the swap cache.

Swapping Out Pages
We have seen in the section “Low On Memory Reclaiming” earlier in this chapter
how the PFRA determines whether a given anonymous page should be swapped out.
In this section we show how the kernel performs a swap-out.

Inserting the page frame in the swap cache

The first step of a swap-out operation consists of preparing the swap cache. If the
shrink_list() function determines that a page is anonymous (the PageAnon() func-
tion returns 1) and that the swap cache does not include the corresponding page
frame (the PG_swapcache flag in the page descriptor is clear), the kernel invokes the
add_to_swap() function.

The add_to_swap() function allocates a new page slot in a swap area and inserts a
page frame—whose page descriptor address is passed as its parameter—in the swap
cache. Essentially, the function performs the following steps:

1. Invokes get_swap_page() to allocate a new page slot; see the section “Allocating
and Releasing a Page Slot” earlier in this chapter. Returns 0 in case of failure (for
example, no free page slot found).

2. Invokes _ _add_to_page_cache(), passing to it the page slot index, the page
descriptor address, and some allocation flags.

3. Sets the PG_uptodate and PG_dirty flags in the page descriptor, so that the shrink_
list() function will be forced to write the page to disk (see the next section).

4. Returns 1 (success).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 733

Updating the Page Table entries

Once add_to_swap() terminates, shrink_list() invokes try_to_unmap(), which deter-
mines the address of every User Mode page table entry referring to the anonymous
page and writes into it a swapped-out page identifier; this is described in the section
“Reverse Mapping for Anonymous Pages” earlier in this chapter.

Writing the page into the swap area

The next action to be performed to complete the swap-out consists of writing the
page’s contents into the swap area. This I/O transfer is activated by the shrink_list()
function, which checks whether the PG_dirty flag of the page frame is set and conse-
quently executes the pageout() function (see Figure 17-5 earlier in this chapter).

As explained in the section “Low On Memory Reclaiming” earlier in this chapter, the
pageout() function sets up a writeback_control descriptor and invokes the writepage
method of the page’s address_space object. The writepage method of the swapper_
state object is implemented by the swap_writepage() function.

The swap_writepage() function, in turn, performs essentially the following steps:

1. Checks whether at least one User Mode process is referencing the page. If not, it
removes the page from the swap cache and returns 0. This check is necessary
because a process might race with the PRFA and release a page after the check
performed by shrink_list().

2. Invokes get_swap_bio() to allocate and initialize a bio descriptor (see the section
“The Bio Structure” in Chapter 14). The function derives the address of the swap
area descriptor from the swapped-out page identifier; then, it walks the swap
extent lists to determine the initial disk sector of the page slot. The bio descrip-
tor will include a request for a single page of data (the page slot); the completion
method is set to the end_swap_bio_write() function.

3. Sets the PG_writeback flag in the page descriptor and the writeback tags in the
swap cache’s radix tree (see the section “The Tags of the Radix Tree” in
Chapter 15). Moreover, the function resets the PG_locked flag.

4. Invokes submit_bio(), passing to it the WRITE command and the bio descriptor
address.

5. Returns 0.

Once the I/O data transfer terminates, the end_swap_bio_write() function is exe-
cuted. Essentially, this function wakes up any process waiting until the PG_writeback
flag of the page is cleared, clears the PG_writeback flag and the corresponding tags in
the radix tree, and releases the bio descriptor used for the I/O transfer.

Removing the page frame from the swap cache

The last step of the swap-out operation is performed once more by shrink_list(): if
it verifies that no process has tried to access the page frame while doing the I/O data

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

734 | Chapter 17: Page Frame Reclaiming

transfer, it essentially invokes delete_from_swap_cache() to remove the page frame
from the swap cache. Because the swap cache was the only owner of the page, the
page frame is released to the buddy system.

Swapping in Pages
Swap-in takes place when a process attempts to address a page that has been
swapped out to disk. The Page Fault exception handler triggers a swap-in operation
when the following conditions occur (see the section “Handling a Faulty Address
Inside the Address Space” in Chapter 9):

• The page including the address that caused the exception is a valid one—that is,
it belongs to a memory region of the current process.

• The page is not present in memory—that is, the Present flag in the Page Table
entry is cleared.

• The Page Table entry associated with the page is not null, but the Dirty bit is
clear; this means that the entry contains a swapped-out page identifier (see the
section “Demand Paging” in Chapter 9).

If all the above conditions are satisfied, handle_pte_fault() invokes a quite handy
do_swap_page() function to swap in the page required.

The do_swap_page() function

The do_swap_page() function acts on the following parameters:

mm
Memory descriptor address of the process that caused the Page Fault exception

vma
Memory region descriptor address of the region that includes address

address
Linear address that causes the exception

page_table
Address of the Page Table entry that maps address

pmd
Address of the Page Middle Directory that maps address

orig_pte
Content of the Page Table entry that maps address

write_access
Flag denoting whether the attempted access was a read or a write

Contrary to other functions, do_swap_page() never returns 0. It returns 1 if the page
is already in the swap cache (minor fault), 2 if the page was read from the swap area
(major fault), and –1 if an error occurred while performing the swap-in. It essentially
executes the following steps:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 735

1. Gets the swapped-out page identifier from orig_pte.

2. Invokes pte_unmap() to release any temporary kernel mapping for the Page Table
created by the handle_mm_fault() function (see the section “Handling a Faulty
Address Inside the Address Space” in Chapter 9). As explained in the section
“Kernel Mappings of High-Memory Page Frames” in Chapter 8, a kernel map-
ping is required to access a page table in high memory.

3. Releases the page_table_lock spin lock of the memory descriptor (it was
acquired by the caller function handle_pte_fault()).

4. Invokes lookup_swap_cache() to check whether the swap cache already contains
a page corresponding to the swapped-out page identifier; if the page is already in
the swap cache, it jumps to step 6.

5. Invokes the swapin_readahead() function to read from the swap area a group of
at most 2n pages, including the requested one. The value n is stored in the page_
cluster variable, and is usually equal to 3.* Each page is read by invoking the
read_swap_cache_async() function (see below).

6. Invokes read_swap_cache_async() once more to swap in precisely the page
accessed by the process that caused the Page Fault. This step might appear
redundant, but it isn’t really. The swapin_readahead() function might fail in
reading the requested page—for instance, because page_cluster is set to 0 or the
function tried to read a group of pages including a free page slot or a defective
page slot (SWAP_MAP_BAD). On the other hand, if swapin_readahead() succeeded,
this invocation of read_swap_cache_async() terminates quickly because it finds
the page in the swap cache.

7. If, despite all efforts, the requested page was not added to the swap cache,
another kernel control path might have already swapped in the requested page
on behalf of a clone of this process. This case is checked by temporarily acquir-
ing the page_table_lock spin lock and comparing the entry to which page_table
points with orig_pte. If they differ, the page has already been swapped in by
some other kernel control path, so the function returns 1 (minor fault); other-
wise, it returns –1 (failure).

8. At this point, we know that the page is in the swap cache. If the page has been
effectively swapped in (major fault), the function invokes grab_swap_token() to
try to grab the swap token (see the section “The Swap Token” earlier in this
chapter).

9. Invokes mark_page_accessed() (see the earlier section “The Least Recently Used
(LRU) Lists”) and locks the page.

10. Acquires the page_table_lock spin lock.

* The system administrator may tune this value by writing into the /proc/sys/vm/page-cluster file. Swap-in read-
ahead can be disabled by setting page_cluster to 0.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

736 | Chapter 17: Page Frame Reclaiming

11. Checks whether another kernel control path has swapped in the requested page
on behalf of a clone of this process. In this case, it releases the page_table_lock
spin lock, unlocks the page, and returns 1 (minor fault).

12. Invokes swap_free() to decrease the usage counter of the page slot correspond-
ing to entry.

13. Checks whether the swap cache is at least 50 percent full (nr_swap_pages is
smaller than half of total_swap_pages). If so, it checks whether the page is
owned only by the process that caused the fault (or one of its clones); if this is
the case, removes the page from the swap cache.

14. Increases the rss field of the process’s memory descriptor.

15. Updates the Page Table entry so the process can find the page. The function
accomplishes this by writing the physical address of the requested page and the
protection bits found in the vm_page_prot field of the memory region into the
Page Table entry addressed by page_table. Moreover, if the access that caused
the fault was a write and the faulting process is the unique owner of the page,
the function also sets the Dirty flag and the Read/Write flag to prevent a useless
Copy On Write fault.

16. Unlocks the page.

17. Invokes page_add_anon_rmap() to insert the anonymous page in the object-based
reverse mapping data structures (see the section “Reverse Mapping for Anony-
mous Pages” earlier in this chapter.)

18. If the write_access parameter is equal to 1, the function invokes do_wp_page() to
make a copy of the page frame (see the section “Copy On Write” in Chapter 9).

19. Releases the mm->page_table_lock spin lock and returns the ret return code: 1
(minor fault) or 2 (major fault).

The read_swap_cache_async() function

The read_swap_cache_async() function is invoked whenever the kernel must swap in
a page. It acts on three parameters:

entry
A swapped-out page identifier

vma
A pointer to the memory region that should contain the page

addr
The linear address of the page

As we know, before accessing the swap partition, the function must check whether
the swap cache already includes the desired page frame. Therefore, the function
essentially executes the following operations:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Swapping | 737

1. Invokes radix_tree_lookup() to locate in the radix tree of the swapper_space
object a page frame at the position given by the swapped-out page identifier
entry. If the page is found, it increases its reference counter and returns the
address of its descriptor.

2. The page is not included in the swap cache. Invokes alloc_pages() to allocate a
new page frame. If no free page frame is available, it returns 0 (indicating the sys-
tem is out of memory).

3. Invokes add_to_swap_cache() to insert the page descriptor of the new page frame
into the swap cache. As mentioned in the earlier section “Swap cache helper
functions,” this function also locks the page.

4. The previous step might fail if add_to_swap_cache() finds a duplicate of the page
in the swap cache. For instance, the process could block in step 2, thus allowing
another process to start a swap-in operation on the same page slot. In this case,
it releases the page frame allocated in step 2 and restarts from step 1.

5. Invokes lru_cache_add_active() to insert the page in the LRU active list (see the
section “The Least Recently Used (LRU) Lists” earlier in this chapter).

6. The page descriptor of the new page frame is now in the swap cache. Invokes
swap_readpage() to read the page’s contents from the swap area. This function is
quite similar to swap_writepage() described in the earlier section “Swapping Out
Pages:” it clears the PG_uptodate flag of the page descriptor, invokes get_swap_
bio() to allocate and initialize a bio descriptor for the I/O transfer, and invokes
submit_bio() to submit the I/O request to the block subsystem layer.

7. Returns the address of the page descriptor.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

738

Chapter 18\CHAPTER 18

The Ext2 and Ext3
Filesystems

In this chapter, we finish our extensive discussion of I/O and filesystems by taking a
look at the details the kernel has to take care of when interacting with a specific file-
system. Because the Second Extended Filesystem (Ext2) is native to Linux and is
used on virtually every Linux system, it is a natural choice for this discussion. Fur-
thermore, Ext2 illustrates a lot of good practices in its support for modern filesystem
features with fast performance. To be sure, other filesystems supported by Linux
include many interesting features, but we have no room to examine all of them.

After introducing Ext2 in the section “General Characteristics of Ext2,” we describe
the data structures needed, just as in other chapters. Because we are looking at a spe-
cific way to store data on disk, we have to consider two versions of the same data
structures. The section “Ext2 Disk Data Structures” shows the data structures stored
by Ext2 on disk, while “Ext2 Memory Data Structures” shows the corresponding ver-
sions in memory.

Then we get to the operations performed on the filesystem. In the section “Creating
the Ext2 Filesystem,” we discuss how Ext2 is created in a disk partition. The next
sections describe the kernel activities performed whenever the disk is used. Most of
these are relatively low-level activities dealing with the allocation of disk space to
inodes and data blocks.

In the last section, we give a short description of the Ext3 filesystem, which is the
next step in the evolution of the Ext2 filesystem.

General Characteristics of Ext2
Unix-like operating systems use several types of filesystems. Although the files of all
such filesystems have a common subset of attributes required by a few POSIX APIs
such as stat(), each filesystem is implemented in a different way.

The first versions of Linux were based on the MINIX filesystem. As Linux matured,
the Extended Filesystem (Ext FS) was introduced; it included several significant

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

General Characteristics of Ext2 | 739

extensions, but offered unsatisfactory performance. The Second Extended Filesystem
(Ext2) was introduced in 1994; besides including several new features, it is quite effi-
cient and robust and is, together with its offspring Ext3, the most widely used Linux
filesystem.

The following features contribute to the efficiency of Ext2:

• When creating an Ext2 filesystem, the system administrator may choose the
optimal block size (from 1,024 to 4,096 bytes), depending on the expected aver-
age file length. For instance, a 1,024-block size is preferable when the average file
length is smaller than a few thousand bytes because this leads to less internal
fragmentation—that is, less of a mismatch between the file length and the por-
tion of the disk that stores it (see the section “Memory Area Management” in
Chapter 8, where internal fragmentation for dynamic memory was discussed).
On the other hand, larger block sizes are usually preferable for files greater than
a few thousand bytes because this leads to fewer disk transfers, thus reducing
system overhead.

• When creating an Ext2 filesystem, the system administrator may choose how
many inodes to allow for a partition of a given size, depending on the expected
number of files to be stored on it. This maximizes the effectively usable disk
space.

• The filesystem partitions disk blocks into groups. Each group includes data
blocks and inodes stored in adjacent tracks. Thanks to this structure, files stored
in a single block group can be accessed with a lower average disk seek time.

• The filesystem preallocates disk data blocks to regular files before they are actu-
ally used. Thus, when the file increases in size, several blocks are already
reserved at physically adjacent positions, reducing file fragmentation.

• Fast symbolic links (see the section “Hard and Soft Links” in Chapter 1) are sup-
ported. If the symbolic link represents a short pathname (at most 60 characters),
it can be stored in the inode and can thus be translated without reading a data
block.

Moreover, the Second Extended Filesystem includes other features that make it both
robust and flexible:

• A careful implementation of file-updating that minimizes the impact of system
crashes. For instance, when creating a new hard link for a file, the counter of
hard links in the disk inode is increased first, and the new name is added into the
proper directory next. In this way, if a hardware failure occurs after the inode
update but before the directory can be changed, the directory is consistent, even
if the inode’s hard link counter is wrong. Deleting the file does not lead to cata-
strophic results, although the file’s data blocks cannot be automatically
reclaimed. If the reverse were done (changing the directory before updating the
inode), the same hardware failure would produce a dangerous inconsistency:
deleting the original hard link would remove its data blocks from disk, yet the
new directory entry would refer to an inode that no longer exists. If that inode

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

740 | Chapter 18: The Ext2 and Ext3 Filesystems

number were used later for another file, writing into the stale directory entry
would corrupt the new file.

• Support for automatic consistency checks on the filesystem status at boot time.
The checks are performed by the e2fsck external program, which may be acti-
vated not only after a system crash, but also after a predefined number of filesys-
tem mounts (a counter is increased after each mount operation) or after a
predefined amount of time has elapsed since the most recent check.

• Support for immutable files (they cannot be modified, deleted, or renamed) and
for append-only files (data can be added only to the end of them).

• Compatibility with both the Unix System V Release 4 and the BSD semantics of
the user group ID for a new file. In SVR4, the new file assumes the user group ID
of the process that creates it; in BSD, the new file inherits the user group ID of
the directory containing it. Ext2 includes a mount option that specifies which
semantic to use.

Even if the Ext2 filesystem is a mature, stable program, several additional features
have been considered for inclusion. Some of them have already been coded and are
available as external patches. Others are just planned, but in some cases, fields have
already been introduced in the Ext2 inode for them. The most significant features
being considered are:

Block fragmentation
System administrators usually choose large block sizes for accessing disks,
because computer applications often deal with large files. As a result, small files
stored in large blocks waste a lot of disk space. This problem can be solved by
allowing several files to be stored in different fragments of the same block.

Handling of transparently compressed and encrypted files
These new options, which must be specified when creating a file, allow users to
transparently store compressed and/or encrypted versions of their files on disk.

Logical deletion
An undelete option allows users to easily recover, if needed, the contents of a
previously removed file.

Journaling
Journaling avoids the time-consuming check that is automatically performed on
a filesystem when it is abruptly unmounted—for instance, as a consequence of a
system crash.

In practice, none of these features has been officially included in the Ext2 filesystem.
One might say that Ext2 is victim of its success; it has been the preferred filesystem
adopted by most Linux distribution companies until a few years ago, and the mil-
lions of users who relied on it every day would have looked suspiciously at any
attempt to replace Ext2 with some other filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ext2 Disk Data Structures | 741

The most compelling feature missing from Ext2 is journaling, which is required by
high-availability servers. To provide for a smooth transition, journaling has not been
introduced in the Ext2 filesystem; rather, as we’ll discuss in the later section “The
Ext3 Filesystem,” a more recent filesystem that is fully compatible with Ext2 has been
created, which also offers journaling. Users who do not really require journaling may
continue to use the good old Ext2 filesystem, while the others will likely adopt the
new filesystem. Nowadays, most distributions adopt Ext3 as the standard filesystem.

Ext2 Disk Data Structures
The first block in each Ext2 partition is never managed by the Ext2 filesystem,
because it is reserved for the partition boot sector (see Appendix A). The rest of the
Ext2 partition is split into block groups, each of which has the layout shown in
Figure 18-1. As you will notice from the figure, some data structures must fit in
exactly one block, while others may require more than one block. All the block
groups in the filesystem have the same size and are stored sequentially, thus the ker-
nel can derive the location of a block group in a disk simply from its integer index.

Block groups reduce file fragmentation, because the kernel tries to keep the data
blocks belonging to a file in the same block group, if possible. Each block in a block
group contains one of the following pieces of information:

• A copy of the filesystem’s superblock

• A copy of the group of block group descriptors

• A data block bitmap

• An inode bitmap

• A table of inodes

• A chunk of data that belongs to a file; i.e., data blocks

If a block does not contain any meaningful information, it is said to be free.

Figure 18-1. Layouts of an Ext2 partition and of an Ext2 block group

Boot
Block Block group 0 Block group n

Super
Block

Group
Descriptors

Data block
Bitmap

inode
Bitmap

inode
Table Data blocks

1 block n blocks 1 block 1 block n blocks n blocks

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

742 | Chapter 18: The Ext2 and Ext3 Filesystems

As you can see from Figure 18-1, both the superblock and the group descriptors are
duplicated in each block group. Only the superblock and the group descriptors
included in block group 0 are used by the kernel, while the remaining superblocks
and group descriptors are left unchanged; in fact, the kernel doesn’t even look at
them. When the e2fsck program executes a consistency check on the filesystem sta-
tus, it refers to the superblock and the group descriptors stored in block group 0, and
then copies them into all other block groups. If data corruption occurs and the main
superblock or the main group descriptors in block group 0 become invalid, the sys-
tem administrator can instruct e2fsck to refer to the old copies of the superblock and
the group descriptors stored in a block groups other than the first. Usually, the
redundant copies store enough information to allow e2fsck to bring the Ext2 parti-
tion back to a consistent state.

How many block groups are there? Well, that depends both on the partition size and
the block size. The main constraint is that the block bitmap, which is used to iden-
tify the blocks that are used and free inside a group, must be stored in a single block.
Therefore, in each block group, there can be at most 8×b blocks, where b is the block
size in bytes. Thus, the total number of block groups is roughly s/(8×b), where s is
the partition size in blocks.

For example, let’s consider a 32-GB Ext2 partition with a 4-KB block size. In this
case, each 4-KB block bitmap describes 32K data blocks—that is, 128 MB. There-
fore, at most 256 block groups are needed. Clearly, the smaller the block size, the
larger the number of block groups.

Superblock
An Ext2 disk superblock is stored in an ext2_super_block structure, whose fields are
listed in Table 18-1.* The _ _u8, _ _u16, and _ _u32 data types denote unsigned num-
bers of length 8, 16, and 32 bits respectively, while the _ _s8, _ _s16, _ _s32 data types
denote signed numbers of length 8, 16, and 32 bits. To explicitly specify the order in
which the bytes of a word or double-word are stored on disk, the kernel also makes
use of the _ _le16, _ _le32, _ _be16, and _ _be32 data types; the former two types
denote the little-endian ordering for words and double-words (the least significant
byte is stored at the highest address), respectively, while the latter two types denote
the big-endian ordering (the most significant byte is stored at the highest address).

* To ensure compatibility between the Ext2 and Ext3 filesystems, the ext2_super_block data structure includes
some Ext3-specific fields, which are not shown in Table 18-1.

Table 18-1. The fields of the Ext2 superblock

Type Field Description

_ _le32 s_inodes_count Total number of inodes

_ _le32 s_blocks_count Filesystem size in blocks

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ext2 Disk Data Structures | 743

_ _le32 s_r_blocks_count Number of reserved blocks

_ _le32 s_free_blocks_count Free blocks counter

_ _le32 s_free_inodes_count Free inodes counter

_ _le32 s_first_data_block Number of first useful block (always 1)

_ _le32 s_log_block_size Block size

_ _le32 s_log_frag_size Fragment size

_ _le32 s_blocks_per_group Number of blocks per group

_ _le32 s_frags_per_group Number of fragments per group

_ _le32 s_inodes_per_group Number of inodes per group

_ _le32 s_mtime Time of last mount operation

_ _le32 s_wtime Time of last write operation

_ _le16 s_mnt_count Mount operations counter

_ _le16 s_max_mnt_count Number of mount operations before check

_ _le16 s_magic Magic signature

_ _le16 s_state Status flag

_ _le16 s_errors Behavior when detecting errors

_ _le16 s_minor_rev_level Minor revision level

_ _le32 s_lastcheck Time of last check

_ _le32 s_checkinterval Time between checks

_ _le32 s_creator_os OS where filesystem was created

_ _le32 s_rev_level Revision level of the filesystem

_ _le16 s_def_resuid Default UID for reserved blocks

_ _le16 s_def_resgid Default user group ID for reserved blocks

_ _le32 s_first_ino Number of first nonreserved inode

_ _le16 s_inode_size Size of on-disk inode structure

_ _le16 s_block_group_nr Block group number of this superblock

_ _le32 s_feature_compat Compatible features bitmap

_ _le32 s_feature_incompat Incompatible features bitmap

_ _le32 s_feature_ro_compat Read-only compatible features bitmap

_ _u8 [16] s_uuid 128-bit filesystem identifier

char [16] s_volume_name Volume name

char [64] s_last_mounted Pathname of last mount point

_ _le32 s_algorithm_usage_bitmap Used for compression

_ _u8 s_prealloc_blocks Number of blocks to preallocate

_ _u8 s_prealloc_dir_blocks Number of blocks to preallocate for directories

_ _u16 s_padding1 Alignment to word

_ _u32 [204] s_reserved Nulls to pad out 1,024 bytes

Table 18-1. The fields of the Ext2 superblock (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

744 | Chapter 18: The Ext2 and Ext3 Filesystems

The s_inodes_count field stores the number of inodes, while the s_blocks_count field
stores the number of blocks in the Ext2 filesystem.

The s_log_block_size field expresses the block size as a power of 2, using 1,024
bytes as the unit. Thus, 0 denotes 1,024-byte blocks, 1 denotes 2,048-byte blocks,
and so on. The s_log_frag_size field is currently equal to s_log_block_size, because
block fragmentation is not yet implemented.

The s_blocks_per_group, s_frags_per_group, and s_inodes_per_group fields store the
number of blocks, fragments, and inodes in each block group, respectively.

Some disk blocks are reserved to the superuser (or to some other user or group of
users selected by the s_def_resuid and s_def_resgid fields). These blocks allow the
system administrator to continue to use the filesystem even when no more free
blocks are available for normal users.

The s_mnt_count, s_max_mnt_count, s_lastcheck, and s_checkinterval fields set up
the Ext2 filesystem to be checked automatically at boot time. These fields cause
e2fsck to run after a predefined number of mount operations has been performed, or
when a predefined amount of time has elapsed since the last consistency check.
(Both kinds of checks can be used together.) The consistency check is also enforced
at boot time if the filesystem has not been cleanly unmounted (for instance, after a
system crash) or when the kernel discovers some errors in it. The s_state field stores
the value 0 if the filesystem is mounted or was not cleanly unmounted, 1 if it was
cleanly unmounted, and 2 if it contains errors.

Group Descriptor and Bitmap
Each block group has its own group descriptor, an ext2_group_desc structure whose
fields are illustrated in Table 18-2.

The bg_free_blocks_count, bg_free_inodes_count, and bg_used_dirs_count fields are
used when allocating new inodes and data blocks. These fields determine the most
suitable block in which to allocate each data structure. The bitmaps are sequences of

Table 18-2. The fields of the Ext2 group descriptor

Type Field Description

_ _le32 bg_block_bitmap Block number of block bitmap

_ _le32 bg_inode_bitmap Block number of inode bitmap

_ _le32 bg_inode_table Block number of first inode table block

_ _le16 bg_free_blocks_count Number of free blocks in the group

_ _le16 bg_free_inodes_count Number of free inodes in the group

_ _le16 bg_used_dirs_count Number of directories in the group

_ _le16 bg_pad Alignment to word

_ _le32 [3] bg_reserved Nulls to pad out 24 bytes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ext2 Disk Data Structures | 745

bits, where the value 0 specifies that the corresponding inode or data block is free
and the value 1 specifies that it is used. Because each bitmap must be stored inside a
single block and because the block size can be 1,024, 2,048, or 4,096 bytes, a single
bitmap describes the state of 8,192, 16,384, or 32,768 blocks.

Inode Table
The inode table consists of a series of consecutive blocks, each of which contains a
predefined number of inodes. The block number of the first block of the inode table
is stored in the bg_inode_table field of the group descriptor.

All inodes have the same size: 128 bytes. A 1,024-byte block contains 8 inodes, while
a 4,096-byte block contains 32 inodes. To figure out how many blocks are occupied
by the inode table, divide the total number of inodes in a group (stored in the s_
inodes_per_group field of the superblock) by the number of inodes per block.

Each Ext2 inode is an ext2_inode structure whose fields are illustrated in Table 18-3.

Many fields related to POSIX specifications are similar to the corresponding fields of
the VFS’s inode object and have already been discussed in the section “Inode

Table 18-3. The fields of an Ext2 disk inode

Type Field Description

_ _le16 i_mode File type and access rights

_ _le16 i_uid Owner identifier

_ _le32 i_size File length in bytes

_ _le32 i_atime Time of last file access

_ _le32 i_ctime Time that inode last changed

_ _le32 i_mtime Time that file contents last changed

_ _le32 i_dtime Time of file deletion

_ _le16 i_gid User group identifier

_ _le16 i_links_count Hard links counter

_ _le32 i_blocks Number of data blocks of the file

_ _le32 i_flags File flags

union osd1 Specific operating system information

_ _le32 [EXT2_N_BLOCKS] i_block Pointers to data blocks

_ _le32 i_generation File version (used when the file is accessed by a
network filesystem)

_ _le32 i_file_acl File access control list

_ _le32 i_dir_acl Directory access control list

_ _le32 i_faddr Fragment address

union osd2 Specific operating system information

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

746 | Chapter 18: The Ext2 and Ext3 Filesystems

Objects” in Chapter 12. The remaining ones refer to the Ext2-specific implementa-
tion and deal mostly with block allocation.

In particular, the i_size field stores the effective length of the file in bytes, while the
i_blocks field stores the number of data blocks (in units of 512 bytes) that have been
allocated to the file.

The values of i_size and i_blocks are not necessarily related. Because a file is always
stored in an integer number of blocks, a nonempty file receives at least one data block
(since fragmentation is not yet implemented) and i_size may be smaller than 512×i_
blocks. On the other hand, as we’ll see in the section “File Holes” later in this chapter,
a file may contain holes. In that case, i_size may be greater than 512×i_blocks.

The i_block field is an array of EXT2_N_BLOCKS (usually 15) pointers to blocks used to
identify the data blocks allocated to the file (see the section “Data Blocks Address-
ing” later in this chapter).

The 32 bits reserved for the i_size field limit the file size to 4 GB. Actually, the
highest-order bit of the i_size field is not used, so the maximum file size is limited to
2 GB. However, the Ext2 filesystem includes a “dirty trick” that allows larger files on
systems that sport a 64-bit processor such as AMD’s Opteron or IBM’s PowerPC G5.
Essentially, the i_dir_acl field of the inode, which is not used for regular files, repre-
sents a 32-bit extension of the i_size field. Therefore, the file size is stored in the
inode as a 64-bit integer. The 64-bit version of the Ext2 filesystem is somewhat com-
patible with the 32-bit version because an Ext2 filesystem created on a 64-bit archi-
tecture may be mounted on a 32-bit architecture, and vice versa. On a 32-bit
architecture, a large file cannot be accessed, unless opening the file with the O_
LARGEFILE flag set (see the section “The open() System Call” in Chapter 12).

Recall that the VFS model requires each file to have a different inode number. In
Ext2, there is no need to store on disk a mapping between an inode number and the
corresponding block number because the latter value can be derived from the block
group number and the relative position inside the inode table. For example, suppose
that each block group contains 4,096 inodes and that we want to know the address
on disk of inode 13,021. In this case, the inode belongs to the third block group and
its disk address is stored in the 733rd entry of the corresponding inode table. As you
can see, the inode number is just a key used by the Ext2 routines to retrieve the
proper inode descriptor on disk quickly.

Extended Attributes of an Inode
The Ext2 inode format is a kind of straitjacket for filesystem designers. The length of
an inode must be a power of 2 to avoid internal fragmentation in the blocks that
store the inode table. Actually, most of the 128 characters of an Ext2 inode are cur-
rently packed with information, and there is little room left for additional fields. On
the other hand, expanding the inode length to 256 would be quite wasteful, besides

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ext2 Disk Data Structures | 747

introducing compatibility problems between Ext2 filesystems that use different inode
lengths.

Extended attributes have been introduced to overcome the above limitation. These
attributes are stored on a disk block allocated outside of any inode. The i_file_acl
field of an inode points to the block containing the extended attributes. Different
inodes that have the same set of extended attributes may share the same block.

Each extended attribute has a name and a value. Both of them are encoded as vari-
able length arrays of characters, as specified by the ext2_xattr_entry descriptor.
Figure 18-2 shows the layout in Ext2 of the extended attributes inside a block. Each
attribute is split in two parts: the ext2_xattr_entry descriptor together with the
name of the attribute are placed at the beginning of the block, while the value of the
attribute is placed at the end of the block. The entries at the beginning of the block
are ordered according to the attribute names, while the positions of the values are
fixed, because they are determined by the allocation order of the attributes.

There are many system calls used to set, retrieve, list, and remove the extended
attributes of a file. The setxattr(), lsetxattr(), and fsetxattr() system calls set an
extended attribute of a file; essentially, they differ in how symbolic links are han-
dled, and in how the file is specified (either passing a pathname or a file descriptor).
Similarly, the getxattr(), lgetxattr(), and fgetxattr() system calls return the value
of an extended attribute. The listxattr(), llistxattr(), and flistxattr() list all
extended attributes of a file. Finally, the removexattr(), lremovexattr(), and
fremovexattr() system calls remove an extended attribute from a file.

Access Control Lists
Access control lists were proposed a long time ago to improve the file protection
mechanism in Unix filesystems. Instead of classifying the users of a file under three
classes—owner, group, and others—an access control list (ACL) can be associated
with each file. Thanks to this kind of list, a user may specify for each of his files the
names of specific users (or groups of users) and the privileges to be given to these
users.

Figure 18-2. Layout of a block containing extended attributes

e_value_offs e_name_len e_value_size

Header Value #1Value #3 Value #2Descr. #1 Name #1Descr. #2 Name #2 Descr. #3 Name #3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

748 | Chapter 18: The Ext2 and Ext3 Filesystems

Linux 2.6 fully supports ACLs by making use of inode extended attributes. As a mat-
ter of fact, extended attributes have been introduced mainly to support ACLs. There-
fore, the chacl(), setfacl(), and getfacl() library functions, which allow you to
manipulate the ACLs of a file, rely essentially upon the setxattr() and getxattr()
system calls introduced in the previous section.

Unfortunately, the outcome of a working group that defined security extensions
within the POSIX 1003.1 family of standards has never been formalized as a new
POSIX standard. As a result, ACLs are supported nowadays on different filesystem
types on many UNIX-like systems, albeit with a number of subtle differences among
the different implementations.

How Various File Types Use Disk Blocks
The different types of files recognized by Ext2 (regular files, pipes, etc.) use data
blocks in different ways. Some files store no data and therefore need no data blocks
at all. This section discusses the storage requirements for each type, which are listed
in Table 18-4.

Regular file

Regular files are the most common case and receive almost all the attention in this
chapter. But a regular file needs data blocks only when it starts to have data. When
first created, a regular file is empty and needs no data blocks; it can also be emptied
by the truncate() or open() system calls. Both situations are common; for instance,
when you issue a shell command that includes the string >filename, the shell creates
an empty file or truncates an existing one.

Directory

Ext2 implements directories as a special kind of file whose data blocks store file-
names together with the corresponding inode numbers. In particular, such data
blocks contain structures of type ext2_dir_entry_2. The fields of that structure are

Table 18-4. Ext2 file types

File_type Description

0 Unknown

1 Regular file

2 Directory

3 Character device

4 Block device

5 Named pipe

6 Socket

7 Symbolic link

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ext2 Disk Data Structures | 749

shown in Table 18-5. The structure has a variable length, because the last name field
is a variable length array of up to EXT2_NAME_LEN characters (usually 255). Moreover,
for reasons of efficiency, the length of a directory entry is always a multiple of 4 and,
therefore, null characters (\0) are added for padding at the end of the filename, if
necessary. The name_len field stores the actual filename length (see Figure 18-3).

The file_type field stores a value that specifies the file type (see Table 18-4). The
rec_len field may be interpreted as a pointer to the next valid directory entry: it is the
offset to be added to the starting address of the directory entry to get the starting
address of the next valid directory entry. To delete a directory entry, it is sufficient to
set its inode field to 0 and suitably increment the value of the rec_len field of the pre-
vious valid entry. Read the rec_len field of Figure 18-3 carefully; you’ll see that the
oldfile entry was deleted because the rec_len field of usr is set to 12+16 (the lengths
of the usr and oldfile entries).

Symbolic link

As stated before, if the pathname of a symbolic link has up to 60 characters, it is
stored in the i_block field of the inode, which consists of an array of 15 4-byte inte-
gers; no data block is therefore required. If the pathname is longer than 60 charac-
ters, however, a single data block is required.

Table 18-5. The fields of an Ext2 directory entry

Type Field Description

_ _le32 inode Inode number

_ _le16 rec_len Directory entry length

_ _u8 name_len Filename length

_ _u8 file_type File type

char [EXT2_NAME_LEN] name Filename

Figure 18-3. An example of the Ext2 directory

21 12 1 2 .

inode

\0 \0

22 12 2 2 . . \0 \0

53 16 5 2 h o m e

67 28 3 2 u s r \0

0 16 7 1 o l d f

34 12 4 2 s b i n

1 \0 \0

i l e

\0

\0

rec_len

name_len
file_type

name

0

12

24

40

52

68

\0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

750 | Chapter 18: The Ext2 and Ext3 Filesystems

Device file, pipe, and socket

No data blocks are required for these kinds of files. All the necessary information is
stored in the inode.

Ext2 Memory Data Structures
For the sake of efficiency, most information stored in the disk data structures of an
Ext2 partition are copied into RAM when the filesystem is mounted, thus allowing
the kernel to avoid many subsequent disk read operations. To get an idea of how
often some data structures change, consider some fundamental operations:

• When a new file is created, the values of the s_free_inodes_count field in the
Ext2 superblock and of the bg_free_inodes_count field in the proper group
descriptor must be decreased.

• If the kernel appends some data to an existing file so that the number of data
blocks allocated for it increases, the values of the s_free_blocks_count field in
the Ext2 superblock and of the bg_free_blocks_count field in the group descrip-
tor must be modified.

• Even just rewriting a portion of an existing file involves an update of the s_wtime
field of the Ext2 superblock.

Because all Ext2 disk data structures are stored in blocks of the Ext2 partition, the
kernel uses the page cache to keep them up-to-date (see the section “Writing Dirty
Pages to Disk” in Chapter 15).

Table 18-6 specifies, for each type of data related to Ext2 filesystems and files, the
data structure used on the disk to represent its data, the data structure used by the
kernel in memory, and a rule of thumb used to determine how much caching is used.
Data that is updated very frequently is always cached; that is, the data is permanently
stored in memory and included in the page cache until the corresponding Ext2 parti-
tion is unmounted. The kernel gets this result by keeping the page’s usage counter
greater than 0 at all times.

Table 18-6. VFS images of Ext2 data structures

Type Disk data structure Memory data structure Caching mode

Superblock ext2_super_block ext2_sb_info Always cached

Group descriptor ext2_group_desc ext2_group_desc Always cached

Block bitmap Bit array in block Bit array in buffer Dynamic

inode bitmap Bit array in block Bit array in buffer Dynamic

inode ext2_inode ext2_inode_info Dynamic

Data block Array of bytes VFS buffer Dynamic

Free inode ext2_inode None Never

Free block Array of bytes None Never

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ext2 Memory Data Structures | 751

The never-cached data is not kept in any cache because it does not represent mean-
ingful information. Conversely, the always-cached data is always present in RAM,
thus it is never necessary to read the data from disk (periodically, however, the data
must be written back to disk). In between these extremes lies the dynamic mode. In
this mode, the data is kept in a cache as long as the associated object (inode, data
block, or bitmap) is in use; when the file is closed or the data block is deleted, the
page frame reclaiming algorithm may remove the associated data from the cache.

It is interesting to observe that inode and block bitmaps are not kept permanently in
memory; rather, they are read from disk when needed. Actually, many disk reads are
avoided thanks to the page cache, which keeps in memory the most recently used
disk blocks (see the section “Storing Blocks in the Page Cache” in Chapter 15).*

The Ext2 Superblock Object
As stated in the section “Superblock Objects” in Chapter 12, the s_fs_info field of
the VFS superblock points to a structure containing filesystem-specific data. In the
case of Ext2, this field points to a structure of type ext2_sb_info, which includes the
following information:

• Most of the disk superblock fields

• An s_sbh pointer to the buffer head of the buffer containing the disk superblock

• An s_es pointer to the buffer containing the disk superblock

• The number of group descriptors, s_desc_per_block, that can be packed in a
block

• An s_group_desc pointer to an array of buffer heads of buffers containing the
group descriptors (usually, a single entry is sufficient)

• Other data related to mount state, mount options, and so on

Figure 18-4 shows the links between the ext2_sb_info data structures and the buff-
ers and buffer heads relative to the Ext2 superblock and to the group descriptors.

When the kernel mounts an Ext2 filesystem, it invokes the ext2_fill_super() func-
tion to allocate space for the data structures and to fill them with data read from disk
(see the section “Mounting a Generic Filesystem” in Chapter 12). This is a simplified
description of the function, which emphasizes the memory allocations for buffers
and descriptors:

1. Allocates an ext2_sb_info descriptor and stores its address in the s_fs_info field
of the superblock object passed as the parameter.

* In Linux 2.4 and earlier versions, the most recently used inode and block bitmaps were stored in ad-hoc
caches of bounded size.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

752 | Chapter 18: The Ext2 and Ext3 Filesystems

2. Invokes _ _bread() to allocate a buffer in a buffer page together with the corre-
sponding buffer head, and to read the superblock from disk into the buffer; as
discussed in the section “Searching Blocks in the Page Cache” in Chapter 15, no
allocation is performed if the block is already stored in a buffer page in the page
cache and it is up-to-date. Stores the buffer head address in the s_sbh field of the
Ext2 superblock object.

3. Allocates an array of bytes—one byte for each group—and stores its address in
the s_debts field of the ext2_sb_info descriptor (see the section “Creating
inodes” later in this chapter).

4. Allocates an array of pointers to buffer heads, one for each group descriptor, and
stores the address of the array in the s_group_desc field of the ext2_sb_info
descriptor.

5. Invokes repeatedly _ _bread() to allocate buffers and to read from disk the
blocks containing the Ext2 group descriptors; stores the addresses of the buffer
heads in the s_group_desc array allocated in the previous step.

6. Allocates an inode and a dentry object for the root directory, and sets up a few
fields of the superblock object so that it will be possible to read the root inode
from disk.

Clearly, all the data structures allocated by ext2_fill_super() are kept in memory
after the function returns; they will be released only when the Ext2 filesystem will be
unmounted. When the kernel must modify a field in the Ext2 superblock, it simply
writes the new value in the proper position of the corresponding buffer and then
marks the buffer as dirty.

Figure 18-4. The ext2_sb_info data structure

VFS’s
super_block

b.h.
ext2_sb_info

Ext2 partition

Super
Block

Group
Descriptor

Group
Descriptor

Group
Descriptor

Buffer Buffer Buffer Buffer

b.h. b.h. b.h.

s_es

s_sbh

b_data

s_group_desc

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating the Ext2 Filesystem | 753

The Ext2 inode Object
When opening a file, a pathname lookup is performed. For each component of the
pathname that is not already in the dentry cache, a new dentry object and a new inode
object are created (see the section “Standard Pathname Lookup” in Chapter 12).
When the VFS accesses an Ext2 disk inode, it creates a corresponding inode descriptor
of type ext2_inode_info. This descriptor includes the following information:

• The whole VFS inode object (see Table 12-3 in Chapter 12) stored in the field
vfs_inode

• Most of the fields found in the disk’s inode structure that are not kept in the VFS
inode

• The i_block_group block group index at which the inode belongs (see the sec-
tion “Ext2 Disk Data Structures” earlier in this chapter)

• The i_next_alloc_block and i_next_alloc_goal fields, which store the logical
block number and the physical block number of the disk block that was most
recently allocated to the file, respectively

• The i_prealloc_block and i_prealloc_count fields, which are used for data block
preallocation (see the section “Allocating a Data Block” later in this chapter)

• The xattr_sem field, a read/write semaphore that allows extended attributes to
be read concurrently with the file data

• The i_acl and i_default_acl fields, which point to the ACLs of the file

When dealing with Ext2 files, the alloc_inode superblock method is implemented by
means of the ext2_alloc_inode() function. It gets first an ext2_inode_info descriptor
from the ext2_inode_cachep slab allocator cache, then it returns the address of the
inode object embedded in the new ext2_inode_info descriptor.

Creating the Ext2 Filesystem
There are generally two stages to creating a filesystem on a disk. The first step is to
format it so that the disk driver can read and write blocks on it. Modern hard disks
come preformatted from the factory and need not be reformatted; floppy disks may
be formatted on Linux using a utility program such as superformat or fdformat. The
second step involves creating a filesystem, which means setting up the structures
described in detail earlier in this chapter.

Ext2 filesystems are created by the mke2fs utility program; it assumes the following
default options, which may be modified by the user with flags on the command line:

• Block size: 1,024 bytes (default value for a small filesystem)

• Fragment size: block size (block fragmentation is not implemented)

• Number of allocated inodes: 1 inode for each 8,192 bytes

• Percentage of reserved blocks: 5 percent

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

754 | Chapter 18: The Ext2 and Ext3 Filesystems

The program performs the following actions:

1. Initializes the superblock and the group descriptors.

2. Optionally, checks whether the partition contains defective blocks; if so, it cre-
ates a list of defective blocks.

3. For each block group, reserves all the disk blocks needed to store the super-
block, the group descriptors, the inode table, and the two bitmaps.

4. Initializes the inode bitmap and the data map bitmap of each block group to 0.

5. Initializes the inode table of each block group.

6. Creates the /root directory.

7. Creates the lost+found directory, which is used by e2fsck to link the lost and
found defective blocks.

8. Updates the inode bitmap and the data block bitmap of the block group in
which the two previous directories have been created.

9. Groups the defective blocks (if any) in the lost+found directory.

Let’s consider how an Ext2 1.44 MB floppy disk is initialized by mke2fs with the
default options.

Once mounted, it appears to the VFS as a volume consisting of 1,412 blocks; each
one is 1,024 bytes in length. To examine the disk’s contents, we can execute the
Unix command:

$ dd if=/dev/fd0 bs=1k count=1440 | od -tx1 -Ax > /tmp/dump_hex

to get a file containing the hexadecimal dump of the floppy disk contents in the /tmp
directory.*

By looking at that file, we can see that, due to the limited capacity of the disk, a sin-
gle group descriptor is sufficient. We also notice that the number of reserved blocks
is set to 72 (5 percent of 1,440) and, according to the default option, the inode table
must include 1 inode for each 8,192 bytes—that is, 184 inodes stored in 23 blocks.

Table 18-7 summarizes how the Ext2 filesystem is created on a floppy disk when the
default options are selected.

* Most information on an Ext2 filesystem could also be obtained by using the dumpe2fs and debugfs utility
programs.

Table 18-7. Ext2 block allocation for a floppy disk

Block Content

0 Boot block

1 Superblock

2 Block containing a single block group descriptor

3 Data block bitmap

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ext2 Methods | 755

Ext2 Methods
Many of the VFS methods described in Chapter 12 have a corresponding Ext2 imple-
mentation. Because it would take a whole book to describe all of them, we limit our-
selves to briefly reviewing the methods implemented in Ext2. Once the disk and the
memory data structures are clearly understood, the reader should be able to follow
the code of the Ext2 functions that implement them.

Ext2 Superblock Operations
Many VFS superblock operations have a specific implementation in Ext2, namely
alloc_inode, destroy_inode, read_inode, write_inode, delete_inode, put_super,
write_super, statfs, remount_fs, and clear_inode. The addresses of the superblock
methods are stored in the ext2_sops array of pointers.

Ext2 inode Operations
Some of the VFS inode operations have a specific implementation in Ext2, which
depends on the type of the file to which the inode refers.

The inode operations for Ext2 regular files and Ext2 directories are shown in
Table 18-8; the purpose of each method is described in the section “Inode Objects”
in Chapter 12. The table does not show the methods that are undefined (a NULL
pointer) for both regular files and directories; recall that if a method is undefined, the
VFS either invokes a generic function or does nothing at all. The addresses of the
Ext2 methods for regular files and directories are stored in the ext2_file_inode_
operations and ext2_dir_inode_operations tables, respectively.

4 inode bitmap

5–27 inode table: inodes up to 10: reserved (inode 2 is the root); inode 11: lost+found; inodes 12–184: free

28 Root directory (includes ., .., and lost+found)

29 lost+found directory (includes . and ..)

30–40 Reserved blocks preallocated for lost+found directory

41–1439 Free blocks

Table 18-8. Ext2 inode operations for regular files and directories

VFS inode operation Regular file Directory

create NULL ext2_create()

lookup NULL ext2_lookup()

link NULL ext2_link()

unlink NULL ext2_unlink()

Table 18-7. Ext2 block allocation for a floppy disk (continued)

Block Content

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

756 | Chapter 18: The Ext2 and Ext3 Filesystems

The inode operations for Ext2 symbolic links are shown in Table 18-9 (undefined
methods have been omitted). Actually, there are two types of symbolic links: the fast
symbolic links represent pathnames that can be fully stored inside the inodes, while
the regular symbolic links represent longer pathnames. Accordingly, there are two
sets of inode operations, which are stored in the ext2_fast_symlink_inode_
operations and ext2_symlink_inode_operations tables, respectively.

If the inode refers to a character device file, to a block device file, or to a named pipe
(see “FIFOs” in Chapter 19), the inode operations do not depend on the filesystem.
They are specified in the chrdev_inode_operations, blkdev_inode_operations, and
fifo_inode_operations tables, respectively.

Ext2 File Operations
The file operations specific to the Ext2 filesystem are listed in Table 18-10. As you
can see, several VFS methods are implemented by generic functions that are common

symlink NULL ext2_symlink()

mkdir NULL ext2_mkdir()

rmdir NULL ext2_rmdir()

mknod NULL ext2_mknod()

rename NULL ext2_rename()

truncate ext2_truncate() NULL

permission ext2_permission() ext2_permission()

setattr ext2_setattr() ext2_setattr()

setxattr generic_setxattr() generic_setxattr()

getxattr generic_getxattr() generic_getxattr()

listxattr ext2_listxattr() ext2_listxattr()

removexattr generic_removexattr() generic_removexattr()

Table 18-9. Ext2 inode operations for fast and regular symbolic links

VFS inode operation Fast symbolic link Regular symbolic link

readlink generic_readlink() generic_readlink()

follow_link ext2_follow_link() page_follow_link_light()

put_link NULL page_put_link()

setxattr generic_setxattr() generic_setxattr()

getxattr generic_getxattr() generic_getxattr()

listxattr ext2_listxattr() ext2_listxattr()

removexattr generic_removexattr() generic_removexattr()

Table 18-8. Ext2 inode operations for regular files and directories (continued)

VFS inode operation Regular file Directory

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Ext2 Disk Space | 757

to many filesystems. The addresses of these methods are stored in the ext2_file_
operations table.

Notice that the Ext2’s read and write methods are implemented by the generic_
file_read() and generic_file_write() functions, respectively. These are described
in the sections “Reading from a File” and “Writing to a File” in Chapter 16.

Managing Ext2 Disk Space
The storage of a file on disk differs from the view the programmer has of the file in
two ways: blocks can be scattered around the disk (although the filesystem tries hard
to keep blocks sequential to improve access time), and files may appear to a pro-
grammer to be bigger than they really are because a program can introduce holes
into them (through the lseek() system call).

In this section, we explain how the Ext2 filesystem manages the disk space—how it
allocates and deallocates inodes and data blocks. Two main problems must be
addressed:

• Space management must make every effort to avoid file fragmentation—the
physical storage of a file in several, small pieces located in non-adjacent disk
blocks. File fragmentation increases the average time of sequential read opera-
tions on the files, because the disk heads must be frequently repositioned during

Table 18-10. Ext2 file operations

VFS file operation Ext2 method

llseek generic_file_llseek()

read generic_file_read()

write generic_file_write()

aio_read generic_file_aio_read()

aio_write generic_file_aio_write()

ioctl ext2_ioctl()

mmap generic_file_mmap()

open generic_file_open()

release ext2_release_file()

fsync ext2_sync_file()

readv generic_file_readv()

writev generic_file_writev()

sendfile generic_file_sendfile()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

758 | Chapter 18: The Ext2 and Ext3 Filesystems

the read operation.* This problem is similar to the external fragmentation of
RAM discussed in the section “The Buddy System Algorithm” in Chapter 8.

• Space management must be time-efficient; that is, the kernel should be able to
quickly derive from a file offset the corresponding logical block number in the
Ext2 partition. In doing so, the kernel should limit as much as possible the num-
ber of accesses to addressing tables stored on disk, because each such intermedi-
ate access considerably increases the average file access time.

Creating inodes
The ext2_new_inode() function creates an Ext2 disk inode, returning the address of
the corresponding inode object (or NULL, in case of failure). The function carefully
selects the block group that contains the new inode; this is done to spread unrelated
directories among different groups and, at the same time, to put files into the same
group as their parent directories. To balance the number of regular files and directo-
ries in a block group, Ext2 introduces a “debt” parameter for every block group.

The function acts on two parameters: the address dir of the inode object that refers
to the directory into which the new inode must be inserted and a mode that indicates
the type of inode being created. The latter argument also includes the MS_SYNCHRONOUS
mount flag (see the section “Mounting a Generic Filesystem” in Chapter 12) that
requires the current process to be suspended until the inode is allocated. The func-
tion performs the following actions:

1. Invokes new_inode() to allocate a new VFS inode object; initializes its i_sb field
to the superblock address stored in dir->i_sb, and adds it to the in-use inode list
and to the superblock’s list (see the section “Inode Objects” in Chapter 12).

2. If the new inode is a directory, the function invokes find_group_orlov() to find a
suitable block group for the directory.† This function implements the following
heuristics:

a. Directories having as parent the filesystem root should be spread among all
block groups. Thus, the function searches the block groups looking for a
group having a number of free inodes and a number of free blocks above the
average. If there is no such group, it jumps to step 2c.

b. Nested directories—not having the filesystem root as parent—should be put
in the group of the parent if it satisfies the following rules:

• The group does not contain too many directories

• The group has a sufficient number of free inodes left

* Please note that fragmenting a file across block groups (A Bad Thing) is quite different from the not-yet-
implemented fragmentation of blocks to store many files in one block (A Good Thing).

† The Ext2 filesystem may also be mounted with an option flag that forces the kernel to make use of a simpler,
older allocation strategy, which is implemented by the find_group_dir() function.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Ext2 Disk Space | 759

• The group has a small “debt” (the debt of a block group is stored in the
array of counters pointed to by the s_debts field of the ext2_sb_info
descriptor; the debt is increased each time a new directory is added and
decreased each time another type of file is added)

If the parent’s group does not satisfy these rules, it picks the first group that
satisfies them. If no such group exists, it jumps to step 2c.

c. This is the “fallback” rule, to be used if no good group has been found. The
function starts with the block group containing the parent directory and
selects the first block group that has more free inodes than the average num-
ber of free inodes per block group.

3. If the new inode is not a directory, it invokes find_group_other() to allocate it in
a block group having a free inode. This function selects the group by starting
from the one that contains the parent directory and moving farther away from it;
to be precise:

a. Performs a quick logarithmic search starting from the block group that
includes the parent directory dir. The algorithm searches log(n) block
groups, where n is the total number of block groups. The algorithm jumps
further ahead until it finds an available block group—for example, if we call
the number of the starting block group i, the algorithm considers block
groups i mod (n), i+1 mod (n), i+1+2 mod (n), i+1+2+4 mod (n), etc.

b. If the logarithmic search failed in finding a block group with a free inode,
the function performs an exhaustive linear search starting from the block
group that includes the parent directory dir.

4. Invokes read_inode_bitmap() to get the inode bitmap of the selected block group
and searches for the first null bit into it, thus obtaining the number of the first
free disk inode.

5. Allocates the disk inode: sets the corresponding bit in the inode bitmap and
marks the buffer containing the bitmap as dirty. Moreover, if the filesystem has
been mounted specifying the MS_SYNCHRONOUS flag (see the section “Mounting a
Generic Filesystem” in Chapter 12), the function invokes sync_dirty_buffer()
to start the I/O write operation and waits until the operation terminates.

6. Decreases the bg_free_inodes_count field of the group descriptor. If the new
inode is a directory, the function increases the bg_used_dirs_count field and
marks the buffer containing the group descriptor as dirty.

7. Increases or decreases the group’s counter in the s_debts array of the super-
block, according to whether the inode refers to a regular file or a directory.

8. Decreases the s_freeinodes_counter field of the ext2_sb_info data structure;
moreover, if the new inode is a directory, it increases the s_dirs_counter field in
the ext2_sb_info data structure.

9. Sets the s_dirt flag of the superblock to 1, and marks the buffer that contains it
to as dirty.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

760 | Chapter 18: The Ext2 and Ext3 Filesystems

10. Sets the s_dirt field of the VFS’s superblock object to 1.

11. Initializes the fields of the inode object. In particular, it sets the inode number i_
no and copies the value of xtime.tv_sec into i_atime, i_mtime, and i_ctime. Also
loads the i_block_group field in the ext2_inode_info structure with the block
group index. Refer to Table 18-3 for the meaning of these fields.

12. Initializes the ACLs of the inode.

13. Inserts the new inode object into the hash table inode_hashtable and invokes
mark_inode_dirty() to move the inode object into the superblock’s dirty inode
list (see the section “Inode Objects” in Chapter 12).

14. Invokes ext2_preread_inode() to read from disk the block containing the inode
and to put the block in the page cache. This type of read-ahead is done because
it is likely that a recently created inode will be written back soon.

15. Returns the address of the new inode object.

Deleting inodes
The ext2_free_inode() function deletes a disk inode, which is identified by an inode
object whose address inode is passed as the parameter. The kernel should invoke the
function after a series of cleanup operations involving internal data structures and
the data in the file itself. It should come after the inode object has been removed
from the inode hash table, after the last hard link referring to that inode has been
deleted from the proper directory and after the file is truncated to 0 length to reclaim
all its data blocks (see the section “Releasing a Data Block” later in this chapter). It
performs the following actions:

1. Invokes clear_inode(), which in turn executes the following operations:

a. Removes any dirty “indirect” buffer associated with the inode (see the later
section “Data Blocks Addressing”); they are collected in the list headed at
the private_list field of the address_space object inode->i_data (see the
section “The address_space Object” in Chapter 15).

b. If the I_LOCK flag of the inode is set, some of the inode’s buffers are involved
in I/O data transfers; the function suspends the current process until these I/
O data transfers terminate.

c. Invokes the clear_inode method of the superblock object, if defined; the
Ext2 filesystem does not define it.

d. If the inode refers to a device file, it removes the inode object from the
device’s list of inodes; this list is rooted either in the list field of the cdev
character device descriptor (see the section “Character Device Drivers” in
Chapter 13) or in the bd_inodes field of the block_device block device
descriptor (see the section “Block Devices” in Chapter 14).

e. Sets the state of the inode to I_CLEAR (the inode object contents are no
longer meaningful).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Ext2 Disk Space | 761

2. Computes the index of the block group containing the disk inode from the inode
number and the number of inodes in each block group.

3. Invokes read_inode_bitmap() to get the inode bitmap.

4. Increases the bg_free_inodes_count() field of the group descriptor. If the deleted
inode is a directory, it decreases the bg_used_dirs_count field. Marks the buffer
that contains the group descriptor as dirty.

5. If the deleted inode is a directory, it decreases the s_dirs_counter field in the
ext2_sb_info data structure, sets the s_dirt flag of the superblock to 1, and
marks the buffer that contains it as dirty.

6. Clears the bit corresponding to the disk inode in the inode bitmap and marks the
buffer that contains the bitmap as dirty. Moreover, if the filesystem has been
mounted with the MS_SYNCHRONIZE flag, it invokes sync_dirty_buffer() to wait
until the write operation on the bitmap’s buffer terminates.

Data Blocks Addressing
Each nonempty regular file consists of a group of data blocks. Such blocks may be
referred to either by their relative position inside the file —their file block number—
or by their position inside the disk partition—their logical block number (see the sec-
tion “Block Devices Handling” in Chapter 14).

Deriving the logical block number of the corresponding data block from an offset f
inside a file is a two-step process:

1. Derive from the offset f the file block number—the index of the block that con-
tains the character at offset f.

2. Translate the file block number to the corresponding logical block number.

Because Unix files do not include any control characters, it is quite easy to derive the
file block number containing the f th character of a file: simply take the quotient of f
and the filesystem’s block size and round down to the nearest integer.

For instance, let’s assume a block size of 4 KB. If f is smaller than 4,096, the charac-
ter is contained in the first data block of the file, which has file block number 0. If f is
equal to or greater than 4,096 and less than 8,192, the character is contained in the
data block that has file block number 1, and so on.

This is fine as far as file block numbers are concerned. However, translating a file
block number into the corresponding logical block number is not nearly as straight-
forward, because the data blocks of an Ext2 file are not necessarily adjacent on disk.

The Ext2 filesystem must therefore provide a method to store the connection
between each file block number and the corresponding logical block number on
disk. This mapping, which goes back to early versions of Unix from AT&T, is imple-
mented partly inside the inode. It also involves some specialized blocks that contain
extra pointers, which are an inode extension used to handle large files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

762 | Chapter 18: The Ext2 and Ext3 Filesystems

The i_block field in the disk inode is an array of EXT2_N_BLOCKS components that con-
tain logical block numbers. In the following discussion, we assume that EXT2_N_
BLOCKS has the default value, namely 15. The array represents the initial part of a
larger data structure, which is illustrated in Figure 18-5. As can be seen in the figure,
the 15 components of the array are of 4 different types:

• The first 12 components yield the logical block numbers corresponding to the
first 12 blocks of the file—to the blocks that have file block numbers from 0 to 11.

• The component at index 12 contains the logical block number of a block, called
indirect block, that represents a second-order array of logical block numbers.
They correspond to the file block numbers ranging from 12 to b/4+11, where b
is the filesystem’s block size (each logical block number is stored in 4 bytes, so
we divide by 4 in the formula). Therefore, the kernel must look in this compo-
nent for a pointer to a block, and then look in that block for another pointer to
the ultimate block that contains the file contents.

• The component at index 13 contains the logical block number of an indirect
block containing a second-order array of logical block numbers; in turn, the
entries of this second-order array point to third-order arrays, which store the log-
ical block numbers that correspond to the file block numbers ranging from b/
4+12 to (b/4)2+(b/4)+11.

• Finally, the component at index 14 uses triple indirection: the fourth-order
arrays store the logical block numbers corresponding to the file block numbers
ranging from (b/4)2+(b/4)+12 to (b/4)3+(b/4)2+(b/4)+11.

In Figure 18-5, the number inside a block represents the corresponding file block num-
ber. The arrows, which represent logical block numbers stored in array components,

Figure 18-5. Data structures used to address the file’s data blocks

i_block

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Direct Addressing

...

...

...

...

...

...

...

...

...

...

...

...

1261

(b/4)2 +
2(b/4)+11

(b/4)2 +
 (b/4)+12

b/4+12

Indirect
blocks

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Ext2 Disk Space | 763

show how the kernel finds its way through indirect blocks to reach the block that con-
tains the actual contents of the file.

Notice how this mechanism favors small files. If the file does not require more than
12 data blocks, every data can be retrieved in two disk accesses: one to read a com-
ponent in the i_block array of the disk inode and the other to read the requested data
block. For larger files, however, three or even four consecutive disk accesses may be
needed to access the required block. In practice, this is a worst-case estimate,
because dentry, inode, and page caches contribute significantly to reduce the num-
ber of real disk accesses.

Notice also how the block size of the filesystem affects the addressing mechanism,
because a larger block size allows the Ext2 to store more logical block numbers
inside a single block. Table 18-11 shows the upper limit placed on a file’s size for
each block size and each addressing mode. For instance, if the block size is 1,024
bytes and the file contains up to 268 kilobytes of data, the first 12 KB of a file can be
accessed through direct mapping and the remaining 13–268 KB can be addressed
through simple indirection. Files larger than 2 GB must be opened on 32-bit architec-
tures by specifying the O_LARGEFILE opening flag.

File Holes
A file hole is a portion of a regular file that contains null characters and is not stored
in any data block on disk. Holes are a long-standing feature of Unix files. For
instance, the following Unix command creates a file in which the first bytes are a
hole:

$ echo -n "X" | dd of=/tmp/hole bs=1024 seek=6

Now /tmp/hole has 6,145 characters (6,144 null characters plus an X character), yet
the file occupies just one data block on disk.

File holes were introduced to avoid wasting disk space. They are used extensively by
database applications and, more generally, by all applications that perform hashing
on files.

The Ext2 implementation of file holes is based on dynamic data block allocation: a
block is actually assigned to a file only when the process needs to write data into it.
The i_size field of each inode defines the size of the file as seen by the program,
including the holes, while the i_blocks field stores the number of data blocks effec-
tively assigned to the file (in units of 512 bytes).

Table 18-11. File-size upper limits for data block addressing

Block size Direct 1-Indirect 2-Indirect 3-Indirect

1,024 12 KB 268 KB 64.26 MB 16.06 GB

2,048 24 KB 1.02 MB 513.02 MB 256.5 GB

4,096 48 KB 4.04 MB 4 GB ~ 4 TB

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

764 | Chapter 18: The Ext2 and Ext3 Filesystems

In our earlier example of the dd command, suppose the /tmp/hole file was created on
an Ext2 partition that has blocks of size 4,096. The i_size field of the corresponding
disk inode stores the number 6,145, while the i_blocks field stores the number 8
(because each 4,096-byte block includes eight 512-byte blocks). The second element
of the i_block array (corresponding to the block having file block number 1) stores
the logical block number of the allocated block, while all other elements in the array
are null (see Figure 18-6).

Allocating a Data Block
When the kernel has to locate a block holding data for an Ext2 regular file, it invokes
the ext2_get_block() function. If the block does not exist, the function automati-
cally allocates the block to the file. Remember that this function may be invoked
every time the kernel issues a read or write operation on an Ext2 regular file (see the
sections “Reading from a File” and “Writing to a File” in Chapter 16); clearly, this
function is invoked only if the affected block is not included in the page cache.

The ext2_get_block() function handles the data structures already described in the
section “Data Blocks Addressing,” and when necessary, invokes the ext2_alloc_
block() function to actually search for a free block in the Ext2 partition. If neces-
sary, the function also allocates the blocks used for indirect addressing (see
Figure 18-5).

To reduce file fragmentation, the Ext2 filesystem tries to get a new block for a file
near the last block already allocated for the file. Failing that, the filesystem searches
for a new block in the block group that includes the file’s inode. As a last resort, the
free block is taken from one of the other block groups.

The Ext2 filesystem uses preallocation of data blocks. The file does not get only the
requested block, but rather a group of up to eight adjacent blocks. The i_prealloc_
count field in the ext2_inode_info structure stores the number of data blocks preallo-
cated to a file that are still unused, and the i_prealloc_block field stores the logical

Figure 18-6. A file with an initial hole

4096

\0 \0 \0 ... \0 \0 ... \0 X/tmp/hole
File

6144

\0Data block

0 0 0i_block ...

0 2 31

... \0 X

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Ext2 Disk Space | 765

block number of the next preallocated block to be used. All preallocated blocks that
remain unused are freed when the file is closed, when it is truncated, or when a write
operation is not sequential with respect to the write operation that triggered the
block preallocation.

The ext2_alloc_block() function receives as its parameters a pointer to an inode
object, a goal, and the address of a variable that will store an error code. The goal is a
logical block number that represents the preferred position of the new block. The ext2_
get_block() function sets the goal parameter according to the following heuristic:

1. If the block that is being allocated and the previously allocated block have con-
secutive file block numbers, the goal is the logical block number of the previous
block plus 1; it makes sense that consecutive blocks as seen by a program should
be adjacent on disk.

2. If the first rule does not apply and at least one block has been previously allo-
cated to the file, the goal is one of these blocks’ logical block numbers. More
precisely, it is the logical block number of the already allocated block that pre-
cedes the block to be allocated in the file.

3. If the preceding rules do not apply, the goal is the logical block number of the
first block (not necessarily free) in the block group that contains the file’s inode.

The ext2_alloc_block() function checks whether the goal refers to one of the preal-
located blocks of the file. If so, it allocates the corresponding block and returns its
logical block number; otherwise, the function discards all remaining preallocated
blocks and invokes ext2_new_block().

This latter function searches for a free block inside the Ext2 partition with the fol-
lowing strategy:

1. If the preferred block passed to ext2_alloc_block()—the block that is the
goal—is free, the function allocates the block.

2. If the goal is busy, the function checks whether one of the next blocks after the
preferred block is free.

3. If no free block is found in the near vicinity of the preferred block, the function
considers all block groups, starting from the one including the goal. For each
block group, the function does the following:

a. Looks for a group of at least eight adjacent free blocks.

b. If no such group is found, looks for a single free block.

The search ends as soon as a free block is found. Before terminating, the ext2_new_
block() function also tries to preallocate up to eight free blocks adjacent to the free
block found and sets the i_prealloc_block and i_prealloc_count fields of the disk
inode to the proper block location and number of blocks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

766 | Chapter 18: The Ext2 and Ext3 Filesystems

Releasing a Data Block
When a process deletes a file or truncates it to 0 length, all its data blocks must be
reclaimed. This is done by ext2_truncate(), which receives the address of the file’s
inode object as its parameter. The function essentially scans the disk inode’s i_block
array to locate all data blocks and all blocks used for the indirect addressing. These
blocks are then released by repeatedly invoking ext2_free_blocks().

The ext2_free_blocks() function releases a group of one or more adjacent data
blocks. Besides its use by ext2_truncate(), the function is invoked mainly when dis-
carding the preallocated blocks of a file (see the earlier section “Allocating a Data
Block”). Its parameters are:

inode
The address of the inode object that describes the file

block
The logical block number of the first block to be released

count
The number of adjacent blocks to be released

The function performs the following actions for each block to be released:

1. Gets the block bitmap of the block group that includes the block to be released

2. Clears the bit in the block bitmap that corresponds to the block to be released
and marks the buffer that contains the bitmap as dirty.

3. Increases the bg_free_blocks_count field in the block group descriptor and
marks the corresponding buffer as dirty.

4. Increases the s_free_blocks_count field of the disk superblock, marks the corre-
sponding buffer as dirty, and sets the s_dirt flag of the superblock object.

5. If the filesystem has been mounted with the MS_SYNCHRONOUS flag set, it invokes
sync_dirty_buffer() and waits until the write operation on the bitmap’s buffer
terminates.

The Ext3 Filesystem
In this section we’ll briefly describe the enhanced filesystem that has evolved from
Ext2, named Ext3. The new filesystem has been designed with two simple concepts
in mind:

• To be a journaling filesystem (see the next section)

• To be, as much as possible, compatible with the old Ext2 filesystem

Ext3 achieves both the goals very well. In particular, it is largely based on Ext2, so its
data structures on disk are essentially identical to those of an Ext2 filesystem. As a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Ext3 Filesystem | 767

matter of fact, if an Ext3 filesystem has been cleanly unmounted, it can be
remounted as an Ext2 filesystem; conversely, creating a journal of an Ext2 filesystem
and remounting it as an Ext3 filesystem is a simple, fast operation.

Thanks to the compatibility between Ext3 and Ext2, most descriptions in the previ-
ous sections of this chapter apply to Ext3 as well. Therefore, in this section, we focus
on the new feature offered by Ext3—“the journal.”

Journaling Filesystems
As disks became larger, one design choice of traditional Unix filesystems (such as
Ext2) turns out to be inappropriate. As we know from Chapter 14, updates to filesys-
tem blocks might be kept in dynamic memory for long period of time before being
flushed to disk. A dramatic event such as a power-down failure or a system crash
might thus leave the filesystem in an inconsistent state. To overcome this problem,
each traditional Unix filesystem is checked before being mounted; if it has not been
properly unmounted, then a specific program executes an exhaustive, time-consum-
ing check and fixes all the filesystem’s data structures on disk.

For instance, the Ext2 filesystem status is stored in the s_mount_state field of the
superblock on disk. The e2fsck utility program is invoked by the boot script to check
the value stored in this field; if it is not equal to EXT2_VALID_FS, the filesystem was not
properly unmounted, and therefore e2fsck starts checking all disk data structures of
the filesystem.

Clearly, the time spent checking the consistency of a filesystem depends mainly on
the number of files and directories to be examined; therefore, it also depends on the
disk size. Nowadays, with filesystems reaching hundreds of gigabytes, a single con-
sistency check may take hours. The involved downtime is unacceptable for every
production environment or high-availability server.

The goal of a journaling filesystem is to avoid running time-consuming consistency
checks on the whole filesystem by looking instead in a special disk area that contains
the most recent disk write operations named journal. Remounting a journaling file-
system after a system failure is a matter of a few seconds.

The Ext3 Journaling Filesystem
The idea behind Ext3 journaling is to perform each high-level change to the filesys-
tem in two steps. First, a copy of the blocks to be written is stored in the journal;
then, when the I/O data transfer to the journal is completed (in short, data is com-
mitted to the journal), the blocks are written in the filesystem. When the I/O data
transfer to the filesystem terminates (data is committed to the filesystem), the copies
of the blocks in the journal are discarded.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

768 | Chapter 18: The Ext2 and Ext3 Filesystems

While recovering after a system failure, the e2fsck program distinguishes the follow-
ing two cases:

The system failure occurred before a commit to the journal. Either the copies of the
blocks relative to the high-level change are missing from the journal or they are
incomplete; in both cases, e2fsck ignores them.

The system failure occurred after a commit to the journal. The copies of the blocks
are valid, and e2fsck writes them into the filesystem.

In the first case, the high-level change to the filesystem is lost, but the filesystem state
is still consistent. In the second case, e2fsck applies the whole high-level change, thus
fixing every inconsistency due to unfinished I/O data transfers into the filesystem.

Don’t expect too much from a journaling filesystem; it ensures consistency only at
the system call level. For instance, a system failure that occurs while you are copying
a large file by issuing several write() system calls will interrupt the copy operation,
thus the duplicated file will be shorter than the original one.

Furthermore, journaling filesystems do not usually copy all blocks into the journal.
In fact, each filesystem consists of two kinds of blocks: those containing the so-called
metadata and those containing regular data. In the case of Ext2 and Ext3, there are
six kinds of metadata: superblocks, group block descriptors, inodes, blocks used for
indirect addressing (indirection blocks), data bitmap blocks, and inode bitmap
blocks. Other filesystems may use different metadata.

Several journaling filesystems, such as SGI’s XFS and IBM’s JFS, limit themselves to
logging the operations affecting metadata. In fact, metadata’s log records are suffi-
cient to restore the consistency of the on-disk filesystem data structures. However,
since operations on blocks of file data are not logged, nothing prevents a system fail-
ure from corrupting the contents of the files.

The Ext3 filesystem, however, can be configured to log the operations affecting both
the filesystem metadata and the data blocks of the files. Because logging every kind
of write operation leads to a significant performance penalty, Ext3 lets the system
administrator decide what has to be logged; in particular, it offers three different
journaling modes:

Journal
All filesystem data and metadata changes are logged into the journal. This mode
minimizes the chance of losing the updates made to each file, but it requires
many additional disk accesses. For example, when a new file is created, all its
data blocks must be duplicated as log records. This is the safest and slowest Ext3
journaling mode.

Ordered
Only changes to filesystem metadata are logged into the journal. However, the
Ext3 filesystem groups metadata and relative data blocks so that data blocks are
written to disk before the metadata. This way, the chance to have data corrup-
tion inside the files is reduced; for instance, each write access that enlarges a file

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Ext3 Filesystem | 769

is guaranteed to be fully protected by the journal. This is the default Ext3 jour-
naling mode.

Writeback
Only changes to filesystem metadata are logged; this is the method found on the
other journaling filesystems and is the fastest mode.

The journaling mode of the Ext3 filesystem is specified by an option of the mount
system command. For instance, to mount an Ext3 filesystem stored in the /dev/sda2
partition on the /jdisk mount point with the “writeback” mode, the system adminis-
trator can type the command:

mount -t ext3 -o data=writeback /dev/sda2 /jdisk

The Journaling Block Device Layer
The Ext3 journal is usually stored in a hidden file named .journal located in the root
directory of the filesystem.

The Ext3 filesystem does not handle the journal on its own; rather, it uses a general
kernel layer named Journaling Block Device, or JBD. Right now, only Ext3 uses the
JBD layer, but other filesystems might use it in the future.

The JBD layer is a rather complex piece of software. The Ext3 filesystem invokes the
JBD routines to ensure that its subsequent operations don’t corrupt the disk data
structures in case of system failure. However, JBD typically uses the same disk to log
the changes performed by the Ext3 filesystem, and it is therefore vulnerable to sys-
tem failures as much as Ext3. In other words, JBD must also protect itself from sys-
tem failures that could corrupt the journal.

Therefore, the interaction between Ext3 and JBD is essentially based on three funda-
mental units:

Log record
Describes a single update of a disk block of the journaling filesystem.

Atomic operation handle
Includes log records relative to a single high-level change of the filesystem; typi-
cally, each system call modifying the filesystem gives rise to a single atomic oper-
ation handle.

Transaction
Includes several atomic operation handles whose log records are marked valid
for e2fsck at the same time.

Log records

A log record is essentially the description of a low-level operation that is going to be
issued by the filesystem. In some journaling filesystems, the log record consists of
exactly the span of bytes modified by the operation, together with the starting position

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

770 | Chapter 18: The Ext2 and Ext3 Filesystems

of the bytes inside the filesystem. The JBD layer, however, uses log records consisting
of the whole buffer modified by the low-level operation. This approach may waste a lot
of journal space (for instance, when the low-level operation just changes the value of a
bit in a bitmap), but it is also much faster because the JBD layer can work directly with
buffers and their buffer heads.

Log records are thus represented inside the journal as normal blocks of data (or
metadata). Each such block, however, is associated with a small tag of type journal_
block_tag_t, which stores the logical block number of the block inside the filesystem
and a few status flags.

Later, whenever a buffer is being considered by the JBD, either because it belongs to
a log record or because it is a data block that should be flushed to disk before the
corresponding metadata block (in the “ordered” journaling mode), the kernel
attaches a journal_head data structure to the buffer head. In this case, the b_private
field of the buffer head stores the address of the journal_head data structure and the
BH_JBD flag is set (see the section “Block Buffers and Buffer Heads” in Chapter 15).

Atomic operation handles

Every system call modifying the filesystem is usually split into a series of low-level
operations that manipulate disk data structures.

For instance, suppose that Ext3 must satisfy a user request to append a block of data
to a regular file. The filesystem layer must determine the last block of the file, locate
a free block in the filesystem, update the data block bitmap inside the proper block
group, store the logical number of the new block either in the file’s inode or in an
indirect addressing block, write the contents of the new block, and finally, update
several fields of the inode. As you see, the append operation translates into many
lower-level operations on the data and metadata blocks of the filesystem.

Now, just imagine what could happen if a system failure occurred in the middle of
an append operation, when some of the lower-level manipulations have already been
executed while others have not. Of course, the scenario could be even worse, with
high-level operations affecting two or more files (for example, moving a file from one
directory to another).

To prevent data corruption, the Ext3 filesystem must ensure that each system call is
handled in an atomic way. An atomic operation handle is a set of low-level opera-
tions on the disk data structures that correspond to a single high-level operation.
When recovering from a system failure, the filesystem ensures that either the whole
high-level operation is applied or none of its low-level operations is.

Each atomic operation handle is represented by a descriptor of type handle_t. To
start an atomic operation, the Ext3 filesystem invokes the journal_start() JBD func-
tion, which allocates, if necessary, a new atomic operation handle and inserts it into
the current transactions (see the next section). Because every low-level operation on
the disk might suspend the process, the address of the active handle is stored in the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Ext3 Filesystem | 771

journal_info field of the process descriptor. To notify that an atomic operation is
completed, the Ext3 filesystem invokes the journal_stop() function.

Transactions

For reasons of efficiency, the JBD layer manages the journal by grouping the log
records that belong to several atomic operation handles into a single transaction. Fur-
thermore, all log records relative to a handle must be included in the same transaction.

All log records of a transaction are stored in consecutive blocks of the journal. The
JBD layer handles each transaction as a whole. For instance, it reclaims the blocks
used by a transaction only after all data included in its log records is committed to
the filesystem.

As soon as it is created, a transaction may accept log records of new handles. The
transaction stops accepting new handles when either of the following occurs:

• A fixed amount of time has elapsed, typically 5 seconds.

• There are no free blocks in the journal left for a new handle.

A transaction is represented by a descriptor of type transaction_t. The most impor-
tant field is t_state, which describes the current status of the transaction.

Essentially, a transaction can be:

Complete
All log records included in the transaction have been physically written onto the
journal. When recovering from a system failure, e2fsck considers every complete
transaction of the journal and writes the corresponding blocks into the filesys-
tem. In this case, the t_state field stores the value T_FINISHED.

Incomplete
At least one log record included in the transaction has not yet been physically
written to the journal, or new log records are still being added to the transac-
tion. In case of system failure, the image of the transaction stored in the journal
is likely not up-to-date. Therefore, when recovering from a system failure, e2fsck
does not trust the incomplete transactions in the journal and skips them. In this
case, the t_state field stores one of the following values:

T_RUNNING
Still accepting new atomic operation handles.

T_LOCKED
Not accepting new atomic operation handles, but some of them are still
unfinished.

T_FLUSH
All atomic operation handles have finished, but some log records are still
being written to the journal.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

772 | Chapter 18: The Ext2 and Ext3 Filesystems

T_COMMIT
All log records of the atomic operation handles have been written to disk,
but the transaction has yet to be marked as completed on the journal.

At any time the journal may include several transactions, but only one of them is in
the T_RUNNING state—it is the active transaction that is accepting the new atomic
operation handle requests issued by the Ext3 filesystem.

Several transactions in the journal might be incomplete, because the buffers contain-
ing the relative log records have not yet been written to the journal.

If a transaction is complete, all its log records have been written to the journal but
some of the corresponding buffers have yet to be written onto the filesystem. A com-
plete transaction is deleted from the journal when the JBD layer verifies that all buff-
ers described by the log records have been successfully written onto the Ext3
filesystem.

How Journaling Works
Let’s try to explain how journaling works with an example: the Ext3 filesystem layer
receives a request to write some data blocks of a regular file.

As you might easily guess, we are not going to describe in detail every single opera-
tion of the Ext3 filesystem layer and of the JBD layer. There would be far too many
issues to be covered! However, we describe the essential actions:

1. The service routine of the write() system call triggers the write method of the
file object associated with the Ext3 regular file. For Ext3, this method is imple-
mented by the generic_file_write() function, already described in the section
“Writing to a File” in Chapter 16.

2. The generic_file_write() function invokes the prepare_write method of the
address_space object several times, once for every page of data involved by the
write operation. For Ext3, this method is implemented by the ext3_prepare_
write() function.

3. The ext3_prepare_write() function starts a new atomic operation by invoking
the journal_start() JBD function. The handle is added to the active transac-
tion. Actually, the atomic operation handle is created only when executing the
first invocation of the journal_start() function. Following invocations verify
that the journal_info field of the process descriptor is already set and use the ref-
erenced handle.

4. The ext3_prepare_write() function invokes the block_prepare_write() function
already described in Chapter 16, passing to it the address of the ext3_get_block()
function. Remember that block_prepare_write() takes care of preparing the buff-
ers and the buffer heads of the file’s page.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Ext3 Filesystem | 773

5. When the kernel must determine the logical number of a block of the Ext3 file-
system, it executes the ext3_get_block() function. This function is actually simi-
lar to ext2_get_block(), which is described in the earlier section “Allocating a
Data Block.” A crucial difference, however, is that the Ext3 filesystem invokes
functions of the JBD layer to ensure that the low-level operations are logged:

• Before issuing a low-level write operation on a metadata block of the filesys-
tem, the function invokes journal_get_write_access(). Basically, this latter
function adds the metadata buffer to a list of the active transaction. How-
ever, it must also check whether the metadata is included in an older incom-
plete transaction of the journal; in this case, it duplicates the buffer to make
sure that the older transactions are committed with the old content.

• After updating the buffer containing the metadata block, the Ext3 filesystem
invokes journal_dirty_metadata() to move the metadata buffer to the
proper dirty list of the active transaction and to log the operation in the
journal.

Notice that metadata buffers handled by the JBD layer are not usually included
in the dirty lists of buffers of the inode, so they are not written to disk by the
normal disk cache flushing mechanisms described in Chapter 15.

6. If the Ext3 filesystem has been mounted in “journal” mode, the ext3_prepare_
write() function also invokes journal_get_write_access() on every buffer
touched by the write operation.

7. Control returns to the generic_file_write() function, which updates the page
with the data stored in the User Mode address space and then invokes the
commit_write method of the address_space object. For Ext3, the function that
implements this method depends on how the Ext3 filesystem has been mounted:

• If the Ext3 filesystem has been mounted in “journal” mode, the commit_
write method is implemented by the ext3_journalled_commit_write() func-
tion, which invokes journal_dirty_metadata() on every buffer of data (not
metadata) in the page. This way, the buffer is included in the proper dirty
list of the active transaction and not in the dirty list of the owner inode;
moreover, the corresponding log records are written to the journal. Finally,
ext3_journalled_commit_write() invokes journal_stop() to notify the JBD
layer that the atomic operation handle is closed.

• If the Ext3 filesystem has been mounted in “ordered” mode, the commit_
write method is implemented by the ext3_ordered_commit_write() func-
tion, which invokes the journal_dirty_data() function on every buffer of
data in the page to insert the buffer in a proper list of the active transac-
tions. The JBD layer ensures that all buffers in this list are written to disk
before the metadata buffers of the transaction. No log record is written onto
the journal. Next, ext3_ordered_commit_write() executes the normal
generic_commit_write() function described in Chapter 15, which inserts the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

774 | Chapter 18: The Ext2 and Ext3 Filesystems

data buffers in the list of the dirty buffers of the owner inode. Finally, ext3_
ordered_commit_write() invokes journal_stop() to notify the JBD layer that
the atomic operation handle is closed.

• If the Ext3 filesystem has been mounted in “writeback” mode, the commit_
write method is implemented by the ext3_writeback_commit_write() func-
tion, which executes the normal generic_commit_write() function described
in Chapter 15, which inserts the data buffers in the list of the dirty buffers of
the owner inode. Then, ext3_writeback_commit_write() invokes journal_
stop() to notify the JBD layer that the atomic operation handle is closed.

8. The service routine of the write() system call terminates here. However, the JBD
layer has not finished its work. Eventually, our transaction becomes complete
when all its log records have been physically written to the journal. Then
journal_commit_transaction() is executed.

9. If the Ext3 filesystem has been mounted in “ordered” mode, the journal_commit_
transaction() function activates the I/O data transfers for all data buffers
included in the list of the transaction and waits until all data transfers terminate.

10. The journal_commit_transaction() function activates the I/O data transfers for
all metadata buffers included in the transaction (and also for all data buffers, if
Ext3 was mounted in “journal” mode).

11. Periodically, the kernel activates a checkpoint activity for every complete transac-
tion in the journal. The checkpoint basically involves verifying whether the I/O
data transfers triggered by journal_commit_transaction() have successfully termi-
nated. If so, the transaction can be deleted from the journal.

Of course, the log records in the journal never play an active role until a system fail-
ure occurs. Only during system reboot does the e2fsck utility program scan the jour-
nal stored in the filesystem and reschedule all write operations described by the log
records of the complete transactions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

775

Chapter 19 CHAPTER 19

Process Communication

This chapter explains how User Mode processes can synchronize their actions and
exchange data. We already covered several synchronization topics in Chapter 5, but
the actors there were kernel control paths, not User Mode programs. We are now
ready, after having discussed I/O management and filesystems at length, to extend
the discussion to User Mode processes. These processes must rely on the kernel to
facilitate interprocess synchronization and communication.

As we saw in the section “Linux File Locking” in Chapter 12, a form of synchroniza-
tion among User Mode processes can be achieved by creating a (possibly empty) file
and using suitable VFS system calls to lock and unlock it. While processes can simi-
larly share data via temporary files protected by locks, this approach is costly because
it requires accesses to the filesystem on disk. For this reason, all Unix kernels include
a set of system calls that supports process communication without interacting with
the filesystem; furthermore, several wrapper functions were developed and inserted
in suitable libraries to expedite how processes issue their synchronization requests to
the kernel.

As usual, application programmers have a variety of needs that call for different com-
munication mechanisms. Here are the basic mechanisms that Unix systems offer to
allow interprocess communication:

Pipes and FIFOs (named pipes)
Best suited to implement producer/consumer interactions among processes.
Some processes fill the pipe with data, while others extract data from the pipe.
They are covered in the sections “Pipes” and “FIFOs.”

Semaphores
Represent, as the name implies, the User Mode version of the kernel sema-
phores discussed in the section “Semaphores” in Chapter 5. They are described
in the section “System V IPC.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

776 | Chapter 19: Process Communication

Messages
Allow processes to exchange messages (short blocks of data) by reading and
writing them in predefined message queues. The Linux kernel offers two differ-
ent versions of messages: System V IPC messages (covered in the section “Sys-
tem V IPC”) and POSIX messages (described in the section “POSIX Message
Queues”).

Shared memory regions
Allow processes to exchange information via a shared block of memory. In appli-
cations that must share large amounts of data, this can be the most efficient form
of process communication. They are described in the section “System V IPC.”

Sockets
Allow processes on different computers to exchange data through a network.
Sockets can also be used as a communication tool for processes located on the
same host computer; the X Window System graphic interface, for instance, uses
a socket to allow client programs to exchange data with the X server.

Pipes
Pipes are an interprocess communication mechanism that is provided in all flavors of
Unix. A pipe is a one-way flow of data between processes: all data written by a pro-
cess to the pipe is routed by the kernel to another process, which can thus read it.

In Unix command shells, pipes can be created by means of the | operator. For
instance, the following statement instructs the shell to create two processes con-
nected by a pipe:

$ ls | more

The standard output of the first process, which executes the ls program, is redirected
to the pipe; the second process, which executes the more program, reads its input
from the pipe.

Note that the same results can also be obtained by issuing two commands such as
the following:

$ ls > temp
$ more < temp

The first command redirects the output of ls into a regular file; then the second com-
mand forces more to read its input from the same file. Of course, using pipes instead
of temporary files is usually more convenient due to the following reasons:

• The shell statement is much shorter and simpler.

• There is no need to create temporary regular files, which must be deleted later.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pipes | 777

Using a Pipe
Pipes may be considered open files that have no corresponding image in the
mounted filesystems. A process creates a new pipe by means of the pipe() system
call, which returns a pair of file descriptors; the process may then pass these descrip-
tors to its descendants through fork(), thus sharing the pipe with them. The pro-
cesses can read from the pipe by using the read() system call with the first file
descriptor; likewise, they can write into the pipe by using the write() system call
with the second file descriptor.

POSIX defines only half-duplex pipes, so even though the pipe() system call returns
two file descriptors, each process must close one before using the other. If a two-way
flow of data is required, the processes must use two different pipes by invoking pipe()
twice.

Several Unix systems, such as System V Release 4, implement full-duplex pipes. In a
full-duplex pipe, both descriptors can be written into and read from, thus there are
two bidirectional channels of information. Linux adopts yet another approach: each
pipe’s file descriptors are still one-way, but it is not necessary to close one of them
before using the other.

Let’s resume the previous example. When the command shell interprets the ls|more
statement, it essentially performs the following actions:

1. Invokes the pipe() system call; let’s assume that pipe() returns the file descrip-
tors 3 (the pipe’s read channel) and 4 (the write channel).

2. Invokes the fork() system call twice.

3. Invokes the close() system call twice to release file descriptors 3 and 4.

The first child process, which must execute the ls program, performs the following
operations:

1. Invokes dup2(4,1) to copy file descriptor 4 to file descriptor 1. From now on, file
descriptor 1 refers to the pipe’s write channel.

2. Invokes the close() system call twice to release file descriptors 3 and 4.

3. Invokes the execve() system call to execute the ls program (see the section “The
exec Functions” in Chapter 20). The program writes its output to the file that
has file descriptor 1 (the standard output); i.e., it writes into the pipe.

The second child process must execute the more program; therefore, it performs the
following operations:

1. Invokes dup2(3,0) to copy file descriptor 3 to file descriptor 0. From now on, file
descriptor 0 refers to the pipe’s read channel.

2. Invokes the close() system call twice to release file descriptors 3 and 4.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

778 | Chapter 19: Process Communication

3. Invokes the execve() system call to execute more. By default, that program reads
its input from the file that has file descriptor 0 (the standard input); i.e., it reads
from the pipe.

In this simple example, the pipe is used by exactly two processes. Because of its
implementation, though, a pipe can be used by an arbitrary number of processes.*

Clearly, if two or more processes read or write the same pipe, they must explicitly
synchronize their accesses by using file locking (see the section “Linux File Locking”
in Chapter 12) or IPC semaphores (see the section “IPC Semaphores” later in this
chapter).

Many Unix systems provide, besides the pipe() system call, two wrapper functions
named popen() and pclose() that handle all the dirty work usually done when using
pipes. Once a pipe has been created by means of the popen() function, it can be used
with the high-level I/O functions included in the C library (fprintf(), fscanf(), and
so on.

In Linux, popen() and pclose() are included in the C library. The popen() function
receives two parameters: the filename pathname of an executable file and a type
string specifying the direction of the data transfer. It returns the pointer to a FILE
data structure. The popen() function essentially performs the following operations:

1. Creates a new pipe by using the pipe() system call.

2. Forks a new process, which in turn executes the following operations:

a. If type is r, it duplicates the file descriptor associated with the pipe’s write
channel as file descriptor 1 (standard output); otherwise, if type is w, it
duplicates the file descriptor associated with the pipe’s read channel as file
descriptor 0 (standard input).

b. Closes the file descriptors returned by pipe().

c. Invokes the execve() system call to execute the program specified by
filename.

3. If type is r, it closes the file descriptor associated with the pipe’s write channel;
otherwise, if type is w, it closes the file descriptor associated with the pipe’s read
channel.

4. Returns the address of the FILE file pointer that refers to whichever file descrip-
tor for the pipe is still open.

After the popen() invocation, parent and child can exchange information through the
pipe: the parent can read (if type is r) or write (if type is w) data by using the FILE
pointer returned by the function. The data is written to the standard output or read
from the standard input, respectively, by the program executed by the child process.

* Because most shells offer pipes that connect only two processes, applications requiring pipes used by more
than two processes must be coded in a programming language such as C.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pipes | 779

The pclose() function (which receives the file pointer returned by popen() as its
parameter) simply invokes the wait4() system call and waits for the termination of
the process created by popen().

Pipe Data Structures
We now have to start thinking again at the system call level. Once a pipe is created, a
process uses the read() and write() VFS system calls to access it. Therefore, for
each pipe, the kernel creates an inode object plus two file objects—one for reading
and the other for writing. When a process wants to read from or write to the pipe, it
must use the proper file descriptor.

When the inode object refers to a pipe, its i_pipe field points to a pipe_inode_info
structure shown in Table 19-1.

Besides one inode and two file objects, each pipe has its own set of pipe buffers.
Essentially, a pipe buffer is a page frame that contains data written into the pipe and
yet to be read. Up to Linux 2.6.10, each pipe had just one pipe buffer. In the 2.6.11
kernel, however, data buffering for pipes (and FIFOs) has been heavily revised, and
now each pipe makes use of 16 pipe buffers. This change greatly enhances the perfor-
mance of User Mode applications that write large chunks of data in a pipe.

Table 19-1. The pipe_inode_info structure

Type Field Description

struct wait_queue * wait Pipe/FIFO wait queue

unsigned int nrbufs Number of buffers containing data to be read

unsigned int curbuf Index of first buffer containing data to be read

struct pipe_buffer [16] bufs Array of pipe’s buffer descriptors

struct page * tmp_page Pointer to a cached page frame

unsigned int start Read position in current pipe buffer

unsigned int readers Flag for (or number of) reading processes

unsigned int writers Flag for (or number of) writing processes

unsigned int waiting_writers Number of writing processes sleeping in the wait
queue

unsigned int r_counter Like readers, but used when waiting for a pro-
cess that reads from the FIFO

unsigned int w_counter Like writers, but used when waiting for a pro-
cess that writes into the FIFO

struct
fasync_struct *

fasync_readers Used for asynchronous I/O notification via signals

struct
fasync_struct *

fasync_writers Used for asynchronous I/O notification via signals

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

780 | Chapter 19: Process Communication

The bufs field of the pipe_inode_info data structure stores an array of 16 pipe_buffer
objects, each of which describes a pipe buffer. The fields of this object are shown in
Table 19-2.

The ops field points to the anon_pipe_buf_ops table of the pipe buffer’s methods,
which is a data structure of type pipe_buf_operations. Essentially, the table includes
three methods:

map
Invoked before accessing data in the pipe buffer. It simply invokes kmap() on the
pipe buffer’s page frame, just in case the pipe buffer is stored in high memory
(see the section “Kernel Mappings of High-Memory Page Frames” in Chapter 8).

unmap
Invoked when no longer accessing data in the pipe buffer. It invokes kunmap() on
the pipe buffer’s page frame.

release
Invoked when a pipe buffer is being released. The method implements a one-
page memory cache: the page frame released is not the one storing the buffer,
but a cached page frame pointed to by the tmp_page field of the pipe_inode_info
data structure (if not NULL). The page frame that stored the buffer becomes the
new cached page frame.

The 16 pipe buffers can be seen as a global, circular buffer: writing processes keep
adding data to this large buffer, while reading process keep removing them. The
number of bytes currently written in all pipe buffers and yet to be read is the so-
called pipe size. For reasons of efficiency, the data yet to be read can be spread
among several partially filled pipe buffers: in fact, each write operation may copy the
data in a fresh, empty pipe buffer if the previous pipe buffer has not enough free
space to store the new data. Hence, the kernel must keep track of:

• The pipe buffer that includes the next byte to be read, and the corresponding
offset inside the page frame. The index of this pipe buffer is stored in the curbuf
field of the pipe_inode_info data structure, while the offset is stored in the
offset field of the corresponding pipe_buffer object.

• The first empty pipe buffer. Its index can be computed by adding (modulo 16)
the index of the current pipe buffer, which is stored in the curbuf field of the

Table 19-2. The fields of the pipe_buffer object

Type Field Description

struct page * page Address of the descriptor of the page frame for the pipe buffer

unsigned int offset Current position of the significant data inside the page frame

unsigned int len Length of the significant data in the pipe buffer

struct
pipe_buf_operations *

ops Address of a table of methods relative to the pipe buffer (NULL if the
pipe buffer is empty)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pipes | 781

pipe_inode_info data structure, and the number of pipe buffers with significant
data, which is stored in the nrbufs field.

To avoid race conditions on the pipe’s data structures, the kernel makes use of the i_
sem semaphore included in the inode object.

The pipefs special filesystem

A pipe is implemented as a set of VFS objects, which have no corresponding disk
images. In Linux 2.6, these VFS objects are organized into the pipefs special filesys-
tem to expedite their handling (see the section “Special Filesystems” in Chapter 12).
Because this filesystem has no mount point in the system directory tree, users never
see it. However, thanks to pipefs, the pipes are fully integrated in the VFS layer, and
the kernel can handle them in the same way as named pipes or FIFOs, which truly
exist as files recognizable to end users (see the later section “FIFOs”).

The init_pipe_fs() function, typically executed during kernel initialization, regis-
ters the pipefs filesystem and mounts it (refer to the discussion in the section
“Mounting a Generic Filesystem” in Chapter 12):

struct file_system_type pipe_fs_type;
pipe_fs_type.name = "pipefs";
pipe_fs_type.get_sb = pipefs_get_sb;
pipe_fs.kill_sb = kill_anon_super;
register_filesystem(&pipe_fs_type);
pipe_mnt = do_kern_mount("pipefs", 0, "pipefs", NULL);

The mounted filesystem object that represents the root directory of pipefs is stored in
the pipe_mnt variable.

Creating and Destroying a Pipe
The pipe() system call is serviced by the sys_pipe() function, which in turn invokes
the do_pipe() function. To create a new pipe, do_pipe() performs the following
operations:

1. Invokes the get_pipe_inode() function, which allocates and initializes an inode
object for the pipe in the pipefs filesystem. In particular, this function executes
the following actions:

a. Allocates a new inode in the pipefs filesystem.

b. Allocates a pipe_inode_info data structure and stores its address in the i_
pipe field of the inode.

c. Sets the curbuf and nrbufs fields of the pipe_inode_info structure to 0; also,
fills with zeros all fields of the pipe buffer objects in the bufs array.

d. Initializes the r_counter and w_counter fields of the pipe_inode_info struc-
ture to 1.

e. Sets the readers and writers fields of the pipe_inode_info structure to 1.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

782 | Chapter 19: Process Communication

2. Allocates a file object and a file descriptor for the read channel of the pipe, sets
the f_flag field of the file object to O_RDONLY, and initializes the f_op field with
the address of the read_pipe_fops table.

3. Allocates a file object and a file descriptor for the write channel of the pipe, sets
the flag field of the file object to O_WRONLY, and initializes the f_op field with the
address of the write_pipe_fops table.

4. Allocates a dentry object and uses it to link the two file objects and the inode
object (see the section “The Common File Model” in Chapter 12); then inserts
the new inode in the pipefs special filesystem.

5. Returns the two file descriptors to the User Mode process.

The process that issues a pipe() system call is initially the only process that can
access the new pipe, both for reading and writing. To represent that the pipe has
both a reader and a writer, the readers and writers fields of the pipe_inode_info data
structure are initialized to 1. In general, each of these two fields is set to 1 only if the
corresponding pipe’s file object is still opened by a process; the field is set to 0 if the
corresponding file object has been released, because it is no longer accessed by any
process.

Forking a new process does not increase the value of the readers and writers fields,
so they never rise above 1;* however, it does increase the value of the usage counters
of all file objects still used by the parent process (see the section “The clone(), fork(),
and vfork() System Calls” in Chapter 3). Thus, the objects are not released even
when the parent dies, and the pipe stays open for use by the children.

Whenever a process invokes the close() system call on a file descriptor associated
with a pipe, the kernel executes the fput() function on the corresponding file object,
which decreases the usage counter. If the counter becomes 0, the function invokes
the release method of the file operations (see the sections “The close() System Call”
and “Files Associated with a Process” in Chapter 12).

Depending on whether the file is associated with the read or write channel, the
release method is implemented by either pipe_read_release() or pipe_write_
release(); both functions invoke pipe_release(), which sets either the readers field
or the writers field of the pipe_inode_info structure to 0. The function checks
whether both the readers and writers fields are equal to 0; in this case, it invokes the
pipe buffer’s release method of all pipe buffers, thus releasing to the buddy system
all pipe’s page frames; moreover, the function releases the cached page frame pointed

* As we’ll see, the readers and writers fields act as counters instead of flags when associated with FIFOs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pipes | 783

to by the tmp_page field. Otherwise, if either the readers field or the writers field is
not zero, the function wakes up the processes sleeping in the pipe’s wait queue so
they can recognize the change in the pipe state.

Reading from a Pipe
A process wishing to get data from a pipe issues a read() system call, specifying the
file descriptor associated with the pipe’s reading end. As described in the section
“The read() and write() System Calls” in Chapter 12, the kernel ends up invoking
the read method found in the file operation table associated with the proper file
object. In the case of a pipe, the entry for the read method in the read_pipe_fops
table points to the pipe_read() function.

The pipe_read() function is quite involved, because the POSIX standard specifies
several requirements for the pipe’s read operations. Table 19-3 summarizes the
expected behavior of a read() system call that requests n bytes from a pipe that has a
pipe size (number of bytes in the pipe buffers yet to be read) equal to p.

The system call might block the current process in two cases:

• The pipe buffer is empty when the system call starts.

• The pipe buffer does not include all requested bytes, and a writing process was
previously put to sleep while waiting for space in the buffer.

Notice that the read operation can be nonblocking: in this case, it completes as soon
as all available bytes (even none) are copied into the user address space.*

Notice also that the value 0 is returned by the read() system call only if the pipe is
empty and no process is currently using the file object associated with the pipe’s
write channel.

* Nonblocking operations are usually requested by specifying the O_NONBLOCK flag in the open() system call.
This method does not work for pipes, because they cannot be opened. A process can, however, require a
nonblocking operation on a pipe by issuing a fcntl() system call on the corresponding file descriptor.

Table 19-3. Reading n bytes from a pipe

Pipe Size p

At least one writing process No writing process

Blocking read Nonblocking read

Sleeping writer No sleeping writer

p = 0 Copy n bytes and return n,
waiting for data when the
pipe buffer is empty.

Wait for some data, copy it,
and return its size.

Return
-EAGAIN.

Return 0.

0 < p < n Copy p bytes and return p: 0 bytes are left in the pipe buffer.

p ≥ n Copy n bytes and return n: p–n bytes are left in the pipe buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

784 | Chapter 19: Process Communication

The function performs the following operations:

1. Acquires the i_sem semaphore of the inode.

2. Determines whether the pipe size is 0 by reading the nrbufs field of the pipe_
inode_info structure; if the field is equal to zero, all pipe buffers are empty. In
this case, it determines whether the function must return or whether the process
must be blocked while waiting until another process writes some data in the pipe
(see Table 19-3). The type of I/O operation (blocking or nonblocking) is speci-
fied by the O_NONBLOCK flag in the f_flags field of the file object. If the current
process must be blocked, the function performs the following actions:

a. Invokes prepare_to_wait() to add current to the wait queue of the pipe (the
wait field of the pipe_inode_info structure).

b. Releases the inode semaphore.

c. Invokes schedule().

d. Once awake, invokes finish_wait() to remove current from the wait queue,
acquires again the i_sem inode semaphore, and then jumps back to step 2.

3. Gets the index of the current pipe buffer from the curbuf field of the pipe_inode_
info data structure.

4. Executes the map method of the pipe buffer.

5. Copies the requested number of bytes—or the number of available bytes in the
pipe buffer, if it is smaller—from the pipe’s buffer to the user address space.

6. Executes the unmap method of the pipe buffer.

7. Updates the offset and len fields of the corresponding pipe_buffer object.

8. If the pipe buffer has been emptied (len fields of the pipe_buffer object now
equal to zero), it invokes the pipe buffer’s release method to free the corre-
sponding page frame, sets the ops field in the pipe_buffer object to NULL,
advances the index of the current pipe buffer stored in the curbuf field of the
pipe_inode_info data structure, and decreases the counter of nonempty pipe
buffers in the nrbufs field.

9. If all requested bytes have been copied, it jumps to step 12.

10. Here not all requested bytes have been copied to the User Mode address space. If
the pipe size is greater than zero (nrbufs field of the pipe_inode_info data struc-
ture not null), it goes back to step 3.

11. There are no more bytes left in the pipe buffers. If there is at least one writing
process currently sleeping (that is, the waiting_writers field of the pipe_inode_
info data structure is greater than 0), and the read operation is blocking, it
invokes wake_up_interruptible_sync() to wake up all processes sleeping on the
pipe’s wait queue, and jumps back to step 2.

12. Releases the i_sem semaphore of the inode.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Pipes | 785

13. Invokes wake_up_interruptible_sync() to wake up all writer processes sleeping
on the pipe’s wait queue.

14. Returns the number of bytes copied into the user address space.

Writing into a Pipe
A process wishing to put data into a pipe issues a write() system call, specifying the
file descriptor for the writing end of the pipe. The kernel satisfies this request by
invoking the write method of the proper file object; the corresponding entry in the
write_pipe_fops table points to the pipe_write() function.

Table 19-4 summarizes the behavior, specified by the POSIX standard, of a write()
system call that requested to write n bytes into a pipe having u unused bytes in its
buffer. In particular, the standard requires that write operations involving a small
number of bytes must be atomically executed. More precisely, if two or more pro-
cesses are concurrently writing into a pipe, each write operation involving fewer than
4,096 bytes (the pipe buffer size) must finish without being interleaved with write
operations of other processes to the same pipe. However, write operations involving
more than 4,096 bytes may be nonatomic and may also force the calling process to
sleep.

Moreover, each write operation to a pipe must fail if the pipe does not have a read-
ing process (that is, if the readers field of the pipe’s inode object has the value 0). In
this case, the kernel sends a SIGPIPE signal to the writing process and terminates the
write() system call with the -EPIPE error code, which usually leads to the familiar
“Broken pipe” message.

The pipe_write() function performs the following operations:

1. Acquires the i_sem semaphore of the inode.

2. Checks whether the pipe has at least one reading process. If not, it sends a
SIGPIPE signal to the current process, releases the inode semaphore, and returns
an -EPIPE value.

Table 19-4. Writing n bytes to a pipe

Available buffer space u

At least one reading process

Blocking write Nonblocking write No reading process

u<n≤ 4,096 Wait until n–u bytes are
freed, copy n bytes, and
return n.

Return -EAGAIN. Send SIGPIPE signal
and return -EPIPE.

n>4,096 Copy n bytes (waiting when
necessary) and return n.

If u>0, copy u bytes and return
u; return -EAGAIN.

u≥ n Copy n bytes and return n.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

786 | Chapter 19: Process Communication

3. Determines the index of the last written pipe buffers by adding the curbuf and
nrbufs fields of the pipe_inode_info data structure and subtracting 1. If this pipe
buffer has enough free space to store all the bytes to be written, then it copies the
data into it:

a. Executes the map method of the pipe buffer.

b. Copies all the bytes in the pipe buffer.

c. Executes the unmap method of the pipe buffer.

d. Updates the len field of the corresponding pipe_buffer object.

e. Jumps to step 11.

4. If the nrbufs field of the pipe_inode_info data structure is equal to 16, there is no
empty pipe buffer to store the bytes (yet) to be written. In this case:

a. If the write operation is nonblocking, it jumps to step 11 to terminate by
returning the -EAGAIN error code.

b. If the write operation is blocking, it adds 1 to the waiting_writers field of
the pipe_inode_info structure, invokes prepare_to_wait() to add current to
the wait queue of the pipe (the wait field of the pipe_inode_info structure),
releases the inode semaphore, and invokes schedule(). Once awake, it
invokes finish_wait() to remove current from the wait queue, again
acquires the inode semaphore, decreases the waiting_writers field, and then
jumps back to step 4.

5. Now there is at least one empty pipe buffer. Determines the index of the first
empty pipe buffer by adding the curbuf and nrbufs fields of the pipe_inode_info
data structure.

6. Allocates a new page frame from the buddy system, unless the tmp_page field of
the pipe_inode_info data structure is not NULL.

7. Copies up to 4,096 bytes from the User Mode address space into the page frame
(temporarily mapping it in the Kernel Mode linear address space, if necessary).

8. Updates the fields of the pipe_buffer object associated with the pipe buffer by
setting the page field to the address of the page frame descriptor, the ops field to
the address of the anon_pipe_buf_ops table, the offset field to 0, and the len field
to the number of written bytes.

9. Increases the counter of nonempty pipe buffers stored in the nrbufs field of the
pipe_inode_info data structure.

10. If not all requested bytes were written, it jumps back to step 4.

11. Releases the inode semaphore.

12. Wakes up all reader processes sleeping on the pipe’s wait queue.

13. Returns the number of bytes written into the pipe’s buffer (or an error code if
writing was not possible).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

FIFOs | 787

FIFOs
Although pipes are a simple, flexible, and efficient communication mechanism, they
have one main drawback—namely, that there is no way to open an already existing
pipe. This makes it impossible for two arbitrary processes to share the same pipe,
unless the pipe was created by a common ancestor process.

This drawback is substantial for many application programs. Consider, for instance,
a database engine server, which continuously polls client processes wishing to issue
some queries and which sends the results of the database lookups back to them.
Each interaction between the server and a given client might be handled by a pipe.
However, client processes are usually created on demand by a command shell when
a user explicitly queries the database; server and client processes thus cannot easily
share a pipe.

To address such limitations, Unix systems introduce a special file type called a
named pipe or FIFO (which stands for “first in, first out;” the first byte written into
the special file is also the first byte that is read). Each FIFO is much like a pipe:
rather than owning disk blocks in the filesystems, an opened FIFO is associated with
a kernel buffer that temporarily stores the data exchanged by two or more processes.

Thanks to the disk inode, however, a FIFO can be accessed by every process,
because the FIFO filename is included in the system’s directory tree. Thus, in our
example, the communication between server and clients may be easily established
by using FIFOs instead of pipes. The server creates, at startup, a FIFO used by cli-
ent programs to make their requests. Each client program creates, before establish-
ing the connection, another FIFO to which the server program can write the
answer to the query and includes the FIFO’s name in the initial request to the
server.

In Linux 2.6, FIFOs and pipes are almost identical and use the same pipe_inode_info
structures. As a matter of fact, the read and write file operation methods of a FIFO
are implemented by the same pipe_read() and pipe_write() functions described in
the earlier sections “Reading from a Pipe” and “Writing into a Pipe.” Actually, there
are only two significant differences:

• FIFO inodes appear on the system directory tree rather than on the pipefs spe-
cial filesystem.

• FIFOs are a bidirectional communication channel; that is, it is possible to open a
FIFO in read/write mode.

To complete our description, therefore, we just have to explain how FIFOs are cre-
ated and opened.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

788 | Chapter 19: Process Communication

Creating and Opening a FIFO
A process creates a FIFO by issuing a mknod()* system call (see the section “Device
Files” in Chapter 13), passing to it as parameters the pathname of the new FIFO and
the value S_IFIFO (0x10000) logically ORed with the permission bit mask of the new
file. POSIX introduces a function named mkfifo() specifically to create a FIFO. This
call is implemented in Linux, as in System V Release 4, as a C library function that
invokes mknod().

Once created, a FIFO can be accessed through the usual open(), read(), write(),
and close() system calls, but the VFS handles it in a special way, because the FIFO
inode and file operations are customized and do not depend on the filesystems in
which the FIFO is stored.

The POSIX standard specifies the behavior of the open() system call on FIFOs; the
behavior depends essentially on the requested access type, the kind of I/O operation
(blocking or nonblocking), and the presence of other processes accessing the FIFO.

A process may open a FIFO for reading, for writing, or for reading and writing. The
file operations associated with the corresponding file object are set to special meth-
ods for these three cases.

When a process opens a FIFO, the VFS performs the same operations as it does for
device files (see the section “VFS Handling of Device Files” in Chapter 13). The
inode object associated with the opened FIFO is initialized by a filesystem-depen-
dent read_inode superblock method; this method always checks whether the inode
on disk represents a special file, and invokes, if necessary, the init_special_inode()
function. In turn, this function sets the i_fop field of the inode object to the address
of the def_fifo_fops table. Later, the kernel sets the file operation table of the file
object to def_fifo_fops, and executes its open method, which is implemented by
fifo_open().

The fifo_open() function initializes the data structures specific to the FIFO; in par-
ticular, it performs the following operations:

1. Acquires the i_sem inode semaphore.

2. Checks the i_pipe field of the inode object; if it is NULL, it allocates and it initial-
izes a new pipe_inode_info structure, as in steps 1b–1e in the earlier section
“Creating and Destroying a Pipe.”

3. Depending on the access mode specified as the parameter of the open() system
call, it initializes the f_op field of the file object with the address of the proper file
operation table (see Table 19-5).

* In fact, mknod() can be used to create nearly every kind of file, such as block and character device files, FIFOs,
and even regular files (it cannot create directories or sockets, though).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V IPC | 789

4. If the access mode is either read-only or read/write, it adds one to the readers
and r_counter fields of the pipe_inode_info structure. Moreover, if the access
mode is read-only and there is no other reading process, it wakes up any writing
process sleeping in the wait queue.

5. If the access mode is either write-only or read/write, it adds one to the writers
and w_counter fields of the pipe_inode_info structure. Moreover, if the access
mode is write-only and there is no other writing process, it wakes up any read-
ing process sleeping in the wait queue.

6. If there are no readers or no writers, it decides whether the function should
block or terminate returning an error code (see Table 19-6).

7. Releases the inode semaphore, and terminates, returning 0 (success).

The FIFO’s three specialized file operation tables differ mainly in the implementation
of the read and write methods. If the access type allows read operations, the read
method is implemented by the pipe_read() function. Otherwise, it is implemented by
bad_pipe_r(), which only returns an error code. Similarly, if the access type allows
write operations, the write method is implemented by the pipe_write() function;
otherwise, it is implemented by bad_pipe_w(), which also returns an error code.

System V IPC
IPC is an abbreviation for Interprocess Communication and commonly refers to a set
of mechanisms that allow a User Mode process to do the following:

• Synchronize itself with other processes by means of semaphores

• Send messages to other processes or receive messages from them

• Share a memory area with other processes

Table 19-5. FIFO’s file operations

Access type File operations Read method Write method

Read-only read_fifo_fops pipe_read() bad_pipe_w()

Write-only write_fifo_fops bad_pipe_r() pipe_write()

Read/write rdwr_fifo_fops pipe_read() pipe_write()

Table 19-6. Behavior of the fifo_open() function

Access type Blocking Nonblocking

Read-only, with writers Successfully return Successfully return

Read-only, no writer Wait for a writer Successfully return

Write-only, with readers Successfully return Successfully return

Write-only, no reader Wait for a reader Return -ENXIO

Read/write Successfully return Successfully return

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

790 | Chapter 19: Process Communication

System V IPC first appeared in a development Unix variant called “Columbus Unix”
and later was adopted by AT&T’s System III. It is now found in most Unix systems,
including Linux.

IPC data structures are created dynamically when a process requests an IPC resource
(a semaphore, a message queue, or a shared memory region). An IPC resource is per-
sistent: unless explicitly removed by a process, it is kept in memory and remains
available until the system is shut down. An IPC resource may be used by every pro-
cess, including those that do not share the ancestor that created the resource.

Because a process may require several IPC resources of the same type, each new
resource is identified by a 32-bit IPC key, which is similar to the file pathname in the
system’s directory tree. Each IPC resource also has a 32-bit IPC identifier, which is
somewhat similar to the file descriptor associated with an open file. IPC identifiers
are assigned to IPC resources by the kernel and are unique within the system, while
IPC keys can be freely chosen by programmers.

When two or more processes wish to communicate through an IPC resource, they all
refer to the IPC identifier of the resource.

Using an IPC Resource
IPC resources are created by invoking the semget(), msgget(), or shmget() func-
tions, depending on whether the new resource is a semaphore, a message queue, or a
shared memory region.

The main objective of each of these three functions is to derive from the IPC key
(passed as the first parameter) the corresponding IPC identifier, which is then used
by the process for accessing the resource. If there is no IPC resource already associ-
ated with the IPC key, a new resource is created. If everything goes right, the func-
tion returns a positive IPC identifier; otherwise, it returns one of the error codes
listed in Table 19-7.

Assume that two independent processes want to share a common IPC resource. This
can be achieved in two possible ways:

Table 19-7. Error codes returned while requesting an IPC identifier

Error code Description

EACCESS Process does not have proper access rights

EEXIST Process tried to create an IPC resource with the same key as one that already exists

EINVAL Invalid argument in a parameter of semget(), msgget(), or shmget()

ENOENT No IPC resource with the requested key exists and the process did not ask to create it

ENOMEM No more storage is left for an additional IPC resource

ENOSPC Maximum limit on the number of IPC resources has been exceeded

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V IPC | 791

• The processes agree on some fixed, predefined IPC key. This is the simplest case,
and it works quite well for every complex application implemented by many
processes. However, there’s a chance that the same IPC key is chosen by another
unrelated program. In this case, the IPC functions might be successfully invoked
and still return the IPC identifier of the wrong resource.*

• One process issues a semget(), msgget(), or shmget() function by specifying
IPC_PRIVATE as its IPC key. A new IPC resource is thus allocated, and the pro-
cess can either communicate its IPC identifier to the other process in the applica-
tion† or fork the other process itself. This method ensures that the IPC resource
cannot be used accidentally by other applications.

The last parameter of the semget(), msgget(), and shmget() functions can include
three flags. IPC_CREAT specifies that the IPC resource must be created, if it does not
already exist; IPC_EXCL specifies that the function must fail if the resource already
exists and the IPC_CREAT flag is set; IPC_NOWAIT specifies that the process should never
block when accessing the IPC resource (typically, when fetching a message or when
acquiring a semaphore).

Even if the process uses the IPC_CREAT and IPC_EXCL flags, there is no way to ensure
exclusive access to an IPC resource, because other processes may always refer to the
resource by using its IPC identifier.

To minimize the risk of incorrectly referencing the wrong resource, the kernel does
not recycle IPC identifiers as soon as they become free. Instead, the IPC identifier
assigned to a resource is almost always larger than the identifier assigned to the pre-
viously allocated resource of the same type. (The only exception occurs when the 32-
bit IPC identifier overflows.) Each IPC identifier is computed by combining a slot
usage sequence number relative to the resource type, an arbitrary slot index for the
allocated resource, and an arbitrary value chosen in the kernel that is greater than the
maximum number of allocatable resources. If we choose s to represent the slot usage
sequence number, M to represent the upper bound on the number of allocatable
resources, and i to represent the slot index, where 0≤i<M, each IPC resource’s ID is
computed as follows:

IPC identifier = s × M + i

In Linux 2.6, the value of M is set to 32,768 (IPCMNI macro). The slot usage sequence
number s is initialized to 0 and is increased by 1 at every resource allocation. When s
reaches a predefined threshold, which depends on the type of IPC resource, it
restarts from 0.

* The ftok() function attempts to create a new key from a file pathname and an 8-bit project identifier passed
as its parameters. It does not guarantee, however, a unique key number, because there is a small chance that
it will return the same IPC key to two different applications using different pathnames and project identifiers.

† This implies, of course, the existence of another communication channel between the processes not based
on IPC.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

792 | Chapter 19: Process Communication

Every type of IPC resource (semaphores, message queues, and shared memory areas)
owns an ipc_ids data structure, which includes the fields shown in Table 19-8.

The ipc_id_ary data structure consists of two fields: p and size. The p field is an array
of pointers to kern_ipc_perm data structures, one for every allocatable resource. The
size field is the size of this array. Initially, the array stores 1, 16, or 128 pointers,
respectively for shared memory regions, message queues, and semaphores. The kernel
dynamically increases the size of the array when it becomes too small. However, there
is an upper bound on the number of resources for each given type. The system admin-
istrator may change these bounds by writing into the /proc/sys/kernel/sem, /proc/sys/
kernel/msgmni, and /proc/sys/kernel/shmmni files, respectively.

Each kern_ipc_perm data structure is associated with an IPC resource and contains
the fields shown in Table 19-9. The uid, gid, cuid, and cgid fields store the user and
group identifiers of the resource’s creator and the user and group identifiers of the
current resource’s owner, respectively. The mode bit mask includes six flags, which
store the read and write access permissions for the resource’s owner, the resource’s
group, and all other users. IPC access permissions are similar to file access permis-
sions described in the section “Access Rights and File Mode” in Chapter 1, except
that the Execute permission flag is not used.

Table 19-8. The fields of the ipc_ids data structure

Type Field Description

int in_use Number of allocated IPC resources

int max_id Maximum slot index in use

unsigned short seq Slot usage sequence number for the next allocation

unsigned short seq_max Maximum slot usage sequence number

struct semaphore sem Semaphore protecting the ipc_ids data structure

struct ipc_id_ary nullentry Fake data structure pointed to by the entries field if this IPC resource
cannot be initialized (normally not used)

struct ipc_id_ary * entries Pointer to the ipc_id_ary data structure for this resource

Table 19-9. The fields in the kern_ipc_perm structure

Type Field Description

spinlock_t lock Spin lock protecting the IPC resource descriptor

int deleted Flag set if the resource has been released

int key IPC key

unsigned int uid Owner user ID

unsigned int gid Owner group ID

unsigned int cuid Creator user ID

unsigned int cgid Creator group ID

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V IPC | 793

The kern_ipc_perm data structure also includes a key field (which contains the IPC
key of the corresponding resource) and a seq field (which stores the slot usage
sequence number s used to compute the IPC identifier of the resource).

The semctl(), msgctl(), and shmctl() functions may be used to handle IPC
resources. The IPC_SET subcommand allows a process to change the owner’s user
and group identifiers and the permission bit mask in the ipc_perm data structure. The
IPC_STAT and IPC_INFO subcommands retrieve some information concerning a
resource. Finally, the IPC_RMID subcommand releases an IPC resource. Depending on
the type of IPC resource, other specialized subcommands are also available.*

Once an IPC resource is created, a process may act on the resource by means of a few
specialized functions. A process may acquire or release an IPC semaphore by issuing
the semop() function. When a process wants to send or receive an IPC message, it
uses the msgsnd() and msgrcv() functions, respectively. Finally, a process attaches
and detaches an IPC shared memory region in its address space by means of the
shmat() and shmdt() functions, respectively.

The ipc() System Call
All IPC functions must be implemented through suitable Linux system calls. Actu-
ally, in the 80 × 86 architecture, there is just one IPC system call named ipc(). When
a process invokes an IPC function, let’s say msgget(), it really invokes a wrapper
function in the C library. This in turn invokes the ipc() system call by passing to it
all the parameters of msgget() plus a proper subcommand code—in this case,
MSGGET. The sys_ipc() service routine examines the subcommand code and invokes
the kernel function that implements the requested service.

The ipc() “multiplexer” system call is a legacy from older Linux versions, which
included the IPC code in a dynamic module (see Appendix B). It did not make much
sense to reserve several system call entries in the system_call table for a kernel com-
ponent that could be missing, so the kernel designers adopted the multiplexer
approach.

Nowadays, System V IPC can no longer be compiled as a dynamic module, and there
is no justification for using a single IPC system call. As a matter of fact, Linux provides

unsigned short mode Permission bit mask

unsigned long seq Slot usage sequence number

void * security Pointer to a security structure (used by SELinux)

* An IPC design flaw is that a User Mode process cannot atomically create and initialize an IPC semaphore,
because these two operations are performed by two different IPC functions.

Table 19-9. The fields in the kern_ipc_perm structure (continued)

Type Field Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

794 | Chapter 19: Process Communication

one system call for each IPC function on Hewlett-Packard’s Alpha architecture and on
Intel’s IA-64.

IPC Semaphores
IPC semaphores are quite similar to the kernel semaphores introduced in Chapter 5;
they are counters used to provide controlled access to shared data structures for mul-
tiple processes.

The semaphore value is positive if the protected resource is available, and 0 if the
protected resource is currently not available. A process that wants to access the
resource tries to decrease the semaphore value; the kernel, however, blocks the pro-
cess until the operation on the semaphore yields a positive value. When a process
relinquishes a protected resource, it increases its semaphore value; in doing so, any
other process waiting for the semaphore is woken up.

Actually, IPC semaphores are more complicated to handle than kernel semaphores
for two main reasons:

• Each IPC semaphore is a set of one or more semaphore values, not just a single
value like a kernel semaphore. This means that the same IPC resource can protect
several independent shared data structures. The number of semaphore values in
each IPC semaphore must be specified as a parameter of the semget() function
when the resource is being allocated. From now on, we’ll refer to the counters
inside an IPC semaphore as primitive semaphores. There are bounds both on the
number of IPC semaphore resources (by default, 128) and on the number of prim-
itive semaphores inside a single IPC semaphore resource (by default, 250); how-
ever, the system administrator can easily modify these bounds by writing into the
/proc/sys/kernel/sem file.

• System V IPC semaphores provide a fail-safe mechanism for situations in which
a process dies without being able to undo the operations that it previously issued
on a semaphore. When a process chooses to use this mechanism, the resulting
operations are called undoable semaphore operations. When the process dies, all
of its IPC semaphores can revert to the values they would have had if the pro-
cess had never started its operations. This can help prevent other processes that
use the same semaphores from remaining blocked indefinitely as a consequence
of the terminating process failing to manually undo its semaphore operations.

First, we’ll briefly sketch the typical steps performed by a process wishing to access
one or more resources protected by an IPC semaphore:

1. Invokes the semget() wrapper function to get the IPC semaphore identifier,
specifying as the parameter the IPC key of the IPC semaphore that protects the
shared resources. If the process wants to create a new IPC semaphore, it also
specifies the IPC_CREATE or IPC_PRIVATE flag and the number of primitive sema-
phores required (see the section “Using an IPC Resource” earlier in this chapter).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V IPC | 795

2. Invokes the semop() wrapper function to test and decrease all primitive sema-
phore values involved. If all the tests succeed, the decrements are performed, the
function terminates, and the process is allowed to access the protected resources.
If some semaphores are in use, the process is usually suspended until some other
process releases the resources. The function receives as its parameters the IPC
semaphore identifier, an array of integers specifying the operations to be atomi-
cally performed on the primitive semaphores, and the number of such opera-
tions. Optionally, the process may specify the SEM_UNDO flag, which instructs the
kernel to reverse the operations, should the process exit without releasing the
primitive semaphores.

3. When relinquishing the protected resources, it invokes the semop() function
again to atomically increase all primitive semaphores involved.

4. Optionally, it invokes the semctl() wrapper function, specifying the IPC_RMID
command to remove the IPC semaphore from the system.

Now we can discuss how the kernel implements IPC semaphores. The data struc-
tures involved are shown in Figure 19-1. The sem_ids variable stores the ipc_ids data
structure of the IPC semaphore resource type; the corresponding ipc_id_ary data
structure contains an array of pointers to sem_array data structures, one item for
every IPC semaphore resource.

Figure 19-1. IPC semaphore data structures

Per-semaphore list

struct
sem_queue

struct
sem_queue

struct
sem_queue

next
prev

next
prev

undo

undo

undo

struct
sem_undo

struct
sem_undo

struct
sem_undo

struct
sem_undo

id_next

id_next

id_next

Pending request queue

sem_ pendingstruct
sem_array

struct sem

struct sem

sem_ pending_last

sem_base

undo

sem_ids.entries.p

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

796 | Chapter 19: Process Communication

Formally, the array stores pointers to kern_ipc_perm data structures, but each struc-
ture is simply the first field of the sem_array data structure. All fields of the sem_array
data structure are shown in Table 19-10.

The sem_base field points to an array of sem data structures, one for every IPC primi-
tive semaphore. The latter data structure includes only two fields:

semval
The value of the semaphore’s counter.

sempid
The PID of the last process that accessed the semaphore. This value can be que-
ried by a process through the semctl() wrapper function.

Undoable semaphore operations

If a process aborts suddenly, it cannot undo the operations that it started (for
instance, release the semaphores it reserved); so by declaring them undoable, the
process lets the kernel return the semaphores to a consistent state and allow other
processes to proceed. Processes can request undoable operations by specifying the
SEM_UNDO flag in the semop() function.

Information to help the kernel reverse the undoable operations performed by a given
process on a given IPC semaphore resource is stored in a sem_undo data structure. It
essentially contains the IPC identifier of the semaphore and an array of integers rep-
resenting the changes to the primitive semaphore’s values caused by all undoable
operations performed by the process.

A simple example can illustrate how such sem_undo elements are used. Consider a
process that uses an IPC semaphore resource containing four primitive semaphores.
Suppose that it invokes the semop() function to increase the first counter by 1 and
decrease the second by 2. If it specifies the SEM_UNDO flag, the integer in the first array
element in the sem_undo data structure is decreased by 1, the integer in the second
element is increased by 2, and the other two integers are left unchanged. Further

Table 19-10. The fields in the sem_array data structure

Type Field Description

struct kern_ipc_perm sem_perm kern_ipc_perm data structure

long sem_otime Timestamp of last semop()

long sem_ctime Timestamp of last change

struct sem * sem_base Pointer to first sem structure

struct sem_queue * sem_pending Pending operations

struct sem_queue ** sem_pending_last Last pending operation

struct sem_undo * undo Undo requests

unsigned long sem_nsems Number of semaphores in array

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V IPC | 797

undoable operations on the IPC semaphore performed by the same process change
the integers stored in the sem_undo structure accordingly. When the process exits, any
nonzero value in that array corresponds to one or more unbalanced operations on
the corresponding primitive semaphore; the kernel reverses these operations, simply
adding the nonzero value to the corresponding semaphore’s counter. In other words,
the changes made by the aborted process are backed out while the changes made by
other processes are still reflected in the state of the semaphores.

For each process, the kernel keeps track of all semaphore resources handled with
undoable operations so that it can roll them back if the process unexpectedly exits.
Furthermore, for each semaphore, the kernel has to keep track of all its sem_undo
structures so it can quickly access them whenever a process uses semctl() to force an
explicit value into a primitive semaphore’s counter or to destroy an IPC semaphore
resource.

The kernel is able to handle these tasks efficiently, thanks to two lists, which we
denote as the per-process and the per-semaphore lists. The first list keeps track of all
semaphores operated upon by a given process with undoable operations. The sec-
ond list keeps track of all processes that are acting on a given semaphore with undo-
able operations. More precisely:

• The per-process list includes all sem_undo data structures corresponding to IPC
semaphores on which the process has performed undoable operations. The
sysvsem.undo_list field of the process descriptor points to a data structure, of
type sem_undo_list, which in turn contains a pointer to the first element of the
list; the proc_next field of each sem_undo data structure points to the next ele-
ment in the list. (As mentioned in the section “The clone(), fork(), and vfork()
System Calls” in Chapter 3, clone processes created by passing the CLONE_
SYSVSEM flag to the clone() system call share the same list of undoable sema-
phore operations, because they share the same sem_undo_list descriptor.)

• The per-semaphore list includes all sem_undo data structures corresponding to
the processes that performed undoable operations on the semaphore. The undo
field of the sem_array data structure points to the first element of the list, while
the id_next field of each sem_undo data structure points to the next element in the
list.

The per-process list is used when a process terminates. The exit_sem() function,
which is invoked by do_exit(), walks through the list and reverses the effect of any
unbalanced operation for every IPC semaphore touched by the process. By contrast,
the per-semaphore list is mainly used when a process invokes the semctl() function
to force an explicit value into a primitive semaphore. The kernel sets the correspond-
ing element to 0 in the arrays of all sem_undo data structures referring to that IPC
semaphore resource, because it would no longer make any sense to reverse the effect
of previous undoable operations performed on that primitive semaphore. Moreover,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

798 | Chapter 19: Process Communication

the per-semaphore list is also used when an IPC semaphore is destroyed; all related
sem_undo data structures are invalidated by setting the semid field to –1.*

The queue of pending requests

The kernel associates a queue of pending requests with each IPC semaphore to iden-
tify processes that are waiting on one (or more) of the semaphores in the array. The
queue is a doubly linked list of sem_queue data structures whose fields are shown in
Table 19-11. The first and last pending requests in the queue are referenced, respec-
tively, by the sem_pending and sem_pending_last fields of the sem_array structure.
This last field allows the list to be handled as easily as a FIFO; new pending requests
are added to the end of the list so they will be serviced later. The most important
fields of a pending request are nsops (which stores the number of primitive sema-
phores involved in the pending operation) and sops (which points to an array of inte-
ger values describing each semaphore operation). The sleeper field stores the
descriptor address of the sleeping process that requested the operation.

Figure 19-1 illustrates an IPC semaphore that has three pending requests. The sec-
ond and third requests refer to undoable operations, so the undo field of the sem_queue
data structure points to the corresponding sem_undo structure; the first pending
request has a NULL undo field because the corresponding operation is not undoable.

* Notice that they are just invalidated and not freed, because it would be too costly to remove the data struc-
tures from the per-process lists of all processes.

Table 19-11. The fields in the sem_queue data structure

Type Field Description

struct sem_queue * next Pointer to next queue element

struct sem_queue ** prev Pointer to previous queue element

struct task_struct * sleeper Pointer to the sleeping process that requested the semaphore opera-
tion

struct sem_undo * undo Pointer to sem_undo structure

int pid Process identifier

int status Completion status of operation

struct sem_array * sma Pointer to IPC semaphore descriptor

int id Slot index of the IPC semaphore resource

struct sembuf * sops Pointer to array of pending operations

int nsops Number of pending operations

int alter Flag denoting whether the operation modifies the semaphore array

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V IPC | 799

IPC Messages
Processes can communicate with one another by means of IPC messages. Each mes-
sage generated by a process is sent to an IPC message queue, where it stays until
another process reads it.

A message is composed of a fixed-size header and a variable-length text; it can be
labeled with an integer value (the message type), which allows a process to selec-
tively retrieve messages from its message queue.* Once a process has read a message
from an IPC message queue, the kernel destroys the message; therefore, only one
process can receive a given message.

To send a message, a process invokes the msgsnd() function, passing the following as
parameters:

• The IPC identifier of the destination message queue

• The size of the message text

• The address of a User Mode buffer that contains the message type immediately
followed by the message text

To retrieve a message, a process invokes the msgrcv() function, passing to it:

• The IPC identifier of the IPC message queue resource

• The pointer to a User Mode buffer to which the message type and message text
should be copied

• The size of this buffer

• A value t that specifies what message should be retrieved

If the value t is 0, the first message in the queue is returned. If t is positive, the first
message in the queue with its type equal to t is returned. Finally, if t is negative, the
function returns the first message whose message type is the lowest value less than or
equal to the absolute value of t.

To avoid resource exhaustion, there are some limits on the number of IPC message
queue resources allowed (by default, 16), on the size of each message (by default,
8,192 bytes), and on the maximum total size of the messages in a queue (by default,
16,384 bytes). As usual, however, the system administrator can tune these values by
writing into the /proc/sys/kernel/msgmni, /proc/sys/kernel/msgmnb, and /proc/sys/
kernel/msgmax files, respectively.

The data structures associated with IPC message queues are shown in Figure 19-2.
The msg_ids variable stores the ipc_ids data structure of the IPC message queue
resource type; the corresponding ipc_id_ary data structure contains an array of

* As we’ll see, the message queue is implemented by means of a linked list. Because messages can be retrieved
in an order different from “first in, first out,” the name “message queue” is not appropriate. However, new
messages are always put at the end of the linked list.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

800 | Chapter 19: Process Communication

pointers to shmid_kernel data structures—one item for every IPC message queue
resource. Formally, the array stores pointers to kern_ipc_perm data structures, but
each such structure is simply the first field of the msg_queue data structure. All fields
of the msg_queue data structure are shown in Table 19-12.

The most important field is q_messages, which represents the head (i.e., the first
dummy element) of a doubly linked circular list containing all messages currently in
the queue.

Each message is broken into one or more pages, which are dynamically allocated.
The beginning of the first page stores the message header, which is a data structure of
type msg_msg; its fields are listed in Table 19-13. The m_list field stores the pointers

Figure 19-2. IPC message queue data structures

Table 19-12. The msg_queue data structure

Type Field Description

struct kern_ipc_perm q_perm kern_ipc_perm data structure

long q_stime Time of last msgsnd()

long q_rtime Time of last msgrcv()

long q_ctime Last change time

unsigned long q_qcbytes Number of bytes in queue

unsigned long q_qnum Number of messages in queue

unsigned long q_qbytes Maximum number of bytes in queue

int q_lspid PID of last msgsnd()

int q_lrpid PID of last msgrcv()

struct list_head q_messages List of messages in queue

struct list_head q_receivers List of processes receiving messages

struct list_head q_senders List of processes sending messages

struct
msg_msg

q_messages

struct
msg_queue

msg_ids.entries.p

Message text

struct
msg_msgseg

Message text (continued)

m_list
struct
msg_msg

Message text

next

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V IPC | 801

to the previous and next messages in the queue. The message text starts right after
the msg_msg descriptor; if the message is longer than 4,072 bytes (the page size minus
the size of the msg_msg descriptor), it continues on another page, whose address is
stored in the next field of the msg_msg descriptor. The second page frame starts with a
descriptor of type msg_msgseg, which simply includes a next pointer storing the
address of an optional third page, and so on.

When the message queue is full (either the maximum number of messages or the
maximum total size has been reached), processes that try to enqueue new messages
may be blocked. The q_senders field of the msg_queue data structure is the head of a
list that includes the pointers to the descriptors of all blocked sending processes.

Even receiving processes may be blocked when the message queue is empty (or the
process specified a type of message not present in the queue). The q_receivers field
of the msg_queue data structure is the head of a list of msg_receiver data structures,
one for every blocked receiving process. Each of these structures essentially includes
a pointer to the process descriptor, a pointer to the msg_msg structure of the message,
and the type of the requested message.

IPC Shared Memory
The most useful IPC mechanism is shared memory, which allows two or more pro-
cesses to access some common data structures by placing them in an IPC shared
memory region. Each process that wants to access the data structures included in an
IPC shared memory region must add to its address space a new memory region (see
the section “Memory Regions” in Chapter 9), which maps the page frames associ-
ated with the IPC shared memory region. Such page frames can then be easily han-
dled by the kernel through demand paging (see the section “Demand Paging” in
Chapter 9).

As with semaphores and message queues, the shmget() function is invoked to get the
IPC identifier of a shared memory region, optionally creating it if it does not already
exist.

The shmat() function is invoked to “attach” an IPC shared memory region to a pro-
cess. It receives as its parameter the identifier of the IPC shared memory resource and
tries to add a shared memory region to the address space of the calling process. The

Table 19-13. The msg_msg data structure

Type Field Description

struct list_head m_list Pointers for message list

long m_type Message type

int m_ts Message text size

struct msg_msgseg * next Next portion of the message

void * security Pointer to a security data structure (used by SELinux)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

802 | Chapter 19: Process Communication

calling process can require a specific starting linear address for the memory region,
but the address is usually unimportant, and each process accessing the shared mem-
ory region can use a different address in its own address space. The process’s Page
Tables are left unchanged by shmat(). We describe later what the kernel does when
the process tries to access a page that belongs to the new memory region.

The shmdt() function is invoked to “detach” an IPC shared memory region specified
by its IPC identifier—that is, to remove the corresponding memory region from the
process’s address space. Recall that an IPC shared memory resource is persistent:
even if no process is using it, the corresponding pages cannot be discarded, although
they can be swapped out.

As for the other types of IPC resources, in order to avoid overuse of memory by
User Mode processes, there are some limits on the allowed number of IPC shared
memory regions (by default, 4,096), on the size of each segment (by default, 32
megabytes), and on the maximum total size of all segments (by default, 8 gigabytes).
As usual, however, the system administrator can tune these values by writing into
the /proc/sys/kernel/shmmni, /proc/sys/kernel/shmmax, and /proc/sys/kernel/shmall
files, respectively.

The data structures associated with IPC shared memory regions are shown in
Figure 19-3. The shm_ids variable stores the ipc_ids data structure of the IPC shared

Figure 19-3. IPC shared memory data structures

struct
shmid_kernel

shm_ids.entries.p

Page
frame

IPC shared memory segment

struct
file

shm_file

struct
dentry

f_dentry

struct
inode

d_inode

i_ino
struct

address_space
i_mapping

struct
vm_area_struct

struct
vm_area_struct

vm_file vm_file

Page
frame

lists of pages

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V IPC | 803

memory resource type; the corresponding ipc_id_ary data structure contains an
array of pointers to shmid_kernel data structures, one item for every IPC shared
memory resource. Formally, the array stores pointers to kern_ipc_perm data struc-
tures, but each such structure is simply the first field of the msg_queue data structure.
All fields of the shmid_kernel data structure are shown in Table 19-14.

The most important field is shm_file, which stores the address of a file object. This
reflects the tight integration of IPC shared memory with the VFS layer in Linux 2.6.
In particular, each IPC shared memory region is associated with a file belonging to
the shm special filesystem (see the section “Special Filesystems” in Chapter 12).

Because the shm filesystem has no mount point in the system directory tree, no user
can open and access its files by means of regular VFS system calls. However, when a
process “attaches” a segment, the kernel invokes do_mmap() and creates a new shared
memory mapping of the file in the address space of the process. Therefore, files that
belong to the shm special filesystem have just one file object method, mmap, which is
implemented by the shm_mmap() function.

As shown in Figure 19-3, a memory region that corresponds to an IPC shared memory
region is described by a vm_area_struct object (see the section “Memory Mapping” in
Chapter 16); its vm_file field points back to the file object of the file in the special file-
system, which in turn references a dentry object and an inode object. The inode num-
ber, stored in the i_ino field of the inode, is actually the slot index of the IPC shared
memory region, so the inode object indirectly references the shmid_kernel descriptor.

As usual for every shared memory mapping, page frames are included in the page
cache through an address_space object, which is embedded in the inode and refer-
enced by the i_mapping field of the inode (you might also refer to Figure 16-2); in

Table 19-14. The fields in the shmid_kernel data structure

Type Field Description

struct kern_ipc_perm shm_perm kern_ipc_perm data structure

struct file * shm_file Special file of the segment

int id Slot index of the segment

unsigned long shm_nattch Number of current attaches

unsigned long shm_segsz Segment size in bytes

long shm_atim Last access time

long shm_dtim Last detach time

long shm_ctim Last change time

int shm_cprid PID of creator

int shm_lprid PID of last accessing process

struct user_struct * mlock_user Pointer to the user_struct descriptor of the user that
locked in RAM the shared memory resource (see the section
“The clone(), fork(), and vfork() System Calls” in Chapter 3)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

804 | Chapter 19: Process Communication

case of page frames belonging to an IPC shared memory region, the methods of the
address_space object are stored in the shmem_aops global variable.

Swapping out pages of IPC shared memory regions

The kernel has to be careful when swapping out pages included in shared memory
regions, and the role of the swap cache is crucial (this topic was already discussed in
the section “The Swap Cache” in Chapter 17).

Pages of an IPC shared memory region are swappable—and not syncable (see
Table 17-1 in Chapter 17)—because they map a special inode that has no image on
disk. Thus, in order to reclaim a page of an IPC shared memory region, the kernel
must write it into a swap area. Because an IPC shared memory region is persistent—
that is, its pages must be preserved even when the segment is not attached to any
process—the kernel cannot simply discard these pages even when they are no longer
used by any process.

Let us see how the PFRA performs the reclaiming of a page frame used by an IPC
shared memory region. Everything is done as described in the section “Low On
Memory Reclaiming” in Chapter 17, until the page is considered by shrink_list().
Because this function does not include any special check for pages of IPC shared
memory regions, it ends up invoking the try_to_unmap() function to remove every
reference to the page frame from the User Mode address spaces; as explained in the
section “Reverse Mapping” in Chapter 17, the corresponding page table entries are
simply cleared.

Next, the shrink_list() function checks the PG_dirty flag of the page and invokes
pageout()—page frames of IPC shared memory regions are marked dirty when they
are allocated, thus pageout() is always invoked. In turn, the pageout() function
invokes the writepage method of the address_space object of the mapped file.

The shmem_writepage() function, which implements the writepage method for IPC
shared memory regions’ pages, essentially allocates a new page slot in a swap area,
and moves the page from the page cache to the swap cache (it’s just a matter of
changing the owner address_space object of the page). The function also stores the
swapped-out page identifier in a shmem_inode_info structure that embodies the IPC
memory region’s inode object, and it sets again the PG_dirty flag of the page. As
shown in Figure 17-5 in Chapter 17, the shrink_list() function checks the PG_dirty
flag and breaks the reclaiming procedure by leaving the page in the inactive list.

Sooner or later, the page frame will be processed again by the PFRA. Once again, the
shrink_list() function will try to flush the page to disk by invoking pageout(). This
time, however, the page is included in the swap cache, thus it is “owned” by the
address_space object of the swapping subsystem, swapper_space. The corresponding
writepage method, swap_writepage(), effectively starts the write operation into the
swap area (see the section “Swapping Out Pages” in Chapter 17). Once pageout()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V IPC | 805

terminates, shrink_list() verifies that the page is now clean, removes it from the
swap cache, and releases it to the buddy system.

Demand paging for IPC shared memory regions

The pages added to a process by shmat() are dummy pages; the function adds a new
memory region into a process’s address space, but it doesn’t modify the process’s
Page Tables. Moreover, as we have seen, pages of an IPC shared memory region can
be swapped out. Therefore, these pages are handled through the demand paging
mechanism.

As we know, a Page Fault occurs when a process tries to access a location of an IPC
shared memory region whose underlying page frame has not been assigned. The cor-
responding exception handler determines that the faulty address is inside the pro-
cess address space and that the corresponding Page Table entry is null; therefore, it
invokes the do_no_page() function (see the section “Demand Paging” in Chapter 9).
In turn, this function checks whether the nopage method for the memory region is
defined. That method is invoked, and the Page Table entry is set to the address
returned from it (see also the section “Demand Paging for Memory Mapping” in
Chapter 16).

Memory regions used for IPC shared memory always define the nopage method. It
is implemented by the shmem_nopage() function, which performs the following
operations:

1. Walks the chain of pointers in the VFS objects and derives the address of the
inode object of the IPC shared memory resource (see Figure 19-3).

2. Computes the logical page number inside the segment from the vm_start field of
the memory region descriptor and the requested address.

3. Checks whether the page is already included in the page cache; if so, terminates
by returning the address of its descriptor.

4. Checks whether the page is included in the swap cache and is up-to-date; if so,
terminates by returning the address of its descriptor.

5. Checks whether the shmem_inode_info that embodies the inode object stores a
swapped-out page identifier for the logical page number. If so, it performs a
swap-in operation by invoking read_swap_cache_async() (see the section “Swap-
ping in Pages” in Chapter 17), waits until the data transfer completes, and termi-
nates by returning the address of the page descriptor.

6. Otherwise, the page is not stored in a swap area; therefore, the function allo-
cates a new page from the buddy system, inserts it into the page cache, and
returns its address.

The do_no_page() function sets the entry that corresponds to the faulty address in
the process’s Page Table so that it points to the page frame returned by the method.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

806 | Chapter 19: Process Communication

POSIX Message Queues
The POSIX standard (IEEE Std 1003.1-2001) defines an IPC mechanism based on
message queues, which is usually known as POSIX message queues. They are much
like the System V IPC’s message queues already examined in the section “IPC Mes-
sages” earlier in this chapter. However, POSIX message queues sport a number of
advantages over the older queues:

• A much simpler file-based interface to the applications

• Native support for message priorities (the priority ultimately determines the
position of the message in the queue)

• Native support for asynchronous notification of message arrivals, either by
means of signals or thread creation

• Timeouts for blocking send and receive operations

POSIX message queues are handled by means of a set of library functions, which are
shown in Table 19-15.

Let’s see how an application typically makes use of these functions. As a first step,
the application invokes the mq_open() library function to open a POSIX message
queue. The first argument of the function is a string specifying the name of the
queue; it is similar to a filename, and indeed it must start with a slash (/). The library
function accepts a subset of the flags of the open() system call: O_RDONLY, O_WRONLY, O_
RDWR, O_CREAT, O_EXCL, and O_NONBLOCK (for nonblocking send and receive operations).
Notice that the application may create a new POSIX message queue by specifying the
O_CREAT flag. The mq_open() function returns a descriptor for the queue—much like
the file descriptor returned by the open() system call.

Once a POSIX message queue has been opened, the application may send and
receive messages by using the library functions mq_send() and mq_receive(), passing

Table 19-15. Library functions for POSIX message queues

Function names Description

mq_open() Open (optionally creating) a POSIX message queue

mq_close() Close a POSIX message queue (without destroying it)

mq_unlink() Destroy a POSIX message queue

mq_send(),
mq_timedsend()

Send a message to a POSIX message queue; the latter function defines a time limit for the
operation

mq_receive(),
mq_timedreceive()

Fetch a message from a POSIX message queue; the latter function defines a time limit for
the operation

mq_notify() Establish an asynchronous notification mechanism for the arrival of messages in an empty
POSIX message queue

mq_getattr(),
mq_setattr()

Respectively get and set attributes of a POSIX message queue (essentially, whether the
send and receive operations should be blocking or nonblocking)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

POSIX Message Queues | 807

to them the queue descriptor returned by mq_open(). The application may also make
use of mq_timedsend() and mq_timedreceive() to specify the maximum time that the
application will spend waiting for the send or receive operation to complete.

Rather than blocking in mq_receive()—or continuously polling the message queue if
the O_NONBLOCK flag was specified—the application might also establish an asynchro-
nous notification mechanism by executing the mq_notify() library function. Essen-
tially, the application may require that when a message is inserted in an empty
queue, either a signal is sent to a selected process, or a new thread is created.

Finally, when the application has finished using the message queue, it invokes the
mq_close() library function; passing to it the queue descriptor. Notice that this func-
tion does not destroy the queue, exactly as the close() system call does not remove a
file. To destroy a queue, the application makes use of the mq_unlink() function.

The implementation of POSIX message queues in Linux 2.6 is simple and straightfor-
ward. A special filesystem named mqueue (see the section “Special Filesystems” in
Chapter 12) has been introduced, which contains an inode for each existing queue.
The kernel offers a few system calls, which roughly correspond to the library func-
tions listed in Table 19-15 earlier: mq_open(), mq_unlink(), mq_timedsend(), mq_
timedreceive(), mq_notify(), and mq_getsetattr(). These system calls act transpar-
ently on the files of the mqueue filesystem, thus much of the job is done by the VFS
layer. For example, notice that the kernel does not offer a mq_close() function: in
fact, the queue descriptor returned to the application is effectively a file descriptor,
therefore the mq_close() library function can simply execute the close() system call
to do its job.

The mqueue special filesystem must not necessarily be mounted over the system
directory tree. However, if it is mounted, a user can create a POSIX message queue
by touching a file in the root directory of the filesystem; she can also get information
about the queue by reading the corresponding file. Finally, an application can use
select() and poll() to be notified about changes in the queue state.

Each queue is described by an mqueue_inode_info descriptor, which embodies the
inode object associated with the file in the mqueue special filesystem. When a POSIX
message queue system call receives a queue descriptor as parameter, it invokes the
VFS’s fget() function to derive the address of the corresponding file object; next, the
system call gets the inode object of the file in the mqueue filesystem, and finally the
address of the mqueue_inode_info descriptor that contains the inode object.

The pending messages in a queue are collected in a singly linked list rooted at the
mqueue_inode_info descriptor; each message is represented by a descriptor of type
msg_msg—exactly the same descriptor used for the System V IPC’s messages
described in the section “IPC Messages” earlier in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

808

Chapter 20819CHAPTER 20

Program Execution

The concept of a “process,” described in Chapter 3, was used in Unix from the
beginning to represent the behavior of groups of running programs that compete for
system resources. This final chapter focuses on the relationship between program
and process. We specifically describe how the kernel sets up the execution context
for a process according to the contents of the program file. While it may not seem
like a big problem to load a bunch of instructions into memory and point the CPU to
them, the kernel has to deal with flexibility in several areas:

Different executable formats
Linux is distinguished by its ability to run binaries that were compiled for other
operating systems. In particular, Linux is able to run an executable created for a
32-bit machine on the 64-bit version of the same machine. For instance, an exe-
cutable created on a Pentium can run on a 64-bit AMD Opteron.

Shared libraries
Many executable files don’t contain all the code required to run the program but
expect the kernel to load in functions from a library at runtime.

Other information in the execution context
This includes the command-line arguments and environment variables familiar
to programmers.

A program is stored on disk as an executable file, which includes both the object code
of the functions to be executed and the data on which these functions will act. Many
functions of the program are service routines available to all programmers; their
object code is included in special files called “libraries.” Actually, the code of a
library function may either be statically copied into the executable file (static librar-
ies) or linked to the process at runtime (shared libraries, because their code can be
shared by several independent processes).

When launching a program, the user may supply two kinds of information that affect
the way it is executed: command-line arguments and environment variables. Com-
mand-line arguments are typed in by the user following the executable filename at the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executable Files | 809

shell prompt. Environment variables, such as HOME and PATH, are inherited from the
shell, but the users may modify the values of such variables before they launch the
program.

In the section “Executable Files,” we explain what a program execution context is. In
the section “Executable Formats,” we mention some of the executable formats sup-
ported by Linux and show how Linux can change its “personality” to execute pro-
grams compiled for other operating systems. Finally, in the section “The exec
Functions,” we describe the system call that allows a process to start executing a new
program.

Executable Files
Chapter 1 defined a process as an “execution context.” By this we mean the collec-
tion of information needed to carry on a specific computation; it includes the pages
accessed, the open files, the hardware register contents, and so on. An executable file
is a regular file that describes how to initialize a new execution context (i.e., how to
start a new computation).

Suppose a user wants to list the files in the current directory; he knows that this
result can be simply achieved by typing the filename of the /bin/ls * external com-
mand at the shell prompt. The command shell forks a new process, which in turn
invokes an execve() system call (see the section “The exec Functions” later in this
chapter), passing as one of its parameters a string that includes the full pathname for
the ls executable file—/bin/ls, in this case. The sys_execve() service routine finds the
corresponding file, checks the executable format, and modifies the execution con-
text of the current process according to the information stored in it. As a result,
when the system call terminates, the process starts executing the code stored in the
executable file, which performs the directory listing.

When a process starts running a new program, its execution context changes drasti-
cally because most of the resources obtained during the process’s previous computa-
tions are discarded. In the preceding example, when the process starts executing /bin/ls,
it replaces the shell’s arguments with new ones passed as parameters in the execve()
system call and acquires a new shell environment (see the later section “Command-
Line Arguments and Shell Environment”). All pages inherited from the parent (and
shared with the Copy On Write mechanism) are released so that the new computation
starts with a fresh User Mode address space; even the privileges of the process could
change (see the later section “Process Credentials and Capabilities”). However, the pro-
cess PID doesn’t change, and the new computation inherits from the previous one all

* The pathnames of executable files are not fixed in Linux; they depend on the distribution used. Several stan-
dard naming schemes, such as Filesystem Hierarchy Standard (FHS), have been proposed for all Unix sys-
tems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

810 | Chapter 20: Program Execution

open file descriptors that were not closed automatically while executing the execve()
system call.*

Process Credentials and Capabilities
Traditionally, Unix systems associate with each process some credentials, which bind
the process to a specific user and a specific user group. Credentials are important on
multiuser systems because they determine what each process can or cannot do, thus
preserving both the integrity of each user’s personal data and the stability of the sys-
tem as a whole.

The use of credentials requires support both in the process data structure and in the
resources being protected. One obvious resource is a file. Thus, in the Ext2 file-
system, each file is owned by a specific user and is bound to a group of users. The
owner of a file may decide what kind of operations are allowed on that file, distin-
guishing among herself, the file’s user group, and all other users. When a process
tries to access a file, the VFS always checks whether the access is legal, according to
the permissions established by the file owner and the process credentials.

The process’s credentials are stored in several fields of the process descriptor, listed
in Table 20-1. These fields contain identifiers of users and user groups in the system,
which are usually compared with the corresponding identifiers stored in the inodes
of the files being accessed.

A UID of 0 specifies the superuser (root), while a user group ID of 0 specifies the root
group. If a process credential stores a value of 0, the kernel bypasses the permission
checks and allows the privileged process to perform various actions, such as those
referring to system administration or hardware manipulation, that are not possible to
unprivileged processes.

When a process is created, it always inherits the credentials of its parent. However,
these credentials can be modified later, either when the process starts executing a

* By default, a file already opened by a process stays open after issuing an execve()system call. However, the
file is automatically closed if the process has set the corresponding bit in the close_on_exec field of the files_
struct structure (see Table 12-7 in Chapter 12); this is done by means of the fcntl()system call.

Table 20-1. Traditional process credentials

Name Description

uid, gid User and group real identifiers

euid, egid User and group effective identifiers

fsuid, fsgid User and group effective identifiers for file access

groups Supplementary group identifiers

suid, sgid User and group saved identifiers

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executable Files | 811

new program or when it issues suitable system calls. Usually, the uid, euid, fsuid,
and suid fields of a process contain the same value. When the process executes a set-
uid program—that is, an executable file whose setuid flag is on—the euid and fsuid
fields are set to the identifier of the file’s owner. Almost all checks involve one of
these two fields: fsuid is used for file-related operations, while euid is used for all
other operations. Similar considerations apply to the gid, egid, fsgid, and sgid fields
that refer to group identifiers.

As an illustration of how the fsuid field is used, consider the typical situation when a
user wants to change his password. All passwords are stored in a common file, but
he cannot directly edit this file because it is protected. Therefore, he invokes a sys-
tem program named /usr/bin/passwd, which has the setuid flag set and whose owner
is the superuser. When the process forked by the shell executes such a program, its
euid and fsuid fields are set to 0—to the PID of the superuser. Now the process can
access the file, because, when the kernel performs the access control, it finds a 0
value in fsuid. Of course, the /usr/bin/passwd program does not allow the user to do
anything but change his own password.

Unix’s long history teaches the lesson that setuid programs—programs that have the
setuid flag set—are quite dangerous: malicious users could trigger some program-
ming errors (bugs) in the code to force setuid programs to perform operations that
were never planned by the program’s original designers. In the worst case, the entire
system’s security can be compromised. To minimize such risks, Linux, like all mod-
ern Unix systems, allows processes to acquire setuid privileges only when necessary
and drop them when they are no longer needed. This feature may turn out to be use-
ful when implementing user applications with several protection levels. The process
descriptor includes an suid field, which stores the values of the effective identifiers
(euid and fsuid) at the setuid program startup. The process can change the effective
identifiers by means of the setuid(), setresuid(), setfsuid(), and setreuid() sys-
tem calls.*

Table 20-2 shows how these system calls affect the process’s credentials. Be warned
that if the calling process does not already have superuser privileges—that is, if its
euid field is not null—these system calls can be used only to set values already
included in the process’s credential fields. For instance, an average user process can
store the value 500 into its fsuid field by invoking the setfsuid() system call, but
only if one of the other credential fields already holds the same value.

* A group’s effective credentials can be changed by issuing the corresponding setgid(), setresgid(),
setfsgid(), and setregid() system calls.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

812 | Chapter 20: Program Execution

To understand the sometimes complex relationships among the four user ID fields,
consider for a moment the effects of the setuid() system call. The actions are differ-
ent, depending on whether the calling process’s euid field is set to 0 (that is, the pro-
cess has superuser privileges) or to a normal UID.

If the euid field is 0, the system call sets all credential fields of the calling process
(uid, euid, fsuid, and suid) to the value of the parameter e. A superuser process can
thus drop its privileges and become a process owned by a normal user. This hap-
pens, for instance, when a user logs in: the system forks a new process with super-
user privileges, but the process drops its privileges by invoking the setuid() system
call and then starts executing the user’s login shell program.

If the euid field is not 0, the setuid() system call modifies only the value stored in
euid and fsuid, leaving the other two fields unchanged. This behavior of the system
call is useful when implementing a setuid program that scales up and down the effec-
tive process’s privileges stored in the euid and fsuid fields.

Process capabilities

The POSIX.1e draft—now withdrawn—introduced another model of process cre-
dentials based on the notion of “capabilities.” The Linux kernel supports POSIX
capabilities, although most Linux distributions do not make use of them.

A capability is simply a flag that asserts whether the process is allowed to perform a
specific operation or a specific class of operations. This model is different from the
traditional “superuser versus normal user” model in which a process can either do
everything or do nothing, depending on its effective UID. As illustrated in
Table 20-3, several capabilities have been included in the Linux kernel.

Table 20-2. Semantics of the system calls that set process credentials

Field
setuid (e)

setresuid (u,e,s) setreuid (u,e) setfsuid (f)
euid=0 euid≠0

uid Set to e Unchanged Set to u Set to u Unchanged

euid Set to e Set to e Set to e Set to e Unchanged

fsuid Set to e Set to e Set to e Set to e Set to f

suid Set to e Unchanged Set to s Set to e Unchanged

Table 20-3. Linux capabilities

Name Description

CAP_AUDIT_WRITE Allow to generate audit messages by writing in netlink sockets

CAP_AUDIT_CONTROL Allow to control kernel auditing activities by means of netlink sockets

CAP_CHOWN Ignore restrictions on file user and group ownership changes

CAP_DAC_OVERRIDE Ignore file access permissions

CAP_DAC_READ_SEARCH Ignore file/directory read and search permissions

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executable Files | 813

The main advantage of capabilities is that, at any time, each program needs a limited
number of them. Consequently, even if a malicious user discovers a way to exploit a
buggy program, she can illegally perform only a limited set of operations.

Assume, for instance, that a buggy program has only the CAP_SYS_TIME capability. In
this case, the malicious user who discovers an exploitation of the bug can succeed
only in illegally changing the real-time clock and the system clock. She won’t be able
to perform any other kind of privileged operations.

Neither the VFS nor the Ext2 filesystem currently supports the capability model, so
there is no way to associate an executable file with the set of capabilities that should

CAP_FOWNER Generally ignore permission checks on file ownership

CAP_FSETID Ignore restrictions on setting the setuid and setgid flags for files

CAP_KILL Bypass permission checks when generating signals

CAP_LINUX_IMMUTABLE Allow modification of append-only and immutable Ext2/Ext3 files

CAP_IPC_LOCK Allow locking of pages and of shared memory segments

CAP_IPC_OWNER Skip IPC ownership checks

CAP_LEASE Allow taking of leases on files (see “Linux File Locking” in Chapter 12)

CAP_MKNOD Allow privileged mknod() operations

CAP_NET_ADMIN Allow general networking administration

CAP_NET_BIND_SERVICE Allow binding to TCP/UDP sockets below 1,024

CAP_NET_BROADCAST Allow broadcasting and multicasting

CAP_NET_RAW Allow use of RAW and PACKET sockets

CAP_SETGID Ignore restrictions on group’s process credentials manipulations

CAP_SETPCAP Allow capability manipulations on other processes

CAP_SETUID Ignore restrictions on user’s process credentials manipulations

CAP_SYS_ADMIN Allow general system administration

CAP_SYS_BOOT Allow use of reboot()

CAP_SYS_CHROOT Allow use of chroot()

CAP_SYS_MODULE Allow inserting and removing of kernel modules

CAP_SYS_NICE Skip permission checks of the nice() and setpriority() system calls, and
allow creation of real-time processes

CAP_SYS_PACCT Allow configuration of process accounting

CAP_SYS_PTRACE Allow use of ptrace() on every process

CAP_SYS_RAWIO Allow access to I/O ports through ioperm() and iopl()

CAP_SYS_RESOURCE Allow resource limits to be increased

CAP_SYS_TIME Allow manipulation of system clock and real-time clock

CAP_SYS_TTY_CONFIG Allow to configure the terminal and to execute the vhangup() system call

Table 20-3. Linux capabilities (continued)

Name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

814 | Chapter 20: Program Execution

be enforced when a process executes that file. Nevertheless, a process can explicitly
get and lower its capabilities by using, respectively, the capget() and capset() sys-
tem calls. For instance, it is possible to modify the login program to retain a subset of
the capabilities and drop the others.

The Linux kernel already takes capabilities into account. Let’s consider, for instance,
the nice() system call, which allows users to change the static priority of a process.
In the traditional model, only the superuser can raise a priority; the kernel should
therefore check whether the euid field in the descriptor of the calling process is set to
0. However, the Linux kernel defines a capability called CAP_SYS_NICE, which corre-
sponds exactly to this kind of operation. The kernel checks the value of this flag by
invoking the capable() function and passing the CAP_SYS_NICE value to it.

This approach works, thanks to some “compatibility hacks” that have been added to
the kernel code: each time a process sets the euid and fsuid fields to 0 (either by
invoking one of the system calls listed in Table 20-2 or by executing a setuid pro-
gram owned by the superuser), the kernel sets all process capabilities so that all
checks will succeed. When the process resets the euid and fsuid fields to the real
UID of the process owner, the kernel checks the keep_capabilities flag in the pro-
cess descriptor and drops all capabilities of the process if the flag is set. A process can
set and reset the keep_capabilities flag by means of the Linux-specific prctl() sys-
tem call.

The Linux Security Modules framework

In Linux 2.6, capabilities are tightly integrated with the Linux Security Modules
framework (LSM). In short, the LSM framework allows developers to define several
alternative models for kernel security.

Each security model is implemented by a set of security hooks. A security hook is a
function that is invoked by the kernel when it is about to perform an important,
security-related operation. The hook function determines whether the operation
should be carried on or rejected.

The security hooks are stored in a table of type security_operations. The address of
the hook table for the security model currently in use is stored in the security_ops
variable. By default, the kernel makes use of a minimal security model implemented
by the dummy_security_ops table; each hook in this table essentially checks the corre-
sponding capability, if any, or unconditionally returns 0 (operation allowed).

For instance, the service routines of the stime() and settimeofday() functions invoke
the settime security hook before changing the system date and time. The corre-
sponding function pointed to by the dummy_security_ops table limits itself in check-
ing whether the CAP_SYS_TIME capability of the current process is set, and returns
either 0 or -EPERM accordingly.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executable Files | 815

Sophisticated security models for the Linux kernel have been devised. A widely
known example is Security-Enhanced Linux (SELinux), developed by the United
State’s National Security Agency.

Command-Line Arguments and Shell Environment
When a user types a command, the program that is loaded to satisfy the request may
receive some command-line arguments from the shell. For example, when a user
types the command:

$ ls -l /usr/bin

to get a full listing of the files in the /usr/bin directory, the shell process creates a new
process to execute the command. This new process loads the /bin/ls executable file.
In doing so, most of the execution context inherited from the shell is lost, but the
three separate arguments ls, -l, and /usr/bin are kept. Generally, the new process
may receive any number of arguments.

The conventions for passing the command-line arguments depend on the high-level
language used. In the C language, the main() function of a program may receive as
its parameters an integer specifying how many arguments have been passed to the
program and the address of an array of pointers to strings. The following prototype
formalizes this standard:

int main(int argc, char *argv[])

Going back to the previous example, when the /bin/ls program is invoked, argc has
the value 3, argv[0] points to the ls string, argv[1] points to the -l string, and
argv[2] points to the /usr/bin string. The end of the argv array is always marked by
a null pointer, so argv[3] contains NULL.

A third optional parameter that may be passed in the C language to the main() func-
tion is the parameter containing environment variables. They are used to customize the
execution context of a process, to provide general information to a user or other pro-
cesses, or to allow a process to keep some information across an execve() system call.

To use the environment variables, main() can be declared as follows:

int main(int argc, char *argv[], char *envp[])

The envp parameter points to an array of pointers to environment strings of the form:

VAR_NAME=something

where VAR_NAME represents the name of an environment variable, while the substring
following the = delimiter represents the actual value assigned to the variable. The end
of the envp array is marked by a null pointer, like the argv array. The address of the
envp array is also stored in the environ global variable of the C library.

Command-line arguments and environment strings are placed on the User Mode
stack, right before the return address (see the section “Parameter Passing” in

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

816 | Chapter 20: Program Execution

Chapter 10). The bottom locations of the User Mode stack are illustrated in
Figure 20-1. Notice that the environment variables are located near the bottom of the
stack, right after a 0 long integer.

Libraries
Each high-level source code file is transformed through several steps into an object
file, which contains the machine code of the assembly language instructions corre-
sponding to the high-level instructions. An object file cannot be executed, because it
does not contain the linear address that corresponds to each reference to a name of a
global symbol external to the source code file, such as functions in libraries or other
source code files of the same program. The assigning, or resolution, of such addresses
is performed by the linker, which collects all the object files of the program and con-
structs the executable file. The linker also analyzes the library’s functions used by the
program and glues them into the executable file in a manner described later in this
chapter.

Most programs, even the most trivial ones, use libraries. Consider, for instance, the
following one-line C program:

void main(void) { }

Although this program does not compute anything, a lot of work is needed to set up
the execution environment (see the section “The exec Functions” later in this
chapter) and to kill the process when the program terminates (see the section
“Destroying Processes” in Chapter 3). In particular, when the main() function termi-
nates, the C compiler inserts an exit_group() function call in the object code.

Figure 20-1. The bottom locations of the User Mode stack

NULL

Environment
strings

Command-line
arguments

Dynamic linker’s
tables

envp[]

argv[]

argc

Return address

PAGE_OFFSET
env_end

env_start
arg_end

arg_start

&envp[0]

&argv[0]

start_stack

Stack top (esp)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executable Files | 817

We know from Chapter 10 that programs usually invoke system calls through wrap-
per routines in the C library. This holds for the C compiler, too. Besides including
the code directly generated by compiling the program’s statements, each executable
file also includes some “glue” code to handle the interactions of the User Mode pro-
cess with the kernel. Portions of such glue code are stored in the C library.

Many other libraries of functions, besides the C library, are included in Unix sys-
tems. A generic Linux system typically uses several hundreds of libraries. Just to
mention a couple of them: the math library libm includes advanced functions for
floating point operations, while the X11 library libX11 collects together the basic
low-level functions for the X11 Window System graphics interface.

All executable files in traditional Unix systems were based on static libraries. This
means that the executable file produced by the linker includes not only the code of
the original program but also the code of the library functions that the program
refers to. One big disadvantage of statically linked programs is that they eat lots of
space on disk. Indeed, each statically linked executable file duplicates some portion
of library code.

Modern Unix systems use shared libraries. The executable file does not contain the
library object code, but only a reference to the library name. When the program is
loaded in memory for execution, a suitable program called dynamic linker (also
named ld.so) takes care of analyzing the library names in the executable file, locating
the library in the system’s directory tree and making the requested code available to
the executing process. A process can also load additional shared libraries at runtime
by using the dlopen() library function.

Shared libraries are especially convenient on systems that provide file memory map-
ping, because they reduce the amount of main memory requested for executing a
program. When the dynamic linker must link a shared library to a process, it does
not copy the object code, but performs only a memory mapping of the relevant por-
tion of the library file into the process’s address space. This allows the page frames
containing the machine code of the library to be shared among all processes that are
using the same code. Clearly, sharing is not possible if the program has been linked
statically.

Shared libraries also have some disadvantages. The startup time of a dynamically
linked program is usually longer than that of a statically linked one. Moreover,
dynamically linked programs are not as portable as statically linked ones, because
they may not execute properly in systems that include a different version of the same
library.

A user may always require a program to be linked statically. For example, the GCC
compiler offers the -static option, which tells the linker to use the static libraries
instead of the shared ones.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

818 | Chapter 20: Program Execution

Program Segments and Process Memory Regions
The linear address space of a Unix program is traditionally partitioned, from a logi-
cal point of view, in several linear address intervals called segments:*

Text segment
Includes the program’s executable code.

Initialized data segment
Contains the initialized data—that is, the static variables and the global vari-
ables whose initial values are stored in the executable file (because the program
must know their values at startup).

Uninitialized data segment (bss)
Contains the uninitialized data—that is, all global variables whose initial values
are not stored in the executable file (because the program sets the values before
referencing them); it is historically called a bss segment.

Stack segment
Contains the program stack, which includes the return addresses, parameters,
and local variables of the functions being executed.

Each mm_struct memory descriptor (see the section “The Memory Descriptor” in
Chapter 9) includes some fields that identify the role of a few crucial memory regions
of the corresponding process:

start_code, end_code
Store the initial and final linear addresses of the memory region that includes the
native code of the program—the code in the executable file.

start_data, end_data
Store the initial and final linear addresses of the memory region that includes the
native initialized data of the program, as specified in the executable file. The
fields identify a memory region that roughly corresponds to the data segment.

start_brk, brk
Store the initial and final linear addresses of the memory region that includes the
dynamically allocated memory areas of the process (see the section “Managing
the Heap” in Chapter 9). This memory region is sometimes called the heap.

start_stack
Stores the address right above that of main()’s return address; as illustrated in
Figure 20-1, higher addresses are reserved (recall that stacks grow toward lower
addresses).

* The word “segment” has historical roots, because the first Unix systems implemented each linear address
interval with a different segment register. Linux, however, does not rely on the segmentation mechanism of
the 80x86 microprocessors to implement program segments.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executable Files | 819

arg_start, arg_end
Store the initial and final addresses of the stack portion containing the com-
mand-line arguments.

env_start, env_end
Store the initial and final addresses of the stack portion containing the environ-
ment strings.

Notice that shared libraries and file memory mapping have made the classification of
the process’s address space based on program segments obsolete, because each of the
shared libraries is mapped into a different memory region from those discussed in
the preceding list.

Flexible memory region layout

The flexible memory region layout has been introduced in the kernel version 2.6.9:
essentially, each process gets a memory layout that depends on how much the User
Mode stack is expected to grow. However, the old, classical layout can still be used
(mainly when the kernel cannot put a limit on the size of the User Mode stack of a
process). Both layouts are described in Table 20-4, assuming the 80x86 architecture
with the default User Mode address space spanning up to 3 GB.

As you can see, the layouts differ only on the position of the memory regions for file
memory mappings and anonymous mappings. In the classical layout, these regions
are placed starting at one-third of the whole User Mode address space, usually at
0x40000000; newer regions are added at higher linear addresses, thus the regions
expand towards the User Mode stack.

Conversely, in the flexible layout the memory regions for file memory mapping and
anonymous mappings are placed near the end of the User Mode stack; newer regions
are added at lower linear addresses, thus the regions expand towards the heap.
Remember that the stack grows towards lower addresses, too.

The kernel typically uses the flexible layout when it can get a limit on the size of
the User Mode stack by means of the RLIMIT_STACK resource limit (see the section

Table 20-4. The memory region layouts in the 80x86 architecture

Type of memory region Classical layout Flexible layout

Text segment (ELF) Starts from 0x08048000

Data and bss segments Starts right after the text segment

Heap Starts right after the data and bss segments

File memory mappings and
anonymous memory regions

Starts from 0x40000000 (this address cor-
responds to 1/3 of the whole User Mode
address space); libraries added at succes-
sively higher addresses

Starts near the end (lowest address) of the
User Mode stack; libraries added at succes-
sively lower addresses

User Mode stack Starts at 0xc0000000 and grows towards lower addresses

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

820 | Chapter 20: Program Execution

“Process Resource Limits” in Chapter 3). This limit determines the size of the lin-
ear address space reserved for the stack; however, this size cannot be smaller than
128 MB or larger than 2.5 GB.

On the other hand, if either the RLIMIT_STACK resource limit is set to “infinity” or the
system administrator has set to 1 the sysctl_legacy_va_layout variable (by writing in
the /proc/sys/vm/legacy_va_layout file or by issuing the proper sysctl() system
call), the kernel cannot determine an upper bound on the size of the User Mode
stack, thus it sticks to the classical memory region layout.

Why has the flexible layout been introduced? Its main advantage is that it allows a
process to make better use of the User Mode linear address space. In the classical lay-
out the heap is limited to less than 1 GB, while the other memory regions can fill up
to about 2 GB (minus the stack size). In the flexible layout, these constraints are
gone: both the heap and the other memory regions can freely expand until all the lin-
ear addresses left unused by the User Mode stack and the program’s fixed-size seg-
ments are taken.

At this point, a small, practical experiment can be quite enlightening. Let’s write and
compile the following C program:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main()
{
 char cmd[32];
 brk((void *)0x8051000);
 sprintf(cmd, "cat /proc/self/maps");
 system(cmd);
 return 0;
}

Essentially, the program enlarges the heap of the process (see the section “Managing
the Heap” in Chapter 9), then it reads the maps file in the /proc special filesystem
that produces the list of memory regions of the process itself.

Let’s run the program without putting any limit on the stack size:

ulimit -s unlimited; /tmp/memorylayout
08048000-08049000 r-xp 00000000 03:03 5042408 /tmp/memorylayout
08049000-0804a000 rwxp 00000000 03:03 5042408 /tmp/memorylayout
0804a000-08051000 rwxp 0804a000 00:00 0
40000000-40014000 r-xp 00000000 03:03 620801 /lib/ld-2.3.2.so
40014000-40015000 rwxp 00013000 03:03 620801 /lib/ld-2.3.2.so
40015000-40016000 rwxp 40015000 00:00 0
4002f000-40157000 r-xp 00000000 03:03 620804 /lib/libc-2.3.2.so
40157000-4015b000 rwxp 00128000 03:03 620804 /lib/libc-2.3.2.so
4015b000-4015e000 rwxp 4015b000 00:00 0
bffeb000-c0000000 rwxp bffeb000 00:00 0
ffffe000-fffff000 ---p 00000000 00:00 0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executable Files | 821

(You might see a slightly different table, depending on the version of the C compiler
suite and on how the program has been linked.) The first two hexadecimal numbers
represent the extent of the memory region; they are followed by the permission flags;
finally, there is some information about the file mapped by the memory region, if
any: the starting offset inside the file, the block device number and the inode num-
ber, and the filename.

Notice that all regions listed are implemented by means of private memory map-
pings (the letter p in the permission column). This is not surprising because these
memory regions exist only to provide data to a process. While executing instruc-
tions, a process may modify the contents of these memory regions; however, the files
on disk associated with them stay unchanged. This is precisely how private memory
mappings act.

The memory region starting from 0x8048000 is a memory mapping associated with
the portion of the /tmp/memorylayout file ranging from byte 0 to byte 4,095. The per-
missions specify that the region is executable (it contains object code), read-only (it’s
not writable because the instructions don’t change during a run), and private. That’s
correct, because the region maps the text segment of the program.

The memory region starting from 0x8049000 is another memory mapping associated
with the same portion of /tmp/memorylayout ranging from byte 0 to byte 4,095. This
program is so small that the text, data, and bss segments of the program are included
in the same file’s page. Thus, the memory region containing the data and bss seg-
ments overlaps with the previous memory region in the linear address space.

The third memory region contains the heap of the process. Notice that it terminates
at the linear address 0x8051000 that was passed to the brk() system call.

The next two memory regions starting from 0x40000000 and 0x40014000 correspond
to the text segment and to the data and bss segments, respectively, of the dynamic
linker for the ELF shared libraries—/lib/ld-2.3.2.so on this system. The dynamic
linker is never executed alone: it is always memory-mapped inside the address space
of a process executing another program. The anonymous memory region starting
from 0x40015000 has been allocated by the dynamic linker.

On this system, the C library happens to be stored in the /lib/libc-2.3.2.so file. The
text segment and the data and bss segments of the C library are mapped into the next
two memory regions, starting from address 0x4002f000. Remember that page frames
included in private regions can be shared among several processes with the Copy On
Write mechanism, as long as they are not modified. Thus, because the text segment
is read-only, the page frames containing the executable code of the C library are
shared among almost all currently executing processes (all except the statically
linked ones). The anonymous memory region starting from 0x4015b000 has been allo-
cated by the C library.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

822 | Chapter 20: Program Execution

The anonymous memory region from 0xbffeb000 to 0xc0000000 is associated with the
User Mode stack. We already explained in the section “Page Fault Exception Han-
dler” in Chapter 9 how the stack is automatically expanded toward lower addresses
whenever necessary.

Finally, the one-page anonymous memory region from 0xffffe000 contains the vsy-
scall page of the process, which is accessed when issuing a system call and returning
from a signal handler (see the section “Issuing a System Call via the sysenter Instruc-
tion” in Chapter 10 and the section “Catching the Signal” in Chapter 11).

Now let’s run the same program by enforcing a limit on the size of the User Mode
stack:

ulimit -s 100; /tmp/memorylayout
08048000-08049000 r-xp 00000000 03:03 5042408 /tmp/memorylayout
08049000-0804a000 rwxp 00000000 03:03 5042408 /tmp/memorylayout
0804a000-08051000 rwxp 0804a000 00:00 0
b7ea3000-b7fcb000 r-xp 00000000 03:03 620804 /lib/libc-2.3.2.so
b7fcb000-b7fcf000 rwxp 00128000 03:03 620804 /lib/libc-2.3.2.so
b7fcf000-b7fd2000 rwxp b7fcf000 00:00 0
b7feb000-b7fec000 rwxp b7feb000 00:00 0
b7fec000-b8000000 r-xp 00000000 03:03 620801 /lib/ld-2.3.2.so
b8000000-b8001000 rwxp 00013000 03:03 620801 /lib/ld-2.3.2.so
bffeb000-c0000000 rwxp bffeb000 00:00 0
ffffe000-fffff000 ---p 00000000 00:00 0

Notice how the layout has changed: the dynamic linker has been mapped about
128 MB above the highest stack address. Furthermore, because the memory regions
of the C library have been created later, they get lower linear addresses.

Execution Tracing
Execution tracing is a technique that allows a program to monitor the execution of
another program. The traced program can be executed step by step, until a signal is
received, or until a system call is invoked. Execution tracing is widely used by debug-
gers, together with other techniques such as the insertion of breakpoints in the
debugged program and runtime access to its variables. We focus on how the kernel
supports execution tracing rather than discussing how debuggers work.

In Linux, execution tracing is performed through the ptrace() system call, which
can handle the commands listed in Table 20-5. Processes having the CAP_SYS_PTRACE
capability flag set are allowed to trace every process in the system except init. Con-
versely, a process P with no CAP_SYS_PTRACE capability is allowed to trace only pro-
cesses having the same owner as P. Moreover, a process cannot be traced by two
processes at the same time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executable Files | 823

The ptrace() system call modifies the parent field in the descriptor of the traced pro-
cess so that it points to the tracing process; therefore, the tracing process becomes
the effective parent of the traced one. When execution tracing terminates—i.e., when
ptrace() is invoked with the PTRACE_DETACH command—the system call sets p_pptr
to the value of real_parent, thus restoring the original parent of the traced process
(see the section “Relationships Among Processes” in Chapter 3).

Several monitored events can be associated with a traced program:

• End of execution of a single assembly language instruction

• Entering a system call

Table 20-5. The ptrace commands in the 80 × 86 architecture

Command Description

PTRACE_ATTACH Start execution tracing for another process

PTRACE_CONT Resume execution

PTRACE_DETACH Terminate execution tracing

PTRACE_GET_THREAD_AREA Get the Thread Local Storage (TLS) area on behalf of the traced process

PTRACE_GETEVENTMSG Get additional data from the traced process (e.g., the PID of a newly forked process)

PTRACE_GETFPREGS Read floating point registers

PTRACE_GETFPXREGS Read MMX and XMM registers

PTRACE_GETREGS Read privileged CPU’s registers

PTRACE_GETSIGINFO Get information on the last signal delivered to the traced process

PTRACE_KILL Kill the traced process

PTRACE_OLDSETOPTIONS Architecture-dependent command equivalent to PTRACE_SETOPTIONS

PTRACE_PEEKDATA Read a 32-bit value from the data segment

PTRACE_PEEKTEXT Read a 32-bit value from the text segment

PTRACE_PEEKUSR Read the CPU’s normal and debug registers

PTRACE_POKEDATA Write a 32-bit value into the data segment

PTRACE_POKETEXT Write a 32-bit value into the text segment

PTRACE_POKEUSR Write the CPU’s normal and debug registers

PTRACE_SET_THREAD_AREA Set the Thread Local Storage (TLS) area on behalf of the traced process

PTRACE_SETFPREGS Write floating point registers

PTRACE_SETFPXREGS Write MMX and XMM registers

PTRACE_SETOPTIONS Modify ptrace() behavior

PTRACE_SETREGS Write privileged CPU’s registers

PTRACE_SETSIGINFO Forge the information on the last signal delivered to the traced process

PTRACE_SINGLESTEP Resume execution for a single assembly language instruction

PTRACE_SYSCALL Resume execution until the next system call boundary

PTRACE_TRACEME Start execution tracing for the current process

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

824 | Chapter 20: Program Execution

• Exiting from a system call

• Receiving a signal

When a monitored event occurs, the traced program is stopped and a SIGCHLD signal
is sent to its parent. When the parent wishes to resume the child’s execution, it can
use one of the PTRACE_CONT, PTRACE_SINGLESTEP, and PTRACE_SYSCALL commands,
depending on the kind of event it wants to monitor.

The PTRACE_CONT command simply resumes execution; the child executes until it
receives another signal. This kind of tracing is implemented by means of the PT_
PTRACED flag in the ptrace field of the process descriptor, which is checked by the do_
signal() function (see the section “Delivering a Signal” in Chapter 11).

The PTRACE_SINGLESTEP command forces the child process to execute the next assem-
bly language instruction, and then stops it again. This kind of tracing is imple-
mented on 80x86-based machines by means of the TF trap flag in the eflags register:
when it is on, a “Debug” exception is raised right after every assembly language
instruction. The corresponding exception handler just clears the flag, forces the cur-
rent process to stop, and sends a SIGCHLD signal to its parent. Notice that setting the
TF flag is not a privileged operation, so User Mode processes can force single-step
execution even without the ptrace() system call. The kernel checks the PT_DTRACE
flag in the process descriptor to keep track of whether the child process is being sin-
gle-stepped through ptrace().

The PTRACE_SYSCALL command causes the traced process to resume execution until a
system call is invoked. The process is stopped twice: the first time when the system
call starts and the second time when the system call terminates. This kind of tracing
is implemented by means of the TIF_SYSCALL_TRACE flag included in the flags field of
the thread_info structure of the process, which is checked in the system_call()
assembly language function (see the section “Issuing a System Call via the int $0x80
Instruction” in Chapter 10).

A process can also be traced using some debugging features of the Intel Pentium pro-
cessors. For example, the parent could set the values of the dr0, . . . , dr7 debug regis-
ters for the child by using the PTRACE_POKEUSR command. When an event monitored
by a debug register occurs, the CPU raises the “Debug” exception; the exception
handler can then suspend the traced process and send the SIGCHLD signal to the
parent.

Executable Formats
The standard Linux executable format is named Executable and Linking Format
(ELF). It was developed by Unix System Laboratories and is now the most widely
used format in the Unix world. Several well-known Unix operating systems, such as
System V Release 4 and Sun’s Solaris 2, have adopted ELF as their main executable
format.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executable Formats | 825

Older Linux versions supported another format named Assembler OUTput Format
(a.out); actually, there were several versions of that format floating around the Unix
world. It is seldom used now, because ELF is much more practical.

Linux supports many other different formats for executable files; in this way, it can
run programs compiled for other operating systems, such as MS-DOS EXE pro-
grams or BSD Unix’s COFF executables. A few executable formats, such as Java or
bash scripts, are platform-independent.

An executable format is described by an object of type linux_binfmt, which essen-
tially provides three methods:

load_binary
Sets up a new execution environment for the current process by reading the
information stored in an executable file.

load_shlib
Dynamically binds a shared library to an already running process; it is activated
by the uselib() system call.

core_dump
Stores the execution context of the current process in a file named core. This file,
whose format depends on the type of executable of the program being executed,
is usually created when a process receives a signal whose default action is
“dump” (see the section “Actions Performed upon Delivering a Signal” in
Chapter 11).

All linux_binfmt objects are included in a singly linked list, and the address of the
first element is stored in the formats variable. Elements can be inserted and removed
in the list by invoking the register_binfmt() and unregister_binfmt() functions.
The register_binfmt() function is executed during system startup for each execut-
able format compiled into the kernel. This function is also executed when a module
implementing a new executable format is being loaded, while the unregister_
binfmt() function is invoked when the module is unloaded.

The last element in the formats list is always an object describing the executable for-
mat for interpreted scripts. This format defines only the load_binary method. The
corresponding load_script() function checks whether the executable file starts with
the #! pair of characters. If so, it interprets the rest of the first line as the pathname of
another executable file and tries to execute it by passing the name of the script file as
a parameter.*

* It is possible to execute a script file even if it doesn’t start with the #! characters, as long as the file is written
in the language recognized by a command shell. In this case, however, the script is interpreted either by the
shell on which the user types the command or by the default Bourne shell sh; therefore, the kernel is not
directly involved.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

826 | Chapter 20: Program Execution

Linux allows users to register their own custom executable formats. Each such for-
mat may be recognized either by means of a magic number stored in the first 128
bytes of the file, or by a filename extension that identifies the file type. For example,
MS-DOS extensions consist of three characters separated from the filename by a dot:
the .exe extension identifies executable programs, while the .bat extension identifies
shell scripts.

When the kernel determines that the executable file has a custom format, it starts the
proper interpreter program. The interpreter program runs in User Mode, receives as
its parameter the pathname of the executable file, and carries on the computation. As
an example, an executable file containing a Java program is dealt by a java virtual
machine such as /usr/lib/java/bin/java.

The mechanism is similar to the script’s format, but it’s more powerful because it
doesn’t impose any restrictions on the custom format. To register a new format, the
user writes into the register file of the binfmt_misc special filesystem (usually
mounted on /proc/sys/fs/binfmt_misc) a string with the following format:

:name:type:offset:string:mask:interpreter:flags

where each field has the following meaning:

name
An identifier for the new format

type
The type of recognition (M for magic number, E for extension)

offset
The starting offset of the magic number inside the file

string
The byte sequence to be matched either in the magic number or in the extension

mask
The string to mask out some bits in string

interpreter
The full pathname of the interpreter program

flags
Some optional flags that control how the interpreter program has to be invoked

For example, the following command performed by the superuser enables the kernel
to recognize the Microsoft Windows executable format:

$ echo ':DOSWin:M:0:MZ:0xff:/usr/bin/wine:'
 > /proc/sys/fs/binfmt_misc/register

A Windows executable file has the MZ magic number in the first two bytes, and it is
executed by the /usr/bin/wine interpreter program.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Execution Domains | 827

Execution Domains
As mentioned in Chapter 1, a neat feature of Linux is its ability to execute files com-
piled for other operating systems. Of course, this is possible only if the files include
machine code for the same computer architecture on which the kernel is running.
Two kinds of support are offered for these “foreign” programs:

• Emulated execution: necessary to execute programs that include system calls
that are not POSIX-compliant

• Native execution: valid for programs whose system calls are totally POSIX-
compliant

Microsoft MS-DOS and Windows programs are emulated: they cannot be natively
executed, because they include APIs that are not recognized by Linux. An emulator
such as DOSemu or Wine (which appeared in the example at the end of the previ-
ous section) is invoked to translate each API call into an emulating wrapper function
call, which in turn uses the existing Linux system calls. Because emulators are mostly
implemented as User Mode applications, we don’t discuss them further.

On the other hand, POSIX-compliant programs compiled on operating systems other
than Linux can be executed without too much trouble, because POSIX operating sys-
tems offer similar APIs. (Actually, the APIs should be identical, although this is not
always the case.) Minor differences that the kernel must iron out usually refer to how
system calls are invoked or how the various signals are numbered. This information
is stored in execution domain descriptors of type exec_domain.

A process specifies its execution domain by setting the personality field of its
descriptor and storing the address of the corresponding exec_domain data structure in
the exec_domain field of the thread_info structure. A process can change its personal-
ity by issuing a suitable system call named personality(); typical values assumed by
the system call’s parameter are listed in Table 20-6. Programmers are not expected to
directly change the personality of their programs; instead, the personality() system
call should be issued by the glue code that sets up the execution context of the pro-
cess (see the next section).

Table 20-6. Personalities supported by the Linux kernel

Personality Operating system

PER_LINUX Standard execution domain

PER_LINUX_32BIT Linux with 32-bit physical addresses in 64-bit architectures

PER_LINUX_FDPIC Linux program in ELF FDPIC format

PER_SVR4 System V Release 4

PER_SVR3 System V Release 3

PER_SCOSVR3 SCO Unix Version 3.2

PER_OSR5 SCO OpenServer Release 5

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

828 | Chapter 20: Program Execution

The exec Functions
Unix systems provide a family of functions that replace the execution context of a
process with a new context described by an executable file. The names of these func-
tions start with the prefix exec, followed by one or two letters; therefore, a generic
function in the family is usually referred to as an exec function.

The exec functions are listed in Table 20-7; they differ in how the parameters are
interpreted.

The first parameter of each function denotes the pathname of the file to be exe-
cuted. The pathname can be absolute or relative to the process’s current directory.

PER_WYSEV386 Unix System V/386 Release 3.2.1

PER_ISCR4 Interactive Unix

PER_BSD BSD Unix

PER_SUNOS SunOS

PER_XENIX Xenix

PER_LINUX32 Emulation of Linux 32-bit programs in 64-bit architectures (using a 4 GB User Mode address
space)

PER_LINUX32_3GB Emulation of Linux 32-bit programs in 64-bit architectures (using a 3 GB User Mode address
space)

PER_IRIX32 SGI IRIX-5 32 bit

PER_IRIXN32 SGI IRIX-6 32 bit

PER_IRIX64 SGI IRIX-6 64 bit

PER_RISCOS RISC OS

PER_SOLARIS Sun’s Solaris

PER_UW7 SCO’s (formerly Caldera’s) UnixWare 7

PER_OSF4 Digital UNIX (Compaq Tru64 UNIX)

PER_HPUX Hewlett-Packard’s HP-UX

Table 20-7. The exec functions

Function name PATH search Command-line arguments Environment array

execl() No List No

execlp() Yes List No

execle() No List Yes

execv() No Array No

execvp() Yes Array No

execve() No Array Yes

Table 20-6. Personalities supported by the Linux kernel (continued)

Personality Operating system

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The exec Functions | 829

Moreover, if the name does not include any / characters, the execlp() and execvp()
functions search for the executable file in all directories specified by the PATH envi-
ronment variable.

Besides the first parameter, the execl(), execlp(), and execle() functions include a
variable number of additional parameters. Each points to a string describing a com-
mand-line argument for the new program; as the “l” character in the function names
suggests, the parameters are organized in a list terminated by a NULL value. Usually,
the first command-line argument duplicates the executable filename. Conversely, the
execv(), execvp(), and execve() functions specify the command-line arguments
with a single parameter; as the v character in the function names suggests, the
parameter is the address of a vector of pointers to command-line argument strings.
The last component of the array must be NULL.

The execle() and execve() functions receive as their last parameter the address of
an array of pointers to environment strings; as usual, the last component of the array
must be NULL. The other functions may access the environment for the new program
from the external environ global variable, which is defined in the C library.

All exec functions, with the exception of execve(), are wrapper routines defined in
the C library and use execve(), which is the only system call offered by Linux to deal
with program execution.

The sys_execve() service routine receives the following parameters:

• The address of the executable file pathname (in the User Mode address space).

• The address of a NULL-terminated array (in the User Mode address space) of
pointers to strings (again in the User Mode address space); each string repre-
sents a command-line argument.

• The address of a NULL-terminated array (in the User Mode address space) of
pointers to strings (again in the User Mode address space); each string repre-
sents an environment variable in the NAME=value format.

The function copies the executable file pathname into a newly allocated page frame.
It then invokes the do_execve() function, passing to it the pointers to the page frame,
to the pointer’s arrays, and to the location of the Kernel Mode stack where the User
Mode register contents are saved. In turn, do_execve() performs the following
operations:

1. Dynamically allocates a linux_binprm data structure, which will be filled with
data concerning the new executable file.

2. Invokes path_lookup(), dentry_open(), and path_release() to get the dentry
object, the file object, and the inode object associated with the executable file.
On failure, it returns the proper error code.

3. Verifies that the file is executable by the current process; also, checks that the file
is not being written by looking at the i_writecount field of the inode; stores –1 in
that field to forbid further write accesses.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

830 | Chapter 20: Program Execution

4. In multiprocessor systems, it invokes the sched_exec() function to determine the
least loaded CPU that can execute the new program and to migrate the current
process to it (see Chapter 7).

5. Invokes init_new_context() to check whether the current process was using a
custom Local Descriptor Table (see the section “The Linux LDTs” in Chapter 2);
in this case, the function allocates and fills a new LDT to be used by the new
program.

6. Invokes the prepare_binprm() function to fill the linux_binprm data structure.
This function, in turn, performs the following operations:

a. Checks again whether the file is executable (at least one execute access right
is set); if not, returns an error code. (The previous check in step 3 is not suf-
ficient because a process with the CAP_DAC_OVERRIDE capability set always sat-
isfies the check; see the section “Process Credentials and Capabilities”
earlier in this chapter).

b. Initializes the e_uid and e_gid fields of the linux_binprm structure, taking
into account the values of the setuid and setgid flags of the executable file.
These fields represent the effective user and group IDs, respectively. Also
checks process capabilities (a compatibility hack explained in the earlier sec-
tion “Process Credentials and Capabilities”).

c. Fills the buf field of the linux_binprm structure with the first 128 bytes of the
executable file. These bytes include the magic number of the executable for-
mat and other information suitable for recognizing the executable file.

7. Copies the file pathname, command-line arguments, and environment strings
into one or more newly allocated page frames. (Eventually, they are assigned to
the User Mode address space.)

8. Invokes the search_binary_handler() function, which scans the formats list and
tries to apply the load_binary method of each element, passing to it the linux_
binprm data structure. The scan of the formats list terminates as soon as a load_
binary method succeeds in acknowledging the executable format of the file.

9. If the executable file format is not present in the formats list, it releases all allo-
cated page frames and returns the error code -ENOEXEC. Linux cannot recognize
the executable file format.

10. Otherwise, the function releases the linux_binprm data structure and returns the
code obtained from the load_binary method associated with the executable for-
mat of the file.

The load_binary method corresponding to an executable file format performs the fol-
lowing operations (we assume that the executable file is stored on a filesystem that
allows file memory mapping and that it requires one or more shared libraries):

1. Checks some magic numbers stored in the first 128 bytes of the file to identify the
executable format. If the magic numbers don’t match, it returns the error code -
ENOEXEC.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The exec Functions | 831

2. Reads the header of the executable file. This header describes the program’s seg-
ments and the shared libraries requested.

3. Gets from the executable file the pathname of the dynamic linker, which is used
to locate the shared libraries and map them into memory.

4. Gets the dentry object (as well as the inode object and the file object) of the
dynamic linker.

5. Checks the execution permissions of the dynamic linker.

6. Copies the first 128 bytes of the dynamic linker into a buffer.

7. Performs some consistency checks on the dynamic linker type.

8. Invokes the flush_old_exec() function to release almost all resources used by the
previous computation; in turn, this function performs the following operations:

a. If the table of signal handlers is shared with other processes, it allocates a
new table and decrements the usage counter of the old one; moreover, it
detaches the process from the old thread group (see the section “Identifying
a Process” in Chapter 3). All of this is done by invoking the de_thread()
function.

b. Invokes unshare_files() to make a copy of the files_struct structure con-
taining the open files of the process, if it is shared with other processes (see
the section “Files Associated with a Process” in Chapter 12).

c. Invokes the exec_mmap() function to release the memory descriptor, all
memory regions, and all page frames assigned to the process and to clean up
the process’s Page Tables.

d. Sets the comm field of the process descriptor with the executable file
pathname.

e. Invokes the flush_thread() function to clear the values of the floating point
registers and debug registers saved in the TSS segment.

f. Updates the table of signal handlers by resetting each signal to its default
action. This is done by invoking the flush_signal_handlers() function.

g. Invokes the flush_old_files() function to close all open files having the
corresponding flag in the files->close_on_exec field of the process descrip-
tor set (see the section “Files Associated with a Process” in Chapter 12).*

Now we have reached the point of no return: the function cannot restore the
previous computation if something goes wrong.

9. Clears the PF_FORKNOEXEC flag in the process descriptor. This flag, which is set
when a process is forked and cleared when it executes a new program, is
required for process accounting.

* These flags can be read and modified by means of the fcntl() system call.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

832 | Chapter 20: Program Execution

10. Sets up the new personality of the process—that is, the personality field in the
process descriptor.

11. Invokes arch_pick_mmap_layout() to select the layout of the memory regions of
the process (see the section “Program Segments and Process Memory Regions”
earlier in this chapter).

12. Invokes the setup_arg_pages() function to allocate a new memory region
descriptor for the process’s User Mode stack and to insert that memory region
into the process’s address space. setup_arg_pages() also assigns the page frames
containing the command-line arguments and the environment variable strings to
the new memory region.

13. Invokes the do_mmap() function to create a new memory region that maps the
text segment (that is, the code) of the executable file. The initial linear address of
the memory region depends on the executable format, because the program’s
executable code is usually not relocatable. Therefore, the function assumes that
the text segment is loaded starting from some specific logical address offset (and
thus from some specified linear address). ELF programs are loaded starting from
linear address 0x08048000.

14. Invokes the do_mmap() function to create a new memory region that maps the
data segment of the executable file. Again, the initial linear address of the mem-
ory region depends on the executable format, because the executable code
expects to find its variables at specified offsets (that is, at specified linear
addresses). In an ELF program, the data segment is loaded right after the text
segment.

15. Allocates additional memory regions for every other specialized segments of the
executable file. Usually, there are none.

16. Invokes a function that loads the dynamic linker. If the dynamic linker is an ELF
executable, the function is named load_elf_interp(). In general, the function
performs the operations in steps 12 through 14, but for the dynamic linker
instead of the file to be executed. The initial addresses of the memory regions
that will include the text and data of the dynamic linker are specified by the
dynamic linker itself; however, they are very high (usually above 0x40000000) to
avoid collisions with the memory regions that map the text and data of the file to
be executed (see the earlier section “Program Segments and Process Memory
Regions”).

17. Stores in the binfmt field of the process descriptor the address of the linux_
binfmt object of the executable format.

18. Determines the new capabilities of the process.

19. Creates specific dynamic linker tables and stores them on the User Mode stack
between the command-line arguments and the array of pointers to environment
strings (see Figure 20-1).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The exec Functions | 833

20. Sets the values of the start_code, end_code, start_data, end_data, start_brk, brk,
and start_stack fields of the process’s memory descriptor.

21. Invokes the do_brk() function to create a new anonymous memory region map-
ping the bss segment of the program. (When the process writes into a variable, it
triggers demand paging, and thus the allocation of a page frame.) The size of this
memory region was computed when the executable program was linked. The
initial linear address of the memory region must be specified, because the pro-
gram’s executable code is usually not relocatable. In an ELF program, the bss
segment is loaded right after the data segment.

22. Invokes the start_thread() macro to modify the values of the User Mode reg-
isters eip and esp saved on the Kernel Mode stack, so that they point to the
entry point of the dynamic linker and to the top of the new User Mode stack,
respectively.

23. If the process is being traced, it notifies the debugger about the completion of
the execve() system call.

24. Returns the value 0 (success).

When the execve() system call terminates and the calling process resumes its execu-
tion in User Mode, the execution context is dramatically changed: the code that
invoked the system call no longer exists. In this sense, we could say that execve()
never returns on success. Instead, a new program to be executed is mapped in the
address space of the process.

However, the new program cannot yet be executed, because the dynamic linker must
still take care of loading the shared libraries.*

Although the dynamic linker runs in User Mode, we briefly sketch out here how it
operates. Its first job is to set up a basic execution context for itself, starting from the
information stored by the kernel in the User Mode stack between the array of point-
ers to environment strings and arg_start. Then the dynamic linker must examine the
program to be executed to identify which shared libraries must be loaded and which
functions in each shared library are effectively requested. Next, the interpreter issues
several mmap() system calls to create memory regions mapping the pages that will
hold the library functions (text and data) actually used by the program. Then the
interpreter updates all references to the symbols of the shared library, according to
the linear addresses of the library’s memory regions. Finally, the dynamic linker ter-
minates its execution by jumping to the main entry point of the program to be exe-
cuted. From now on, the process will execute the code of the executable file and of
the shared libraries.

* Things are much simpler if the executable file is statically linked—that is, if no shared library is requested.
The load_binary method simply maps the text, data, bss, and stack segments of the program into the process
memory regions, and then sets the User Mode eip register to the entry point of the new program.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

834 | Chapter 20: Program Execution

As you may have noticed, executing a program is a complex activity that involves
many facets of kernel design, such as process abstraction, memory management, sys-
tem calls, and filesystems. It is the kind of topic that makes you realize what a mar-
velous piece of work Linux is!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

835

Appendix A APPENDIX A

System Startup

This appendix explains what happens right after users switch on their computers—
that is, how a Linux kernel image is copied into memory and executed. In short, we
discuss how the kernel, and thus the whole system, is “bootstrapped.”

Traditionally, the term bootstrap refers to a person who tries to stand up by pulling
his own boots. In operating systems, the term denotes bringing at least a portion of
the operating system into main memory and having the processor execute it. It also
denotes the initialization of kernel data structures, the creation of some user pro-
cesses, and the transfer of control to one of them.

Computer bootstrapping is a tedious, long task, because initially, nearly every hard-
ware device, including the RAM, is in a random, unpredictable state. Moreover, the
bootstrap process is highly dependent on the computer architecture; as usual in this
book, we refer to the 80 × 86 architecture.

Prehistoric Age: the BIOS
The moment after a computer is powered on, it is practically useless because the
RAM chips contain random data and no operating system is running. To begin the
boot, a special hardware circuit raises the logical value of the RESET pin of the CPU.
After RESET is asserted, some registers of the processor (including cs and eip) are set
to fixed values, and the code found at physical address 0xfffffff0 is executed. This
address is mapped by the hardware to a certain read-only, persistent memory chip
that is often called Read-Only Memory (ROM). The set of programs stored in ROM
is traditionally called the Basic Input/Output System (BIOS) in the 80 × 86 architec-
ture, because it includes several interrupt-driven low-level procedures used by all
operating systems in the booting phase to handle the hardware devices that make up
the computer. Some operating systems, such as Microsoft’s MS-DOS, rely on BIOS
to implement most system calls.

Once in protected mode (see the section “Segmentation in Hardware” in Chapter 2),
Linux does not use BIOS any longer, but it provides its own device driver for every

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

836 | Appendix A: System Startup

hardware device on the computer. In fact, the BIOS procedures must be executed in
real mode, so they cannot share functions even if that would be beneficial.

The BIOS uses Real Mode addresses because they are the only ones available when
the computer is turned on. A Real Mode address is composed of a seg segment and
an off offset; the corresponding physical address is given by seg*16+off. As a result,
no Global Descriptor Table, Local Descriptor Table, or paging table is needed by the
CPU addressing circuit to translate a logical address into a physical one. Clearly, the
code that initializes the GDT, LDT, and paging tables must run in Real Mode.

Linux is forced to use BIOS in the bootstrapping phase, when it must retrieve the
kernel image from disk or from some other external device. The BIOS bootstrap pro-
cedure essentially performs the following four operations:

1. Executes a series of tests on the computer hardware to establish which devices
are present and whether they are working properly. This phase is often called
Power-On Self-Test (POST). During this phase, several messages, such as the
BIOS version banner, are displayed.

Recent 80 × 86, AMD64, and Itanium computers make use of the Advanced Con-
figuration and Power Interface (ACPI) standard. The bootstrap code in an ACPI-
compliant BIOS builds several tables that describe the hardware devices present
in the system. These tables have a vendor-independent format and can be read
by the operating system kernel to learn how to handle the devices.

2. Initializes the hardware devices. This phase is crucial in modern PCI-based archi-
tectures, because it guarantees that all hardware devices operate without con-
flicts on the IRQ lines and I/O ports. At the end of this phase, a table of installed
PCI devices is displayed.

3. Searches for an operating system to boot. Actually, depending on the BIOS set-
ting, the procedure may try to access (in a predefined, customizable order) the first
sector (boot sector) of every floppy disk, hard disk, and CD-ROM in the system.

4. As soon as a valid device is found, it copies the contents of its first sector into
RAM, starting from physical address 0x00007c00, and then jumps into that
address and executes the code just loaded.

The rest of this appendix takes you from the most primitive starting state to the full
glory of a running Linux system.

Ancient Age: the Boot Loader
The boot loader is the program invoked by the BIOS to load the image of an operat-
ing system kernel into RAM. Let’s briefly sketch how boot loaders work in IBM’s PC
architecture.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ancient Age: the Boot Loader | 837

To boot from a floppy disk, the instructions stored in its first sector are loaded in
RAM and executed; these instructions copy all the remaining sectors containing the
kernel image into RAM.

Booting from a hard disk is done differently. The first sector of the hard disk, named
the Master Boot Record (MBR), includes the partition table* and a small program,
which loads the first sector of the partition containing the operating system to be
started. Some operating systems, such as Microsoft Windows 98, identify this parti-
tion by means of an active flag included in the partition table;† following this
approach, only the operating system whose kernel image is stored in the active parti-
tion can be booted. As we will see later, Linux is more flexible because it replaces the
rudimentary program included in the MBR with a sophisticated program—the “boot
loader”—that allows users to select the operating system to be booted.

Kernel images of earlier Linux versions—up to the 2.4 series—included a minimal
“boot loader” program in the first 512 bytes; thus, copying a kernel image starting
from the first sector made the floppy bootable. On the other hand, kernel images of
Linux 2.6 no longer include such boot loader; thus, in order to boot from floppy
disk, a suitable boot loader has to be stored in the first disk sector. Nowadays, boot-
ing from a floppy is very similar to booting from a hard disk or from a CD-ROM.

Booting Linux from a Disk
A two-stage boot loader is required to boot a Linux kernel from disk. A well-known
Linux boot loader on 80 × 86 systems is named LInux LOader (LILO). Other boot
loaders for 80 × 86 systems do exist; for instance, the GRand Unified Bootloader
(GRUB) is also widely used. GRUB is more advanced than LILO, because it recog-
nizes several disk-based filesystems and is thus capable of reading portions of the
boot program from files. Of course, specific boot loader programs exist for all archi-
tectures supported by Linux.

LILO may be installed either on the MBR (replacing the small program that loads the
boot sector of the active partition) or in the boot sector of every disk partition. In
both cases, the final result is the same: when the loader is executed at boot time, the
user may choose which operating system to load.

Actually, the LILO boot loader is too large to fit into a single sector, thus it is broken
into two parts. The MBR or the partition boot sector includes a small boot loader,
which is loaded into RAM starting from address 0x00007c00 by the BIOS. This small
program moves itself to the address 0x00096a00, sets up the Real Mode stack (ranging

* Each partition table entry typically includes the starting and ending sectors of a partition and the kind of
operating system that handles it.

† The active flag may be set through programs such as fdisk.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

838 | Appendix A: System Startup

from 0x00098000 to 0x000969ff), loads the second part of the LILO boot loader into
RAM starting from address 0x00096c00, and jumps into it.

In turn, this latter program reads a map of bootable operating systems from disk and
offers the user a prompt so she can choose one of them. Finally, after the user has
chosen the kernel to be loaded (or let a time-out elapse so that LILO chooses a
default), the boot loader may either copy the boot sector of the corresponding parti-
tion into RAM and execute it or directly copy the kernel image into RAM.

Assuming that a Linux kernel image must be booted, the LILO boot loader, which
relies on BIOS routines, performs essentially the following operations:

1. Invokes a BIOS procedure to display a “Loading” message.

2. Invokes a BIOS procedure to load an initial portion of the kernel image from
disk: the first 512 bytes of the kernel image are put in RAM at address
0x00090000, while the code of the setup() function (see below) is put in RAM
starting from address 0x00090200.

3. Invokes a BIOS procedure to load the rest of the kernel image from disk and puts
the image in RAM starting from either low address 0x00010000 (for small kernel
images compiled with make zImage) or high address 0x00100000 (for big kernel
images compiled with make bzImage). In the following discussion, we say that the
kernel image is “loaded low” or “loaded high” in RAM, respectively. Support for
big kernel images uses essentially the same booting scheme as the other one, but
it places data in different physical memory addresses to avoid problems with the
ISA hole mentioned in the section “Physical Memory Layout” in Chapter 2.

4. Jumps to the setup() code.

Middle Ages: the setup() Function
The code of the setup() assembly language function has been placed by the linker at
offset 0x200 of the kernel image file. The boot loader can therefore easily locate the
code and copy it into RAM, starting from physical address 0x00090200.

The setup() function must initialize the hardware devices in the computer and set
up the environment for the execution of the kernel program. Although the BIOS
already initialized most hardware devices, Linux does not rely on it, but reinitializes
the devices in its own manner to enhance portability and robustness. setup() per-
forms essentially the following operations:

1. In ACPI-compliant systems, it invokes a BIOS routine that builds a table in RAM
describing the layout of the system’s physical memory (the table can be seen in
the boot kernel messages by looking for the “BIOS-e820” label). In older sys-
tems, it invokes a BIOS routine that just returns the amount of RAM available in
the system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Renaissance: the startup_32() Functions | 839

2. Sets the keyboard repeat delay and rate. (When the user keeps a key pressed past
a certain amount of time, the keyboard device sends the corresponding keycode
over and over to the CPU.)

3. Initializes the video adapter card.

4. Reinitializes the disk controller and determines the hard disk parameters.

5. Checks for an IBM Micro Channel bus (MCA).

6. Checks for a PS/2 pointing device (bus mouse).

7. Checks for Advanced Power Management (APM) BIOS support.

8. If the BIOS supports the Enhanced Disk Drive Services (EDD), it invokes the
proper BIOS procedure to build a table in RAM describing the hard disks avail-
able in the system. (The information included in the table can be seen by read-
ing the files in the firmware/edd directory of the sysfs special filesystem.)

9. If the kernel image was loaded low in RAM (at physical address 0x00010000), the
function moves it to physical address 0x00001000. Conversely, if the kernel image
was loaded high in RAM, the function does not move it. This step is necessary
because to be able to store the kernel image on a floppy disk and to reduce the
booting time, the kernel image stored on disk is compressed, and the decom-
pression routine needs some free space to use as a temporary buffer following
the kernel image in RAM.

10. Sets the A20 pin located on the 8042 keyboard controller. The A20 pin is a hack
introduced in the 80286-based systems to make physical addresses compatible
with those of the ancient 8088 microprocessors. Unfortunately, the A20 pin
must be properly set before switching to Protected Mode, otherwise the 21st bit
of every physical address will always be regarded as zero by the CPU. Setting the
A20 pin is a messy operation.

11. Sets up a provisional Interrupt Descriptor Table (IDT) and a provisional Global
Descriptor Table (GDT).

12. Resets the floating-point unit (FPU), if any.

13. Reprograms the Programmable Interrupt Controllers (PIC) to mask all inter-
rupts, except IRQ2 which is the cascading interrupt between the two PICs.

14. Switches the CPU from Real Mode to Protected Mode by setting the PE bit in the
cr0 status register. The PG bit in the cr0 register is cleared, so paging is still
disabled.

15. Jumps to the startup_32() assembly language function.

Renaissance: the startup_32() Functions
There are two different startup_32() functions; the one we refer to here is coded in
the arch/i386/boot/compressed/head.S file. After setup() terminates, the function has

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

840 | Appendix A: System Startup

been moved either to physical address 0x00100000 or to physical address 0x00001000,
depending on whether the kernel image was loaded high or low in RAM.

This function performs the following operations:

1. Initializes the segmentation registers and a provisional stack.

2. Clears all bits in the eflags register.

3. Fills the area of uninitialized data of the kernel identified by the _edata and _end
symbols with zeros (see the section “Physical Memory Layout” in Chapter 2).

4. Invokes the decompress_kernel() function to decompress the kernel image. The
“Uncompressing Linux...” message is displayed first. After the kernel image is
decompressed, the “OK, booting the kernel.” message is shown. If the kernel
image was loaded low, the decompressed kernel is placed at physical address
0x00100000. Otherwise, if the kernel image was loaded high, the decompressed
kernel is placed in a temporary buffer located after the compressed image. The
decompressed image is then moved into its final position, which starts at physi-
cal address 0x00100000.

5. Jumps to physical address 0x00100000.

The decompressed kernel image begins with another startup_32() function included
in the arch/i386/kernel/head.S file. Using the same name for both the functions does
not create any problems (besides confusing our readers), because both functions are
executed by jumping to their initial physical addresses.

The second startup_32() function sets up the execution environment for the first
Linux process (process 0). The function performs the following operations:

1. Initializes the segmentation registers with their final values.

2. Fills the bss segment of the kernel (see the section “Program Segments and Pro-
cess Memory Regions” in Chapter 20) with zeros.

3. Initializes the provisional kernel Page Tables contained in swapper_pg_dir and
pg0 to identically map the linear addresses to the same physical addresses, as
explained in the section “Kernel Page Tables” in Chapter 2.

4. Stores the address of the Page Global Directory in the cr3 register, and enables
paging by setting the PG bit in the cr0 register.

5. Sets up the Kernel Mode stack for process 0 (see the section “Kernel Threads” in
Chapter 3).

6. Once again, the function clears all bits in the eflags register.

7. Invokes setup_idt() to fill the IDT with null interrupt handlers (see the section
“Preliminary Initialization of the IDT” in Chapter 4).

8. Puts the system parameters obtained from the BIOS and the parameters passed
to the operating system into the first page frame (see the section “Physical Mem-
ory Layout” in Chapter 2).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Modern Age: the start_kernel() Function | 841

9. Identifies the model of the processor.

10. Loads the gdtr and idtr registers with the addresses of the GDT and IDT tables.

11. Jumps to the start_kernel() function.

Modern Age: the start_kernel() Function
The start_kernel() function completes the initialization of the Linux kernel. Nearly
every kernel component is initialized by this function; we mention just a few of
them:

• The scheduler is initialized by invoking the sched_init() function (see
Chapter 7).

• The memory zones are initialized by invoking the build_all_zonelists() func-
tion (see the section “Memory Zones” in Chapter 8).

• The Buddy system allocators are initialized by invoking the page_alloc_init()
and mem_init() functions (see the section “The Buddy System Algorithm” in
Chapter 8).

• The final initialization of the IDT is performed by invoking trap_init() (see the
section “Exception Handling” in Chapter 4) and init_IRQ() (see the section
“IRQ data structures” in Chapter 4).

• The TASKLET_SOFTIRQ and HI_SOFTIRQ are initialized by invoking the softirq_
init() function (see the section “Softirqs” in Chapter 4).

• The system date and time are initialized by the time_init() function (see the
section “The Linux Timekeeping Architecture” in Chapter 6).

• The slab allocator is initialized by the kmem_cache_init() function (see the sec-
tion “General and Specific Caches” in Chapter 8).

• The speed of the CPU clock is determined by invoking the calibrate_delay()
function (see the section “Delay Functions” in Chapter 6).

• The kernel thread for process 1 is created by invoking the kernel_thread() func-
tion. In turn, this kernel thread creates the other kernel threads and executes the
/sbin/init program, as described in the section “Kernel Threads” in Chapter 3.

Besides the “Linux version 2.6.11...” message, which is displayed right after the
beginning of start_kernel(), many other messages are displayed in this last phase,
both by the init program and by the kernel threads. At the end, the familiar login
prompt appears on the console (or in the graphical screen, if the X Window System
is launched at startup), telling the user that the Linux kernel is up and running.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

842

Appendix BAPPENDIX B

Modules

As stated in Chapter 1, modules are Linux’s recipe for effectively achieving many of the
theoretical advantages of microkernels without introducing performance penalties.

To Be (a Module) or Not to Be?
When system programmers want to add new functionality to the Linux kernel, they
are faced with a basic decision: should they write the new code so that it will be com-
piled as a module, or should they statically link the new code to the kernel?

As a general rule, system programmers tend to implement new code as a module.
Because modules can be linked on demand (as we see later), the kernel does not have
to be bloated with hundreds of seldom-used programs. Nearly every higher-level
component of the Linux kernel—filesystems, device drivers, executable formats, net-
work layers, and so on—can be compiled as a module. Linux distributions use mod-
ules extensively in order to support in a seamless way a wide range of hardware
devices. For instance, the distribution puts tens of sound card driver modules in a
proper directory, although only one of these modules will be effectively loaded on a
specific machine.

However, some Linux code must necessarily be linked statically, which means that
either the corresponding component is included in the kernel or it is not compiled at
all. This happens typically when the component requires a modification to some data
structure or function statically linked in the kernel.

For example, suppose the component has to introduce new fields into the process
descriptor. Linking a module cannot change an already defined data structure such
as task_struct because, even if the module uses its modified version of the data
structure, all statically linked code continues to see the old version. Data corruption
easily occurs. A partial solution to the problem consists of “statically” adding the
new fields to the process descriptor, thus making them available to the kernel com-
ponent no matter how it has been linked. However, if the kernel component is never

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

To Be (a Module) or Not to Be? | 843

used, such extra fields replicated in every process descriptor are a waste of memory.
If the new kernel component increases the size of the process descriptor a lot, one
would get better system performance by adding the required fields in the data struc-
ture only if the component is statically linked to the kernel.

As a second example, consider a kernel component that has to replace statically
linked code. It’s pretty clear that no such component can be compiled as a module,
because the kernel cannot change the machine code already in RAM when linking
the module. For instance, it is not possible to link a module that changes the way
page frames are allocated, because the Buddy system functions are always statically
linked to the kernel.*

The kernel has two key tasks to perform in managing modules. The first task is mak-
ing sure the rest of the kernel can reach the module’s global symbols, such as the
entry point to its main function. A module must also know the addresses of symbols
in the kernel and in other modules. Thus, references are resolved once and for all
when a module is linked. The second task consists of keeping track of the use of
modules, so that no module is unloaded while another module or another part of the
kernel is using it. A simple reference count keeps track of each module’s usage.

Module Licenses
The license of the Linux kernel (GPL, version 2) is liberal in what users and indus-
tries can do with the source code; however, it strictly forbids the release of source
code derived from—or heavily depending on—the Linux code under a non-GPL
license. Essentially, the kernel developers want to be sure that their code—and all
the code derived from it—will remain freely usable by all users.

Modules, however, pose a threat to this model. Someone might release a module for
the Linux kernel in binary form only; for instance, a vendor might distribute the
driver for its hardware device in a binary-only module. Nowadays, there are quite a
few examples of these practices. Theoretically, characteristics and behavior of the
Linux kernel might be significantly changed by binary-only modules, thus effectively
turning a Linux-derived kernel in a commercial product.

Thus, binary-only modules are not well received by the Linux kernel developer com-
munity. The implementation of Linux modules reflect this fact. Basically, each mod-
ule developer should specify in the module source code the type of license, by using
the MODULE_LICENSE macro. If the license is not GPL-compatible (or it is not specified
at all), the module will not be able to make use of many core functions and data
structures of the kernel. Moreover, using a module with a non-GPL license will

* You might wonder why your favorite kernel component has not been modularized. In most cases, there is
no strong technical reason because it is essentially a software license issue. Kernel developers want to make
sure that core components will never be replaced by proprietary code released through binary-only “black-
box” modules.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

844 | Appendix B: Modules

“taint” the kernel, which means that any supposed bug in the kernel will not be
taken in consideration by the kernel developers.

Module Implementation
Modules are stored in the filesystem as ELF object files and are linked to the kernel
by executing the insmod program (see the later section, “Linking and Unlinking
Modules”). For each module, the kernel allocates a memory area containing the fol-
lowing data:

• A module object

• A null-terminated string that represents the name of the module (all modules
must have unique names)

• The code that implements the functions of the module

The module object describes a module; its fields are shown in Table B-1. A doubly
linked circular list collects all module objects; the list head is stored in the modules
variable, while the pointers to the adjacent elements are stored in the list field of
each module object.

Table B-1. The module object

Type Name Description

enum module_state state The internal state of the module

struct list_head list Pointers for the list of modules

char [60] name The module name

struct
module_kobject

mkobj Includes a kobject data structure and a pointer
to this module object

struct
module_param_attrs *

param_attrs Pointer to an array of module parameter descrip-
tors

const struct
kernel_symbol *

syms Pointer to an array of exported symbols

unsigned int num_syms Number of exported symbols

const unsigned long * crcs Pointer to an array of CRC values for the exported
symbols

const struct
kernel_symbol *

gpl_syms Pointer to an array of GPL-exported symbols

unsigned int num_gpl_syms Number of GPL-exported symbols

const unsigned long * gpl_crcs Pointer to an array of CRC values for the GPL-
exported symbols

unsigned int num_exentries Number of entries in the module’s exception table

const struct
exception_table_entry *

extable Pointer to the module’s exception table

int (*)(void) init The initialization method of the module

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Module Implementation | 845

The state field encodes the internal state of the module: it can be MODULE_STATE_LIVE
(the module is active), MODULE_STATE_COMING (the module is being initialized), and
MODULE_STATE_GOING (the module is being removed).

As already mentioned in the section “Dynamic Address Checking: The Fix-up Code”
in Chapter 10, each module has its own exception table. The table includes the
addresses of the fixup code of the module, if any. The table is copied into RAM when
the module is linked, and its starting address is stored in the extable field of the
module object.

void * module_init Pointer to the dynamic memory area allocated for
module’s initialization

void * module_core Pointer to the dynamic memory area allocated for
module’s core functions and data structures

unsigned long init_size Size of the dynamic memory area required for
module’s initialization

unsigned long core_size Size of the dynamic memory area required for
module’s core functions and data structures

unsigned long init_text_size Size of the executable code used for module’s ini-
tialization; used only when linking the module

unsigned long core_text_size Size of the core executable code of the module;
used only when linking the module

struct
mod_arch_specific

arch Architecture-dependent fields (none in the
80 × 86 architecture)

int unsafe Flag set if the module cannot be safely unloaded

int license_gplok Flag set if the module license is GPL-compatible

struct
module_ref [NR_CPUS]

ref Per-CPU usage counters

struct list_head modules_which_
use_me

List of modules that rely on this module

struct task_struct * waiter The process that is trying to unload the module

void (*)(void) exit Exit method of the module

Elf_Sym * symtab Pointer to an array of module’s ELF symbols for
the /proc/kallsyms file

unsigned long num_symtab Number of module’s ELF symbols shown in /proc/
kallsyms

char * strtab The string table for the module’s ELF symbols
shown in /proc/kallsyms

struct
module_sect_attrs *

sect_attrs Pointer to an array of module’s section attribute
descriptors (displayed in the sysfs filesystem)

void * percpu Pointer to CPU-specific memory areas

char * args Command line arguments used when linking the
module

Table B-1. The module object (continued)

Type Name Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

846 | Appendix B: Modules

Module Usage Counters
Each module has a set of usage counters, one for each CPU, stored in the ref field of
the corresponding module object. The counter is increased when an operation involv-
ing the module’s functions is started and decreased when the operation terminates. A
module can be unlinked only if the sum of all usage counters is 0.

For example, suppose that the MS-DOS filesystem layer is compiled as a module and
the module is linked at runtime. Initially, the module usage counters are set to 0. If
the user mounts an MS-DOS floppy disk, one of the module usage counters is
increased by 1. Conversely, when the user unmounts the floppy disk, one of the
counters—even different from the one that was increased—is decreased by 1. The
total usage counter of the module is the sum of all CPU counters.

Exporting Symbols
When linking a module, all references to global kernel symbols (variables and func-
tions) in the module’s object code must be replaced with suitable addresses. This
operation, which is very similar to that performed by the linker while compiling a User
Mode program (see the section “Libraries” in Chapter 20), is delegated to the insmod
external program (described later in the section “Linking and Unlinking Modules”).

Some special kernel symbol tables are used by the kernel to store the symbols that
can be accessed by modules together with their corresponding addresses. They are
contained in three sections of the kernel code segment: the _ _kstrtab section
includes the names of the symbols, the _ _ksymtab section includes the addresses of
the symbols that can be used by all kind of modules, and the _ _ksymtab_gpl sec-
tion includes the addresses of the symbols that can be used by the modules
released under a GPL-compatible license. The EXPORT_SYMBOL macro and the
EXPORT_SYMBOL_GPL macro, when used inside the statically linked kernel code, force
the C compiler to add a specified symbol to the _ _ksymtab and _ _ksymtab_gpl sec-
tions, respectively.

Only the kernel symbols actually used by some existing module are included in the
table. Should a system programmer need, within some module, to access a kernel
symbol that is not already exported, he can simply add the corresponding EXPORT_
SYMBOL_GPL macro into the Linux source code. Of course, he cannot legally export a
new symbol for a module whose license is not GPL-compatible.

Linked modules can also export their own symbols so that other modules can access
them. The module symbol tables are contained in the _ _ksymtab, _ _ksymtab_gpl, and
_ _kstrtab sections of the module code segment. To export a subset of symbols from
the module, the programmer can use the EXPORT_SYMBOL and EXPORT_SYMBOL_GPL mac-
ros described above. The exported symbols of the module are copied into two mem-
ory arrays when the module is linked, and their addresses are stored in the syms and
gpl_syms fields of the module object.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linking and Unlinking Modules | 847

Module Dependency
A module (B) can refer to the symbols exported by another module (A); in this case,
we say that B is loaded on top of A, or equivalently that A is used by B. To link mod-
ule B, module A must have already been linked; otherwise, the references to the sym-
bols exported by A cannot be properly linked in B. In short, there is a dependency
between modules.

The modules_which_use_me field of the module object of A is the head of a dependency
list containing all modules that are used by A; each element of the list is a small
module_use descriptor containing the pointers to the adjacent elements in the list and
a pointer to the corresponding module object; in our example, a module_use descrip-
tor pointing to the B’s module object would appear in the modules_which_use_me list of
A. The modules_which_use_me list must be updated dynamically whenever a module is
loaded on top of A. The module A cannot be unloaded if its dependency list is not
empty.

Beside A and B there could be, of course, another module (C) loaded on top of B,
and so on. Stacking modules is an effective way to modularize the kernel source
code, thus speeding up its development.

Linking and Unlinking Modules
A user can link a module into the running kernel by executing the insmod external
program. This program performs the following operations:

1. Reads from the command line the name of the module to be linked.

2. Locates the file containing the module’s object code in the system directory tree.
The file is usually placed in some subdirectory below /lib/modules.

3. Reads from disk the file containing the module’s object code.

4. Invokes the init_module() system call, passing to it the address of the User Mode
buffer containing the module’s object code, the length of the object code, and the
User Mode memory area containing the parameters of the insmod program.

5. Terminates.

The sys_init_module() service routine does all the real work; it performs the follow-
ing main operations:

1. Checks whether the user is allowed to link the module (the current process must
have the CAP_SYS_MODULE capability). In every situation where one is adding func-
tionality to a kernel, which has access to all data and processes on the system,
security is a paramount concern.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

848 | Appendix B: Modules

2. Allocates a temporary memory area for the module’s object code; then, copies
into this memory area the data in the User Mode buffer passed as first parame-
ter of the system call.

3. Checks that the data in the memory area effectively represents a module’s ELF
object; otherwise, returns an error code.

4. Allocates a memory area for the parameters passed to the insmod program, and
fills it with the data in the User Mode buffer whose address was passed as third
parameter of the system call.

5. Walks the modules list to verify that the module is not already linked. The check
is done by comparing the names of the modules (name field in the module
objects).

6. Allocates a memory area for the core executable code of the module, and fills it
with the contents of the relevant sections of the module.

7. Allocates a memory area for the initialization code of the module, and fills it
with the contents of the relevant sections of the module.

8. Determines the address of the module object for the new module. An image of
this object is included in the gnu.linkonce.this_module section of the text seg-
ment of the module’s ELF file. The module object is thus included in the memory
area filled in step 6.

9. Stores in the module_code and module_init fields of the module object the
addresses of the memory areas allocated in steps 6 and 7.

10. Initializes the modules_which_use_me list in the module object, and sets to zero all
module’s reference counters except the counter of the executing CPU, which is
set to one.

11. Sets the license_gplok flag in the module object according to the type of license
specified in the module object.

12. Using the kernel symbol tables and the module symbol tables, relocates the
module’s object code. This means replacing all occurrences of external and glo-
bal symbols with the corresponding logical address offsets.

13. Initializes the syms and gpl_syms fields of the module object so that they point to
the in-memory tables of symbols exported by the module.

14. The exception table of the module (see the section “The Exception Tables” in
Chapter 10) is contained in the _ _ex_table section of the module’s ELF file, thus
it was copied into the memory area allocated in step 6: stores its address in the
extable field of the module object.

15. Parses the arguments of the insmod program, and sets the value of the corre-
sponding module variables accordingly.

16. Registers the kobject included in the mkobj field of the module object so that a
new sub-directory for the module appears in the module directory of the sysfs
special filesystem (see the section “Kobjects” in Chapter 13).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linking and Unlinking Modules | 849

17. Frees the temporary memory area allocated in step 2.

18. Adds the module object in the modules list.

19. Sets the state of the module to MODULE_STATE_COMING.

20. If defined, executes the init method of the module object.

21. Sets the state of the module to MODULE_STATE_LIVE.

22. Terminates by returning zero (success).

To unlink a module, a user invokes the rmmod external program, which performs
the following operations:

1. Reads from the command line the name of the module to be unlinked.

2. Opens the /proc/modules file, which lists all modules linked into the kernel, and
checks that the module to be removed is effectively linked.

3. Invokes the delete_module() system call passing to it the name of the module.

4. Terminates.

In turn, the sys_delete_module() service routine performs the following main opera-
tions:

1. Checks whether the user is allowed to unlink the module (the current process
must have the CAP_SYS_MODULE capability).

2. Copies the module’s name in a kernel buffer.

3. Walks the modules list to find the module object of the module.

4. Checks the modules_which_use_me dependency list of the module; if it is not
empty, the function returns an error code.

5. Checks the state of the module; if it is not MODULE_STATE_LIVE, returns an error
code.

6. If the module has a custom init method, the function checks that it has also a
custom exit method; if no exit method is defined, the module should not be
unloaded, thus returns an exit code.

7. To avoid race conditions, stops the activities of all CPUs in the system, except
the CPU executing the sys_delete_module() service routine.

8. Sets the state of the module to MODULE_STATE_GOING.

9. If the sum of all reference counters of the module is greater than zero, returns an
error code.

10. If defined, executes the exit method of the module.

11. Removes the module object from the modules list, and de-registers the module
from the sysfs special filesystem.

12. Removes the module object from the dependency lists of the modules that it was
using.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

850 | Appendix B: Modules

13. Frees the memory areas that contain the module’s executable code, the module
object, and the various symbol and exception tables.

14. Returns zero (success).

Linking Modules on Demand
A module can be automatically linked when the functionality it provides is requested
and automatically removed afterward.

For instance, suppose that the MS-DOS filesystem has not been linked, either stati-
cally or dynamically. If a user tries to mount an MS-DOS filesystem, the mount() sys-
tem call normally fails by returning an error code, because MS-DOS is not included
in the file_systems list of registered filesystems. However, if support for automatic
linking of modules has been specified when configuring the kernel, Linux makes an
attempt to link the MS-DOS module, and then scans the list of registered filesystems
again. If the module is successfully linked, the mount() system call can continue its
execution as if the MS-DOS filesystem were present from the beginning.

The modprobe Program
To automatically link a module, the kernel creates a kernel thread to execute the
modprobe external program,* which takes care of possible complications due to mod-
ule dependencies. The dependencies were discussed earlier: a module may require
one or more other modules, and these in turn may require still other modules. For
instance, the MS-DOS module requires another module named fat containing some
code common to all filesystems based on a File Allocation Table (FAT). Thus, if it is
not already present, the fat module must also be automatically linked into the run-
ning kernel when the MS-DOS module is requested. Resolving dependencies and
finding modules is a type of activity that’s best done in User Mode, because it
requires locating and accessing module object files in the filesystem.

The modprobe external program is similar to insmod, since it links in a module speci-
fied on the command line. However, modprobe also recursively links in all modules
used by the module specified on the command line. For instance, if a user invokes
modprobe to link the MS-DOS module, the program links the fat module, if neces-
sary, followed by the MS-DOS module. Actually, modprobe simply checks for module
dependencies; the actual linking of each module is done by forking a new process
and executing insmod.

How does modprobe know about module dependencies? Another external program
named depmod is executed at system startup. It looks at all the modules compiled for

* This is one of the few examples in which the kernel relies on an external program.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linking Modules on Demand | 851

the running kernel, which are usually stored inside the /lib/modules directory. Then it
writes all module dependencies to a file named modules.dep. The modprobe program
can thus simply compare the information stored in the file with the list of linked
modules yielded by the /proc/modules file.

The request_module() Function
In some cases, the kernel may invoke the request_module() function to attempt auto-
matic linking for a module.

Consider again the case of a user trying to mount an MS-DOS filesystem. If the get_
fs_type() function discovers that the filesystem is not registered, it invokes the
request_module() function in the hope that MS-DOS has been compiled as a
module.

If the request_module() function succeeds in linking the requested module, get_fs_
type() can continue as if the module were always present. Of course, this does not
always happen; in our example, the MS-DOS module might not have been compiled
at all. In this case, get_fs_type() returns an error code.

The request_module() function receives the name of the module to be linked as its
parameter. It executes kernel_thread() to create a new kernel thread and waits until
that kernel thread terminates.

The kernel thread, in turn, receives the name of the module to be linked as its param-
eter and invokes the execve() system call to execute the modprobe external pro-
gram,* passing the module name to it. In turn, the modprobe program actually links
the requested module, along with any that it depends on.

* The name and path of the program executed by exec_modprobe() can be customized by writing into the /proc/
sys/kernel/modprobe file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

852

Bibliography

This bibliography is broken down by subject area and lists some of the most com-
mon and, in our opinion, useful books and online documentation on the topic of
kernels.

Books on Unix Kernels
Bach, M. J. The Design of the Unix Operating System. Prentice Hall International,

Inc., 1986. A classic book describing the SVR2 kernel.

Goodheart, B. and J. Cox. The Magic Garden Explained: The Internals of the Unix
System V Release 4. Prentice Hall International, Inc., 1994. An excellent book on
the SVR4 kernel.

Mauro, J. and R. McDougall. Solaris Internals: Core Kernel Architecture. Prentice
Hall, 2000. A good introduction to the Solaris kernel.

McKusick, M. K., M. J. Karels, and K. Bostic. The Design and Implementation of the
4.4 BSD Operating System. Addison Wesley, 1986. Perhaps the most authorita-
tive book on the 4.4 BSD kernel.

Schimmel, Curt. UNIX Systems for Modern Architectures: Symmetric Multiprocessing
and Caching for Kernel Programmers. Addison-Wesley, 1994. An interesting
book that deals mostly with the problem of cache implementation in multipro-
cessor systems.

Vahalia, U. Unix Internals: The New Frontiers. Prentice Hall, Inc., 1996. A valuable
book that provides plenty of insight on modern Unix kernel design issues. It
includes a rich bibliography.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Bibliography | 853

Books on the Linux Kernel
Beck, M., H. Boehme, M. Dziadzka, U. Kunitz, R. Magnus, D. Verworner, and C.

Schroter. Linux Kernel Programming (3rd ed.). Addison Wesley, 2002. A hard-
ware-independent book covering the Linux 2.4 kernel.

Benvenuti, Christian. Understanding Linux Network Internals. O’Reilly Media, Inc.,
2006. Covers standard networking protocols and the details of Linux implemen-
tation, with a focus on layer 2 and 3 activities.

Corbet, J., A. Rubini, and G. Kroah-Hartman. Linux Device Drivers (3rd ed.).
O’Reilly & Associates, Inc., 2005. A valuable book that is somewhat comple-
mentary to this one. It gives plenty of information on how to develop drivers for
Linux.

Gorman, M. Understanding the Linux Virtual Memory Manager. Prentice Hall PTR,
2004. Focuses on a subset of the chapters included in this book, namely those
related to the Virtual Memory Manager.

Herbert, T. F. The Linux TCP/IP Stack: Networking for Embedded Systems (Network-
ing Series). Charles River Media, 2004. Describes in great details the TCP/IP
Linux implementation in the 2.6 kernel.

Love, R. Linux Kernel Development (2nd ed.). Novell Press, 2005. A hardware-inde-
pendent book covering the Linux 2.6 kernel. Some readers suggest to read it
before attacking this book.

Mosberger, D., S. Eranian, and B. Perens. IA-64 Linux Kernel: Design and Implemen-
tation. Prentice Hall, Inc., 2002. An excellent description of the hardware-depen-
dent Linux kernel for the Itanium IA-64 microprocessor.

Books on PC Architecture and Technical Manuals on
Intel Microprocessors
Intel. Intel Architecture Software Developer’s Manual, vol. 3: System Programming

Guide. 2005. Describes the Intel Pentium microprocessor architecture. It can
be downloaded from: http://developer.intel.com/design/processors/pentium4/
manuals/25366816.pdf.

Intel. MultiProcessor Specification, Version 1.4. 1997. Describes the Intel multi-
processor architecture specifications. It can be downloaded from http://www.
intel.com/design/pentium/datashts/24201606.pdf.

Messmer, H. P. The Indispensable PC Hardware Book (4th ed.). Addison Wesley Pro-
fessional, 2001. A valuable reference that exhaustively describes the many com-
ponents of a PC.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

854 | Bibliography

Other Online Documentation Sources
Linux source code

The official site for getting kernel source can be found at http://www.kernel.org.
Many mirror sites are also available all over the world.

A valuable search engine for the Linux 2.6 source code is available at http://lxr.
linux.no.

GCC manuals
All distributions of the GNU C compiler should include full documentation for
all its features, stored in several info files that can be read with the Emacs pro-
gram or an info reader. By the way, the information on Extended Inline Assem-
bly is quite hard to follow, because it does not refer to any specific architecture.
Some pertinent information about 80x86 GCC’s Inline Assembly and gas, the
GNU assembler invoked by GCC, can be found at:

http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.ibm.com/developerworks/linux/library/l-ia.html
http://www.gnu.org/manual/gas-2.9.1/as.html

The Linux Documentation Project
The web site (http://www.tldp.org) contains the home page of the Linux Docu-
mentation Project, which, in turn, includes several interesting references to
guides, FAQs, and HOWTOs.

Linux kernel development forum
The newsgroup comp.os.linux.development.system is dedicated to discussions
about development of the Linux system.

The linux-kernel mailing list
This fascinating mailing list contains much noise as well as a few pertinent com-
ments about the current development version of Linux and about the rationale
for including or not including in the kernel some proposals for changes. It is a
living laboratory of new ideas that are taking shape. The name of the mailing list
is linux-kernel@vger.kernel.org.

The Linux Kernel online book
Authored by David A. Rusling, this 200-page book can be viewed at http://www.
tldp.org/LDP/tlk/tlk.html, and describes some fundamental aspects of the Linux
2.0 kernel.

Linux Virtual File System
The page at http://www.safe-mbox.com/~rgooch/linux/docs/vfs.txt is an introduc-
tion to the Linux Virtual File System. The author is Richard Gooch.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Bibliography | 855

Research Papers Related to Linux Development
We list here a few papers that we have mentioned in this book. Needless to say, there
are many other articles that have a great impact on the development of Linux.

McCreight, E. “Priority Search Tree,” SIAM J. Comput., Vol. 14, No 2, pp. 257-276,
May 1985

Johnson, T. and D. Shasha. “2Q: A Low Overhead High Performance Buffer Man-
agement Replacement Algorithm,” Proceedings of the 20th IEEE VLDB Conf.,
Santiago, Chile, 1994, pp. 439-450.

Bonwick, J. “The Slab Allocator: An Object-Caching Kernel Memory Allocator,”
Proceedings of Summer 1994 USENIX Conference, pp. 87-98.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

857

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

 Source Code Index

A
access_ok

include/asm-i386/uaccess.h 412
account_it_prof

kernel/sched.c 255
account_it_virt

kernel/sched.c 255
account_system_time

kernel/sched.c 241
account_user_time

kernel/sched.c 241
activate_page

mm/swap.c 692
add_disk

drivers/block/genhd.c 591
add_page_to_active_list

include/linux/mm_inline.h 691
add_page_to_inactive_list

include/linux/mm_inline.h 691
address_space

include/linux/fs.h 601
address_space_operations

include/linux/fs.h 603
add_timer

include/linux/timer.h 245
add_to_page_cache

mm/filemap.c 607
add_to_swap

mm/swap_state.c 732
__add_to_swap_cache

mm/swap_state.c 732
add_to_swap_cache

mm/swap_state.c 731

add_wait_queue
kernel/wait.c 98

add_wait_queue_exclusive
kernel/wait.c 98

aio_complete
fs/aio.c 675

aio_pread
fs/aio.c 675

aio_pwrite
fs/aio.c 675

aio_ring
include/linux/aio.h 673

aio_run_iocb
fs/aio.c 674

aio_wq
fs/aio.c 675

alignment_check
arch/i386/kernel/entry.S 140

all_bdevs
fs/block_dev.c 587

allocate_resource
kernel/resource.c 523

alloc_bootmem_low_pages
include/linux/bootmem.h 72

alloc_buffer_head
fs/buffer.c 613

alloc_chrdev_region
fs/char_dev.c 555

alloc_disk
drivers/block/genhd.c 570

alloc_page
include/linux/gfp.h 303

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

858 | Source Code Index

alloc_page_buffers
fs/buffer.c 616

__alloc_pages
mm/page_alloc.c 320

alloc_pages
include/linux/gfp.h 320

alloc_percpu
include/linux/percpu.h 195

alloc_slabmgmt
mm/slab.c 331

alloc_task_struct()
kernel/fork.c 119

alloc_thread_info
include/asm-i386/thread_info.h 86

alloc_vfsmnt
fs/namespace.c 487

anon_pipe_buf_ops
fs/pipe.c 780

anon_vma
include/linux/rmap.h 682

apic_intr_init
arch/i386/kernel/apic.c 238

apic_timer_interrupt
include/asm-i386/mach-default/

entry_arch.h 239
arch_get_unmapped_area

mm/mmap.c 367
arch_get_unmapped_area_topdown

mm/mmap.c 367
arch_pick_mmap_layout

arch/i386/mm/mmap.c 832
array_cache

mm/slab.c 336
atomic_add

include/asm-i386/atomic.h 197
atomic_add_negative

include/asm-i386/atomic.h 197
atomic_add_return

include/asm-i386/atomic.h 197
atomic_clear_mask

include/asm-i386/atomic.h 197
atomic_dec

include/asm-i386/atomic.h 197
atomic_dec_and_test

include/asm-i386/atomic.h 197
atomic_dec_return

include/asm-i386/atomic.h 197
atomic_inc

include/asm-i386/atomic.h 197

atomic_inc_and_test
include/asm-i386/atomic.h 197

atomic_inc_return
include/asm-i386/atomic.h 197

atomic_read
include/asm-i386/atomic.h 197

atomic_set
include/asm-i386/atomic.h 197

atomic_set_mask
include/asm-i386/atomic.h 197

atomic_sub
include/asm-i386/atomic.h 197

atomic_sub_and_test
include/asm-i386/atomic.h 197

atomic_sub_return
include/asm-i386/atomic.h 197

atomic_t
include/asm-i386/atomic.h 196

attach_pid
kernel/pid.c 96

autoremove_wake_function
kernel/wait.c 98

B
background_writeout

mm/page-writeback.c 626
backing_dev_info

include/linux/backing-dev.h 575
bad_pipe_r

fs/pipe.c 789
bad_pipe_w

fs/pipe.c 789
balance_pgdat

mm/vmscan.c 708
barrier()

include/linux/compiler-gcc.h 198
bd_acquire

fs/block_dev.c 596
bd_claim

fs/block_dev.c 587
bdev_map

drivers/block/genhd.c 591
bdget

fs/block_dev.c 588
BDI_pdflush

include/linux/backing-dev.h 627
bd_release

fs/block_dev.c 587
__be16

include/linux/types.h 742

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 859

__be32
include/linux/types.h 742

bforget
fs/buffer.c 614

BH_Async_Read
include/linux/buffer_head.h 613

BH_Async_Write
include/linux/buffer_head.h 613

BH_Boundary
include/linux/buffer_head.h 613

bh_cachep
fs/buffer.c 613

BH_Delay
include/linux/buffer_head.h 613

BH_Dirty
include/linux/buffer_head.h 613

BH_Eopnotsupp
include/linux/buffer_head.h 613

BH_JBD
include/linux/jbd.h 770

BH_Lock
include/linux/buffer_head.h 613

bh_lrus
fs/buffer.c 618

BH_Mapped
include/linux/buffer_head.h 613

BH_New
include/linux/buffer_head.h 613

BH_Ordered
include/linux/buffer_head.h 613

BH_Req
include/linux/buffer_head.h 613

BH_Uptodate
include/linux/buffer_head.h 613

BH_Write_EIO
include/linux/buffer_head.h 613

bio
include/linux/bio.h 566

bio_alloc
fs/bio.c 568

bio_destructor
fs/bio.c 567

bio_endio
fs/bio.c 571

BIO_EOF
include/linux/bio.h 571

bio_for_each_segment
include/linux/bio.h 567

bio_put
fs/bio.c 568

BIO_RW_AHEAD
include/linux/bio.h 584

BIO_RW_SYNC
include/linux/bio.h 584

bio_vec
include/linux/bio.h 567

blk_congestion_wait
drivers/block/ll_rw_blk.c 579

blkdev_close
fs/block_dev.c 595

blkdev_commit_write
fs/block_dev.c 654

blkdev_dequeue_request
include/linux/blkdev.h 595

blkdev_file_aio_write
fs/block_dev.c 595

blkdev_file_write
fs/block_dev.c 595

blkdev_get_block
fs/block_dev.c 640

blkdev_open
fs/block_dev.c 596

blkdev_prepare_write
fs/block_dev.c 654

blkdev_readpage
fs/block_dev.c 640

blkdev_writepage
fs/block_dev.c 656

blk_fs_request
include/linux/blkdev.h 593

blk_get_request
drivers/block/ll_rw_blk.c 578

blk_init_queue
drivers/block/ll_rw_blk.c 591

blk_partition_remap
drivers/block/ll_rw_blk.c 571

blk_plug_device
drivers/block/ll_rw_blk.c 579

blk_put_request
drivers/block/ll_rw_blk.c 578

blk_queue_bounce
mm/highmem.c 585

blk_queue_hardsect_size
drivers/block/ll_rw_blk.c 591

blk_queue_max_hw_segments
drivers/block/ll_rw_blk.c 591

blk_queue_max_phys_segments
drivers/block/ll_rw_blk.c 591

blk_queue_max_sectors
drivers/block/ll_rw_blk.c 591

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

860 | Source Code Index

blk_remove_plug
drivers/block/ll_rw_blk.c 579

blk_rq_map_sg
drivers/block/ll_rw_blk.c 593

blk_unplug_timeout
drivers/block/ll_rw_blk.c 579

blk_unplug_work
drivers/block/ll_rw_blk.c 580

blockable_page_cache_readahead
mm/readahead.c 648

__block_commit_write
fs/buffer.c 653

__blockdev_direct_IO
fs/direct-io.c 671

block_device
include/linux/fs.h 586

block_device_operations
include/linux/fs.h 569

blocked_list
fs/locks.c 513

block_fsync
fs/block_dev.c 595

block_ioctl
fs/block_dev.c 595

block_llseek
fs/block_dev.c 595

block_prepare_write
fs/buffer.c 652

block_read_full_page
fs/buffer.c 641

block_wait_queue_running
drivers/block/ll_rw_blk.c 571

block_write_full_page
fs/buffer.c 656

bounds
arch/i386/kernel/entry.S 140

__b_read
fs/buffer.c 619

brelse
fs/buffer.c 614

BUFCTL_END
mm/slab.c 332

buffered_rmqueue
mm/page_alloc.c 318

buffer_head
include/linux/buffer_head.h 612

build_all_zonelists
mm/page_alloc.c 841

BUILD_INTERRUPT
arch/i386/kernel/entry.S 171

bus_for_each_dev
drivers/base/bus.c 535

bus_for_each_drv
drivers/base/bus.c 535

bus_subsys
drivers/base/bus.c 534

bus_type
include/linux/device.h 534

BYTES_PER_WORD
mm/slab.c 333

C
cache_alloc_refill

mm/slab.c 337
cache_cache

mm/slab.c 328
cache_chain

mm/slab.c 328
cache_chain_sem

mm/slab.c 225
cache_flusharray

mm/slab.c 339
cache_grow

mm/slab.c 331
cache_init_objs

mm/slab.c 331
cache_reap

mm/slab.c 709
cache_sizes

include/linux/slab.h 328
calc_load

kernel/timer.c 242
calc_vm_flag_bits

include/linux/mman.h 371
calc_vm_prot_bits

include/linux/mman.h 371
calibrate_APIC_clock

arch/i386/kernel/apic.c 238
calibrate_delay

init/calibrate.c 252
calibrate_tsc

arch/i386/kernel/timers/common.c 229
call_data

arch/i386/kernel/smp.c 170
call_function_interrupt

include/asm-i386/mach-default/
entry_arch.h 170

CALL_FUNCTION_VECTOR
include/asm-i386/mach-default/

irq_vectors.h 170

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 861

call_rcu
kernel/rcupdate.c 208

cancel_delayed_work
include/linux/workqueue.h 182

can_migrate_task
kernel/sched.c 289

capable
include/linux/sched.h 814

CAP_AUDIT_CONTROL
include/linux/capability.h 812

CAP_AUDIT_WRITE
include/linux/capability.h 812

CAP_CHOWN
include/linux/capability.h 812

CAP_DAC_OVERRIDE
include/linux/capability.h 812

CAP_DAC_READ_SEARCH
include/linux/capability.h 812

CAP_FOWNER
include/linux/capability.h 813

CAP_FSETID
include/linux/capability.h 813

CAP_IPC_LOCK
include/linux/capability.h 813

CAP_IPC_OWNER
include/linux/capability.h 813

CAP_KILL
include/linux/capability.h 813

CAP_LEASE
include/linux/capability.h 813

CAP_LINUX_IMMUTABLE
include/linux/capability.h 813

CAP_MKNOD
include/linux/capability.h 813

CAP_NET_ADMIN
include/linux/capability.h 813

CAP_NET_BIND_SERVICE
include/linux/capability.h 813

CAP_NET_BROADCAST
include/linux/capability.h 813

CAP_NET_RAW
include/linux/capability.h 813

CAP_SETGID
include/linux/capability.h 813

CAP_SETPCAP
include/linux/capability.h 813

CAP_SETUID
include/linux/capability.h 813

CAP_SYS_ADMIN
include/linux/capability.h 813

CAP_SYS_BOOT
include/linux/capability.h 813

CAP_SYS_CHROOT
include/linux/capability.h 813

CAP_SYS_MODULE
include/linux/capability.h 813

CAP_SYS_NICE
include/linux/capability.h 813

CAP_SYS_PACCT
include/linux/capability.h 813

CAP_SYS_PTRACE
include/linux/capability.h 813

CAP_SYS_RAWIO
include/linux/capability.h 813

CAP_SYS_RESOURCE
include/linux/capability.h 813

CAP_SYS_TIME
include/linux/capability.h 813

CAP_SYS_TTY_CONFIG
include/linux/capability.h 813

cap_vm_enough_memory
security/commoncap.c 722

cascade
kernel/timer.c 249

cdev
include/linux/cdev.h 553

cdev_add
fs/char_dev.c 553

cdev_alloc
fs/char_dev.c 553

cdev_map
fs/char_dev.c 553

CFLGS_OFF_SLAB
mm/slab.c 327

change_bit
include/asm-i386/bitops.h 197

char_device_struct
fs/char_dev.c 554

chrdev_open
fs/char_dev.c 557

chrdevs
fs/char_dev.c 554

class
include/linux/device.h 535

class_device
include/linux/device.h 535

clear_bit
include/asm-i386/bitops.h 197

clear_fixmap
include/asm-i386/fixmap.h 74

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

862 | Source Code Index

clear_inode
fs/inode.c 760

ClearPageActive
include/linux/page-flags.h 297

ClearPageChecked
include/linux/page-flags.h 297

ClearPageCompound
include/linux/page-flags.h 297

ClearPageDirty
include/linux/page-flags.h 296

ClearPageError
include/linux/page-flags.h 296

ClearPageLocked
include/linux/page-flags.h 296

ClearPageMappedToDisk
include/linux/page-flags.h 297

ClearPageNosave
include/linux/page-flags.h 297

ClearPageNosaveFree
include/linux/page-flags.h 297

ClearPagePrivate
include/linux/page-flags.h 297

clear_page_range
mm/memory.c 65

ClearPageReclaim
include/linux/page-flags.h 297

ClearPageReferenced
include/linux/page-flags.h 296

ClearPageReserved
include/linux/page-flags.h 297

ClearPageSlab
include/linux/page-flags.h 297

ClearPageSwapCache
include/linux/page-flags.h 297

ClearPageUptodate
include/linux/page-flags.h 296

ClearPageWriteback
include/linux/page-flags.h 297

__clear_user
arch/i386/lib/usercopy.c 414

clear_user
arch/i386/lib/usercopy.c 414

CLOCK_MONOTONIC
include/linux/time.h 256

CLOCK_REALTIME
include/linux/time.h 256

CLOCK_TICK_RATE
include/asm-i386/timex.h 230

CLONE_CHILD_CLEARTID
include/linux/sched.h 116

CLONE_CHILD_SETTID
include/linux/sched.h 116

CLONE_DETACHED
include/linux/sched.h 116

CLONE_FILES
include/linux/sched.h 116

CLONE_FS
include/linux/sched.h 116

CLONE_NEWNS
include/linux/sched.h 116

CLONE_PARENT
include/linux/sched.h 116

CLONE_PARENT_SETTID
include/linux/sched.h 116

CLONE_PTRACE
include/linux/sched.h 116

CLONE_SETTLS
include/linux/sched.h 116

CLONE_SIGHAND
include/linux/sched.h 116

CLONE_STOPPED
include/linux/sched.h 116

CLONE_SYSVSEM
include/linux/sched.h 116

CLONE_THREAD
include/linux/sched.h 116

CLONE_UNTRACED
include/linux/sched.h 116

CLONE_VFORK
include/linux/sched.h 116

CLONE_VM
include/linux/sched.h 116

compat_blkdev_ioctl
drivers/block/ioctl.c 595

complete
kernel/sched.c 215

completion
include/linux/completion.h 214

cond_resched
kernel/sched.c 177

context_switch
kernel/sched.c 282

contig_page_data
mm/page_alloc.c 298

coprocessor_error
arch/i386/kernel/entry.S 140

coprocessor_segment_overrun
arch/i386/kernel/entry.S 140

copy_files
kernel/fork.c 120

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 863

__copy_from_user
include/asm-i386/uaccess.h 414

copy_from_user
arch/i386/lib/usercopy.c 414

copy_fs
kernel/fork.c 120

copy_mm
kernel/fork.c 392

copy_namespace
fs/namespace.c 120

copy_page
include/asm-i386/page.h 390

copy_page_range
mm/memory.c 394

copy_process
kernel/fork.c 119

copy_semundo
ipc/sem.c 120

copy_sighand
kernel/fork.c 120

copy_siginfo
include/asm-generic/siginfo.h 436

copy_signal
kernel/fork.c 120

copy_thread
arch/i386/kernel/process.c 120

__copy_to_user
include/asm-i386/uaccess.h 414

copy_to_user
arch/i386/lib/usercopy.c 414

cpu_domains
kernel/sched.c 287

cpu_gdt_descr
arch/i386/kernel/head.S 43

cpu_gdt_table
arch/i386/kernel/head.S 43

cpu_idle
arch/i386/kernel/process.c 125

cpu_relax()
include/asm-i386/processor.h 202

cpu_rq
kernel/sched.c 266

cpu_tlbstate
arch/i386/kernel/smp.c 77

cpu_workqueue_struct
kernel/workqueue.c 181

create_empty_buffers
fs/buffer.c 641

create_singlethread_workqueue
include/linux/workqueue.h 182

create_workqueue
include/linux/workqueue.h 181

current
include/asm-i386/current.h 86

CURRENT_BONUS
kernel/sched.c 276

current_thread_info
include/asm-i386/thread_info.h 86

cur_timer
arch/i386/kernel/time.c 233

D
dcache_lock

fs/dcache.c 478
deactivate_task

kernel/sched.c 279
debug

arch/i386/kernel/entry.S 140
DECLARE_MUTEX

include/asm-i386/semaphore.h 209
DECLARE_MUTEX_LOCKED

include/asm-i386/semaphore.h 209
DECLARE_WAIT_QUEUE_HEAD

include/linux/wait.h 98
decompress_kernel

arch/i386/boot/compressed/misc.c 840
default_ldt

arch/i386/kernel/traps.c 45
default_wake_function

kernel/sched.c 98
def_blk_fops

fs/block_dev.c 595
def_chr_fops

fs/char_dev.c 557
def_fifo_fops

fs/fifo.c 788
DEFINE_PER_CPU

include/asm-generic/percpu.h 195
DEFINE_WAIT

include/linux/wait.h 98
delete_from_swap_cache

mm/swap_state.c 732
del_page_from_active_list

include/linux/mm_inline.h 691
del_page_from_inactive_list

include/linux/mm_inline.h 691
del_page_from_lru

include/linux/mm_inline.h 691
del_singleshot_timer_sync

kernel/timer.c 246

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

864 | Source Code Index

del_timer
kernel/timer.c 246

del_timer_sync
kernel/timer.c 246

dentry
include/linux/dcache.h 475

dentry_cache
fs/dcache.c 475

dentry_hashtable
fs/dcache.c 478

dentry_open
fs/open.c 507

dentry_operations
include/linux/dcache.h 476

dentry_unused
fs/dcache.c 477

dependent_sleeper
kernel/sched.c 279

dequeue_signal
kernel/signal.c 440

dequeue_task
kernel/sched.c 90

destroy_workqueue
kernel/workqueue.c 182

detach_pid
kernel/pid.c 96

detach_vmas_to_be_unmapped
mm/mmap.c 374

de_thread
fs/exec.c 831

device
include/linux/device.h 531

device_driver
include/linux/device.h 533

device_not_available
arch/i386/kernel/entry.S 140

device_register
drivers/base/core.c 532

devices_subsys
drivers/base/core.c 532

device_unregister
drivers/base/core.c 532

dev_t
include/linux/types.h 538

die
arch/i386/kernel/traps.c 151

dirty_writeback_centisecs
mm/page-writeback.c 628

disable_8259A_irq
arch/i386/kernel/i8259.c 158

disable_irq
kernel/irq/manage.c 157

disable_irq_nosync
kernel/irq/manage.c 157

divide_error
arch/i386/kernel/entry.S 140

__d_lookup
fs/dcache.c 478

d_lookup
fs/dcache.c 478

dma_addr_t
include/asm-i386/types.h 549

dma_alloc_coherent
arch/i386/kernel/pci-dma.c 550

dma_free_coherent
arch/i386/kernel/pci-dma.c 550

dma_map_page
include/asm-i386/dma-mapping.h 550

dma_map_single
include/asm-i386/dma-mapping.h 550

dma_set_mask
include/asm-i386/dma-mapping.h 549

dma_sync_single_for_cpu
include/asm-i386/dma-mapping.h 550

dma_sync_single_for_device
include/asm-i386/dma-mapping.h 550

dma_unmap_page
include/asm-i386/dma-mapping.h 551

dma_unmap_single
include/asm-i386/dma-mapping.h 550

do_add_mount
fs/namespace.c 489

do_anonymous_page
mm/memory.c 387

do_brk
mm/mmap.c 397

do_each_task_pid
include/linux/pid.h 95

do_execve
fs/exec.c 829

do_exit
kernel/exit.c 127

do_file_page
mm/memory.c 668

do_follow_link
fs/namei.c 504

do_fork
kernel/fork.c 117

do_general_protection
arch/i386/kernel/traps.c 110

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 865

do_generic_file_read
include/linux/fs.h 635

do_gettimeofday
arch/i386/kernel/time.c 253

do_group_exit
kernel/exit.c 127

__do_IRQ
kernel/irq/handle.c 164

do_IRQ
arch/i386/kernel/irq.c 163

do_irq_balance
arch/i386/kernel/io_apic.c 161

do_kern_mount
fs/super.c 489

do_lookup
fs/namei.c 500

do_mmap
include/linux/mm.h 369

do_mmap_pgoff
mm/mmap.c 370

do_mount
fs/namespace.c 488

do_move_mount
fs/namespace.c 488

do_munmap
mm/mmap.c 373

do_new_mount
fs/namespace.c 489

do_nmi
arch/i386/kernel/traps.c 243

do_no_page
mm/memory.c 386

do_notify_parent_cldstop
kernel/signal.c 440

do_notify_resume
arch/i386/kernel/signal.c 188

do_page_fault
arch/i386/mm/fault.c 377

do_pipe
fs/pipe.c 781

do_remount
fs/namespace.c 488

do_remount_sb
fs/super.c 494

do_sched_setscheduler
kernel/sched.c 292

do_settimeofday
arch/i386/kernel/time.c 254

do_shmat
ipc/shm.c 801

do_sigaction
kernel/signal.c 452

do_signal
arch/i386/kernel/signal.c 439

do_signal_stop
kernel/signal.c 441

__do_softirq
kernel/softirq.c 176

do_softirq
kernel/softirq.c 175

do_swap_page
mm/memory.c 734

do_syscall_trace
arch/i386/kernel/ptrace.c 403

do_timer_interrupt
arch/i386/kernel/time.c 237

do_trap
arch/i386/kernel/traps.c 150

doublefault_fn
arch/i386/kernel/doublefault.c 140

do_umount
fs/namespace.c 494

__down
arch/i386/kernel/semaphore.c 210

down
include/asm-i386/semaphore.h 210

downgrade_write
include/asm-i386/rwsem.h 214

down_interruptible
include/asm-i386/semaphore.h 213

down_read
include/linux/rwsem.h 214

down_read_trylock
include/linux/rwsem.h 214

down_trylock
include/asm-i386/semaphore.h 212

down_write
include/linux/rwsem.h 214

down_write_trylock
include/linux/rwsem.h 214

do_wp_page
mm/memory.c 389

driver_register
drivers/base/driver.c 534

driver_unregister
drivers/base/driver.c 534

dummy_security_ops
security/dummy.c 814

dup_mmap
kernel/fork.c 393

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

866 | Source Code Index

dup_task_struct
kernel/fork.c 119

E
effective_prio

kernel/sched.c 272
EINTR

include/asm-i386/errno.h 447
ELEVATOR_BACK_MERGE

include/linux/elevator.h 583
ELEVATOR_FRONT_MERGE

include/linux/elevator.h 584
ELEVATOR_NO_MERGE

include/linux/elevator.h 583
elevator_t

include/linux/elevator.h 581
elv_merge

drivers/block/elevator.c 583
elv_next_request

drivers/block/elevator.c 593
elv_queue_empty

drivers/block/elevator.c 583
empty_zero_page

arch/i386/kernel/head.S 388
enable_8259A_irq

arch/i386/kernel/i8259.c 158
enable_irq

kernel/irq/manage.c 157
enable_sep_cpu

arch/i386/kernel/sysenter.c 405
end_8259A_irq

arch/i386/kernel/i8259.c 158
end_bio_bh_io_sync

fs/buffer.c 621
end_buffer_async_read

fs/buffer.c 642
end_buffer_read_sync

fs/buffer.c 622
end_buffer_write_sync

fs/buffer.c 622
end_swap_bio_write

mm/page_io.c 733
end_that_request_chunk

drivers/block/ll_rw_blk.c 594
end_that_request_first

drivers/block/ll_rw_blk.c 594
end_that_request_last

drivers/block/ll_rw_blk.c 595
ENOSYS

include/asm-generic/errno.h 401

enqueue_task
kernel/sched.c 90

ERESTARTNOHAND
include/linux/errno.h 447

ERESTARTNOINTR
include/linux/errno.h 447

ERESTART_RESTARTBLOCK
include/linux/errno.h 447

ERESTARTSYS
include/linux/errno.h 447

exception_table_entry
include/asm-i386/uaccess.h 415

exec_domain
include/linux/personality.h 827

exec_mmap
fs/exec.c 831

exec_permission_lite
fs/namei.c 498

EXIT_DEAD
include/linux/sched.h 83

__exit_files
kernel/exit.c 127

__exit_fs
kernel/exit.c 127

exit_itimers
kernel/posix-itimers.c 129

exit_mm
kernel/exit.c 394

exit_namespace
include/linux/namespace.h 127

exit_notify
kernel/exit.c 128

exit_sem
ipc/sem.c 797

__exit_sighand
kernel/signal.c 130

__exit_signal
kernel/signal.c 129

exit_thread
kernel/process.c 127

EXIT_ZOMBIE
include/linux/sched.h 83

expand_stack
mm/mmap.c 381

EXPIRED_STARVING
kernel/sched.c 273

EXPORT_SYMBOL
include/linux/module.h 846

EXPORT_SYMBOL_GPL
include/linux/module.h 846

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 867

ext2_alloc_block
fs/ext2/inode.c 765

ext2_alloc_inode
fs/ext2/super.c 753

ext2_create
fs/ext2/namei.c 755

ext2_dir_entry_2
include/linux/ext2_fs.h 748

ext2_fast_symlink_inode_operations
fs/ext2/symlink.c 756

ext2_file_operations
fs/ext2/file.c 757

ext2_fill_super
fs/ext2/super.c 490

ext2_follow_link
fs/ext2/symlink.c 756

ext2_free_blocks
fs/ext2/balloc.c 766

ext2_free_inode
fs/ext2/ialloc.c 760

ext2_get_block
fs/ext2/inode.c 764

ext2_get_sb
fs/ext2/super.c 490

ext2_group_desc
include/linux/ext2_fs.h 744

ext2_inode
include/linux/ext2_fs.h 745

ext2_inode_cachep
fs/ext2/super.c 753

ext2_inode_info
fs/ext2/ext2.h 753

ext2_ioctl
fs/ext2/ioctl.c 757

ext2_link
fs/ext2/namei.c 755

ext2_listxattr
fs/ext2/xattr.c 756

ext2_lookup
fs/ext2/namei.c 755

ext2_mkdir
fs/ext2/namei.c 756

ext2_mknod
fs/ext2/namei.c 756

EXT2_NAME_LEN
include/linux/ext2_fs.h 749

EXT2_N_BLOCKS
include/linux/ext2_fs.h 746

ext2_new_block
fs/ext2/balloc.c 765

ext2_new_inode
fs/ext2/ialloc.c 758

ext2_permission
fs/ext2/acl.c 756

ext2_prepare_write
fs/ext2/inode.c 652

ext2_preread_inode
fs/ext2/ialloc.c 760

ext2_release_file
fs/ext2/file.c 757

ext2_rename
fs/ext2/namei.c 756

ext2_rmdir
fs/ext2/namei.c 756

ext2_sb_info
include/linux/ext2_fs_sb.h 751

ext2_setattr
fs/ext2/inode.c 756

ext2_sops
fs/ext2/super.c 755

ext2_super_block
include/linux/ext2_fs.h 742

ext2_symlink
fs/ext2/namei.c 756

ext2_symlink_inode_operations
fs/ext2/symlink.c 756

ext2_sync_file
fs/ext2/fsync.c 757

ext2_truncate
fs/ext2/inode.c 766

ext2_unlink
fs/ext2/namei.c 755

EXT2_VALID_FS
include/linux/ext2_fs.h 767

ext2_writepages
fs/ext2/inode.c 655

ext2_xattr_entry
fs/ext2/xattr.h 747

ext3_get_block
fs/ext3/inode.c 773

ext3_journalled_commit_write
fs/ext3/inode.c 773

ext3_ordered_commit_write
fs/ext3/inode.c 773

ext3_prepare_write
fs/ext3/inode.c 772

ext3_writeback_commit_write
fs/ext3/inode.c 774

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

868 | Source Code Index

F
FASYNC

include/asm-i386/fcntl.h 506
fcntl_getlk

fs/locks.c 516
fcntl_setlk

fs/locks.c 516
fd_set

include/linux/types.h 480
fget

fs/file_table.c 480
F_GETLEASE

include/linux/fcntl.h 512
fget_light

fs/file_table.c 480
F_GETLK

include/asm-i386/fcntl.h 516
F_GETLK64

include/asm-i386/fcntl.h 516
fifo_open

fs/fifo.c 788
file

include/linux/fs.h 471
file_lock

include/linux/fs.h 512
file_lock_list

fs/locks.c 513
filemap_fdatawait

mm/filemap.c 666
filemap_fdatawrite

mm/filemap.c 666
filemap_nopage

mm/filemap.c 663
filemap_populate

mm/filemap.c 668
filemap_sync

mm/msync.c 666
file_operations

include/linux/fs.h 472
file_ra_state

include/linux/fs.h 644
file_read_actor

mm/filemap.c 637
files_init

fs/file_table.c 472
files_lock

fs/file_table.c 472
files_stat

fs/file_table.c 471

files_struct
include/linux/file.h 479

file_systems
fs/filesystems.c 483

file_systems_lock
fs/filesystems.c 483

file_system_type
include/linux/fs.h 482

filp_cachep
fs/dcache.c 471

filp_close
fs/open.c 509

filp_open
fs/open.c 507

find_busiest_group
kernel/sched.c 288

find_busiest_queue
kernel/sched.c 288

__find_get_block
fs/buffer.c 618

__find_get_page
mm/filemap.c 607

find_get_page
mm/filemap.c 607

find_get_pages
mm/filemap.c 607

find_get_pages_tag
mm/filemap.c 611

find_group_dir
fs/ext2/ialloc.c 758

find_group_orlov
fs/ext2/ialloc.c 758

find_group_other
fs/ext2/ialloc.c 759

find_lock_page
mm/filemap.c 607

find_or_create_page
mm/filemap.c 607

find_task_by_pid
kernel/pid.c 95

find_task_by_pid_type
kernel/pid.c 95

find_trylock_page
mm/filemap.c 607

find_vma
mm/mmap.c 365

find_vma_intersection
include/linux/mm.h 366

find_vma_prepare
mm/mmap.c 366

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 869

find_vma_prev
mm/mmap.c 366

finish_task_switch
kernel/sched.c 283

finish_wait
kernel/wait.c 99

fixed_addresses
include/asm-i386/fixmap.h 73

fix_to_virt
include/asm-i386/fixmap.h 73

FIX_VSYSCALL
include/asm-i386/fixmap.h 406

flock
include/asm-i386/fcntl.h 515

flock64
include/asm-i386/fcntl.h 515

flock_lock_file
fs/locks.c 514

flock_lock_file_wait
fs/locks.c 514

FL_SLEEP
include/linux/fs.h 514

flush_all_zero_pkmaps
mm/highmem.c 309

flush_old_exec
fs/exec.c 831

flush_old_files
fs/exec.c 831

flush_scheduled_work
kernel/workqueue.c 183

flush_signal_handlers
kernel/signal.c 831

flush_signals
kernel/signal.c 432

flush_sigqueue
kernel/signal.c 432

flush_thread
arch/i386/kernel/process.c 831

flush_tlb
include/asm-i386/tlbflush.h 75

__flush_tlb()
include/asm-i386/tlbflush.h 76

flush_tlb_all
include/asm-i386/tlbflush.h 75

__flush_tlb_global()
include/asm-i386/tlbflush.h 76

flush_tlb_kernel_range
include/asm-i386/tlbflush.h 75

flush_tlb_mm
include/asm-i386/tlbflush.h 75

flush_tlb_page
include/asm-i386/tlbflush.h 75

flush_tlb_pgtables
include/asm-i386/tlbflush.h 75

flush_tlb_range
include/asm-i386/tlbflush.h 75

__flush_tlb_single
include/asm-i386/tlbflush.h 76

flush_workqueue
kernel/workqueue.c 182

follow_mount
fs/namei.c 499

follow_page
mm/memory.c 373

force_sig
kernel/signal.c 433

force_sig_info
kernel/signal.c 433

force_sig_specific
kernel/signal.c 433

for_each_process
include/linux/sched.h 89

formats
fs/exec.c 825

_fpstate
include/asm-i386/sigcontext.h 444

fput
fs/file_table.c 480

fput_light
fs/file_table.c 480

free_area
include/linux/mmzone.h 313

free_block
mm/slab.c 339

free_buffer_head
fs/buffer.c 613

free_cold_page
mm/page_alloc.c 319

free_hot_cold_page
mm/page_alloc.c 319

free_hot_page
mm/page_alloc.c 319

free_irq
kernel/irq/manage.c 169

free_more_memory
fs/buffer.c 697

__free_page
include/linux/gfp.h 305

free_page
include/linux/gfp.h 305

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

870 | Source Code Index

free_page_and_swap_cache
mm/swap_state.c 732

__free_pages
mm/page_alloc.c 323

free_pages
mm/page_alloc.c 305

free_pages_and_swap_cache
mm/swap_state.c 732

__free_pages_bulk
mm/page_alloc.c 315

free_pages_bulk
mm/page_alloc.c 319

free_percpu
include/linux/percpu.h 195

free_pgtables
mm/mmap.c 376

free_swap_and_cache
mm/swapfile.c 732

free_thread_info
include/asm-i386/thread_info.h 86

free_vfsmnt
fs/namespace.c 487

FS_BINARY_MOUNTDATA
include/linux/fs.h 483

F_SETLEASE
include/linux/fcntl.h 512

F_SETLK
include/asm-i386/fcntl.h 516

F_SETLK64
include/asm-i386/fcntl.h 516

F_SETLKW
include/asm-i386/fcntl.h 516

F_SETLKW64
include/asm-i386/fcntl.h 516

F_SETSIG
include/asm-i386/fcntl.h 512

FS_ODD_RENAME
include/linux/fs.h 483

FS_REQUIRES_DEV
include/linux/fs.h 483

FS_REVAL_DOT
include/linux/fs.h 483

fs_struct
include/linux/fs_struct.h 478

G
gendisk

include/linux/genhd.h 568
general_protection

arch/i386/kernel/entry.S 140

generic_commit_write
fs/buffer.c 653

__generic_file_aio_read
mm/filemap.c 634

generic_file_aio_read
mm/filemap.c 757

generic_file_aio_write
mm/filemap.c 757

__generic_file_aio_write_nolock
mm/filemap.c 650

generic_file_direct_IO
mm/filemap.c 670

generic_file_llseek
fs/read_write.c 757

generic_file_mmap
mm/filemap.c 662

generic_file_open
fs/open.c 757

generic_file_read
mm/filemap.c 633

generic_file_readv
mm/filemap.c 757

generic_file_sendfile
mm/filemap.c 757

generic_file_vm_ops
mm/filemap.c 662

generic_file_write
mm/filemap.c 649

generic_file_write_nolock
mm/filemap.c 596

generic_file_writev
mm/filemap.c 757

generic_getxattr
fs/xattr.c 756

generic_make_request
drivers/block/ll_rw_blk.c 571

generic_osync_inode
fs/fs-writeback.c 649

generic_readlink
fs/ext2/symlink.c 756

generic_removexattr
fs/xattr.c 756

generic_setxattr
fs/xattr.c 756

generic_unplug_device
drivers/block/ll_rw_blk.c 580

GENHD_FL_REMOVABLE
include/linux/genhd.h 569

GENHD_FL_UP
include/linux/genhd.h 569

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 871

__getblk
fs/buffer.c 619

get_cmos_time
arch/i386/kernel/time.c 236

get_cpu()
include/linux/smp.h 192

__get_cpu_var
include/asm-generic/percpu.h 195

get_cpu_var
include/linux/percpu.h 195

get_device
drivers/base/core.c 532

__get_dma_pages
include/linux/gfp.h 304

get_driver
drivers/base/driver.c 533

get_empty_filp
fs/file_table.c 472

__get_free_page
include/linux/gfp.h 303

__get_free_pages
mm/page_alloc.c 303

get_fs
include/asm-i386/uaccess.h 412

get_fs_type
fs/filesystems.c 483

get_gendisk
drivers/block/genhd.c 596

get_jiffies_64
kernel/time.c 235

getname
fs/namei.c 507

get_page
include/linux/mm.h 390

get_pipe_inode
fs/pipe.c 781

get_sb_bdev
fs/super.c 491

get_sb_nodev
fs/super.c 492

get_sb_pseudo
fs/libfs.c 490

get_sb_single
fs/super.c 490

get_sigframe
arch/i386/kernel/signal.c 445

get_swap_bio
mm/page_io.c 733

get_swap_page
mm/swapfile.c 727

get_unmapped_area
mm/mmap.c 367

get_unused_fd
fs/open.c 507

__get_user
include/asm-i386/uaccess.h 414

get_user
include/asm-i386/uaccess.h 412

__get_user_1
arch/i386/lib/getuser.S 413

__get_user_2
arch/i386/lib/getuser.S 413

__get_user_4
arch/i386/lib/getuser.S 413

get_user_pages
mm/memory.c 372

get_vm_area
mm/vmalloc.c 344

get_zeroed_page
mm/page_alloc.c 304

GFP_ATOMIC
include/linux/gfp.h 304

__GFP_COLD
include/linux/gfp.h 304

GFP_DMA
include/linux/gfp.h 304

__GFP_HIGH
include/linux/gfp.h 304

__GFP_HIGHMEM
include/linux/gfp.h 304

GFP_HIGHUSER
include/linux/gfp.h 304

__GFP_IO
include/linux/gfp.h 304

GFP_KERNEL
include/linux/gfp.h 304

__GFP_NOFAIL
include/linux/gfp.h 304

GFP_NOFS
include/linux/gfp.h 304

__GFP_NO_GROW
include/linux/gfp.h 304

GFP_NOIO
include/linux/gfp.h 304

__GFP_NOWARN
include/linux/gfp.h 304

GFP_USER
include/linux/gfp.h 304

__GFP_WAIT
include/linux/gfp.h 304

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

872 | Source Code Index

grab_swap_token
mm/thrash.c 712

graft_tree
fs/namespace.c 489

__group_complete_signal
kernel/signal.c 438

group_send_sig_info
kernel/signal.c 436

grow_buffers
fs/buffer.c 616

grow_dev_page
fs/buffer.c 616

H
handle_io_bitmap

arch/i386/kernel/process.c 110
handle_IRQ_event

kernel/irq/handle.c 167
handle_mm_fault

mm/memory.c 384
handle_pte_fault

mm/memory.c 385
handle_ra_miss

mm/readahead.c 648
handle_signal

arch/i386/kernel/signal.c 442
handle_t

include/linux/jbd.h 770
hardirq_ctx

arch/i386/kernel/irq.c 161
hardirq_stack

arch/i386/kernel/irq.c 161
hash_long

include/linux/hash.h 93
hd_struct

include/linux/genhd.h 570
highend_pfn

arch/i386/mm/init.c 67
HIGH_MEMORY

include/asm-i386/e820.h 66
high_memory

mm/memory.c 305
highstart_pfn

arch/i386/mm/init.c 67
HI_SOFTIRQ

include/linux/interrupt.h 173
hlist_add_head

include/linux/list.h 89
hlist_del

include/linux/list.h 89

hlist_empty
include/linux/list.h 89

hlist_entry
include/linux/list.h 89

hlist_for_each_entry
include/linux/list.h 89

hlist_head
include/linux/list.h 89

hlist_node
include/linux/list.h 89

hpet_enable
arch/i386/kernel/time_hpet.c 236

hpet_time_init
arch/i386/kernel/time.c 236

hw_interrupt_type
include/linux/irq.h 158

hw_irq_controller
include/linux/irq.h 158

hw_resend_irq
include/asm-i386/hw_irq.h 167

HZ
include/asm-i386/param.h 230

I
i387_fsave_struct

include/asm-i386/processor.h 112
i387_fxsave_struct

include/asm-i386/processor.h 112
i387_soft_struct

include/asm-i386/processor.h 112
i387_union

include/asm-i386/processor.h 112
i8259A_irq_type

arch/i386/kernel/i8259.c 158
I_CLEAR

include/linux/fs.h 468
I_DIRTY

include/linux/fs.h 468
I_DIRTY_DATASYNC

include/linux/fs.h 468
I_DIRTY_PAGES

include/linux/fs.h 468
I_DIRTY_SYNC

include/linux/fs.h 468
idle_balance

kernel/sched.c 279
idt_descr

arch/i386/kernel/head.S 147
idt_table

arch/i386/kernel/traps.c 147

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 873

I_FREEING
include/linux/fs.h 468

ignore_int
arch/i386/kernel/head.S 147

I_LOCK
include/linux/fs.h 468

in_atomic
include/linux/hardirq.h 379

inb
include/asm-i386/io.h 521

inb_p
include/asm-i386/io.h 521

in_interrupt
include/linux/hardirq.h 174

init
init/main.c 125

INIT_FILES
include/linux/init_task.h 124

init_files
arch/i386/kernel/init_task.c 124

init_fpu
arch/i386/kernel/i387.c 114

INIT_FS
include/linux/fs_struct.h 124

init_fs
arch/i386/kernel/init_task.c 124

init_IRQ
arch/i386/kernel/i8259.c 157

INIT_MM
include/linux/init_task.h 124

init_mm
arch/i386/kernel/init_task.c 124

init_mount_tree
fs/namespace.c 492

init_MUTEX
include/asm-i386/semaphore.h 209

init_MUTEX_LOCKED
include/asm-i386/semaphore.h 209

init_new_context
arch/i386/kernel/ldt.c 393

init_page_buffers
fs/buffer.c 616

init_pipe_fs
fs/pipe.c 781

init_rootfs
fs/ramfs/inode.c 492

init_rwsem
include/asm-i386/rwsem.h 214

init_sighand
arch/i386/kernel/init_task.c 124

INIT_SIGNALS
include/linux/init_task.h 124

init_signals
arch/i386/kernel/init_task.c 124

init_special_inode
fs/inode.c 540

init_sync_kiocb
include/linux/aio.h 634

INIT_TASK
include/linux/init_task.h 124

init_task
arch/i386/kernel/init_task.c 89

INIT_THREAD_INFO
include/asm-i386/thread_info.h 124

init_thread_union
arch/i386/kernel/init_task.c 124

init_timer
include/linux/timer.h 245

init_tss
arch/i386/kernel/init_task.c 44

init_waitqueue_entry
include/linux/wait.h 98

init_waitqueue_func_entry
include/linux/wait.h 98

init_waitqueue_head
include/linux/wait.h 98

inl
include/asm-i386/io.h 521

inl_p
include/asm-i386/io.h 521

inode
include/linux/fs.h 467

inode_hashtable
fs/inode.c 469

inode_in_use
fs/inode.c 469

inode_operations
include/linux/fs.h 469

inode_unused
fs/inode.c 468

insb
include/asm-i386/io.h 522

insert_vm_struct
mm/mmap.c 368

insl
include/asm-i386/io.h 522

insw
include/asm-i386/io.h 522

int3
arch/i386/kernel/entry.S 140

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

874 | Source Code Index

interrupt
arch/i386/kernel/entry.S 158

interruptible_sleep_on
kernel/sched.c 99

interruptible_sleep_on_timeout
kernel/sched.c 99

invalidate_inode_pages2
mm/truncate.c 671

invalidate_interrupt
include/asm-i386/mach-default/

entry_arch.h 170
INVALIDATE_TLB_VECTOR

include/asm-i386/mach-default/
irq_vectors.h 170

invalid_op
arch/i386/kernel/entry.S 140

invalid_TSS
arch/i386/kernel/entry.S 140

inw
include/asm-i386/io.h 521

inw_p
include/asm-i386/io.h 521

iocb
include/linux/aio_abi.h 674

io_event
include/linux/aio_abi.h 673

ioport_resource
kernel/resource.c 522

ioremap
include/asm-i386/io.h 546

ioremap_nocache
arch/i386/mm/ioremap.c 546

iounmap
arch/i386/mm/ioremap.c 546

iovec
include/linux/uio.h 633

IPC_CREAT
include/linux/ipc.h 791

IPC_EXCL
include/linux/ipc.h 791

ipc_id_ary
ipc/util.h 792

ipc_ids
ipc/util.h 792

IPC_INFO
include/linux/ipc.h 793

IPCMNI
include/linux/ipc.h 791

IPC_NOWAIT
include/linux/ipc.h 791

IPC_PRIVATE
include/linux/ipc.h 791

IPC_RMID
include/linux/ipc.h 793

IPC_SET
include/linux/ipc.h 793

IPC_STAT
include/linux/ipc.h 793

iput
fs/inode.c 477

irq _desc_t
include/linux/irq.h 156

irq0
arch/i386/mach-default/setup.c 237

irqaction
include/linux/interrupt.h 159

IRQ_AUTODETECT
include/linux/irq.h 157

irq_cpustat_t
include/asm-i386/hardirq.h 159

irq_ctx
arch/i386/kernel/irq.c 161

irq_desc
kernel/irq/handle.c 156

IRQ_DISABLED
include/linux/irq.h 157

irq_enter
include/linux/hardirq.h 163

irq_exit
include/asm-i386/hardirq.h 164

IRQ_INPROGRESS
include/linux/irq.h 157

IRQ_LEVEL
include/linux/irq.h 157

IRQ_MASKED
include/linux/irq.h 157

IRQ_PENDING
include/linux/irq.h 157

IRQ_PER_CPU
include/linux/irq.h 157

IRQ_REPLAY
include/linux/irq.h 157

irqs_disabled()
include/asm-i386/system.h 215

irq_stat
kernel/softirq.c 159

IRQ_WAITING
include/linux/irq.h 157

ITIMER_PROF
include/linux/time.h 255

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 875

ITIMER_REAL
include/linux/time.h 255

itimerval
include/linux/time.h 255

ITIMER_VIRTUAL
include/linux/time.h 255

it_real_fn
kernel/itimer.c 255

J
jiffies

arch/i386/kernel/vmlinux.lds.S 234
jiffies_64

arch/i386/kernel/time.c 234
journal_block_tag_t

include/linux/jbd.h 770
journal_commit_transaction

fs/jbd/commit.c 774
journal_dirty_data

fs/jbd/transaction.c 773
journal_dirty_metadata

fs/jbd/transaction.c 773
journal_get_write_access

fs/jbd/transaction.c 773
journal_head

include/linux/journal-head.h 770
journal_start

fs/jbd/transaction.c 770
journal_stop

fs/jbd/transaction.c 771

K
kblockd_workqueue

drivers/block/ll_rw_blk.c 579
__KERNEL_CS

include/asm-i386/segment.h 42
__KERNEL_DS

include/asm-i386/segment.h 42
kernel_flag

kernel/sched.c 223
kernel_fpu_begin

arch/i386/kernel/i387.c 114
kernel_fpu_end

include/asm-i386/i387.h 114
__kernel_rt_sigreturn

arch/i386/kernel/
vsyscall-sigreturn.S 447

kernel_sem
lib/kernel_lock.c 223

__kernel_sigreturn
arch/i386/kernel/

vsyscall-sigreturn.S 446
kernel_thread

arch/i386/kernel/process.c 123
kern_ipc_perm

include/linux/ipc.h 792
keventd_wq

kernel/workqueue.c 183
kfree

mm/slab.c 340
kill_anon_super

fs/super.c 482
kill_pg

kernel/signal.c 433
kill_pg_info

kernel/signal.c 433
kill_proc

kernel/signal.c 433
kill_proc_info

kernel/signal.c 433
kill_something_info

kernel/signal.c 450
kiocb

include/linux/aio.h 633
KIOCB_SYNC_KEY

include/linux/aio.h 634
kioctx

include/linux/aio.h 673
kmalloc

include/linux/slab.h 340
kmap

arch/i386/mm/highmem.c 308
kmap_atomic

arch/i386/mm/highmem.c 311
kmap_high

mm/highmem.c 308
kmap_lock

mm/highmem.c 308
kmap_pte

arch/i386/mm/init.c 310
KM_BIO_SRC_IRQ

include/asm-i386/kmap-types.h 593
KM_BOUNCE_READ

include/asm-i386/kmap_types.h 310
kmem_bufctl_t

include/asm-i386/types.h 332
kmem_cache_alloc

mm/slab.c 337

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

876 | Source Code Index

kmem_cache_create
mm/slab.c 328

kmem_cache_destroy
mm/slab.c 329

kmem_cache_free
mm/slab.c 338

kmem_cache_init
mm/slab.c 328

kmem_cache_s
mm/slab.c 325

kmem_cache_shrink
mm/slab.c 329

kmem_cache_t
include/linux/slab.h 325

kmem_freepages
mm/slab.c 330

kmem_getpages
mm/slab.c 329

kmem_list3
mm/slab.c 326

KM_PTE0
include/asm-i386/kmap_types.h 310

km_type
include/asm-i386/kmap_types.h 310

KM_USER0
include/asm-i386/kmap_types.h 310

kobject
include/linux/kobject.h 528

kobject_get
lib/kobject.c 529

kobject_put
lib/kobject.c 529

kobject_register
lib/kobject.c 531

kobject_unregister
lib/kobject.c 531

kobj_lookup
drivers/base/map.c 554

kobj_map
drivers/base/map.c 553

kobj_type
include/linux/kobject.h 528

k_ref
include/linux/kref.h 529

kset
include/linux/kobject.h 529

kset_get
include/linux/kobject.h 529

kset_put
include/linux/kobject.h 529

kset_register
lib/kobject.c 531

kset_unregister
lib/kobject.c 531

k_sigaction
include/asm-i386/signal.h 428

ksoftirqd
kernel/softirq.c 177

kstat
include/linux/kernel_stat.h 242

kswapd
mm/vmscan.c 708

ktype_cdev_dynamic
fs/char_dev.c 556

kunmap
arch/i386/mm/highmem.c 310

kunmap_atomic
include/asm-i386/highmem.h 311

kunmap_high
mm/highmem.c 310

L
L1_CACHE_BYTES

include/asm-i386/cache.h 74
LARGE_PAGE_MASK

include/asm-i386/page.h 59
LARGE_PAGE_SIZE

include/asm-i386/page.h 59
LAST_BIND

include/linux/namei.h 503
LAST_DOT

include/linux/namei.h 503
LAST_DOTDOT

include/linux/namei.h 503
last_empty_jifs

mm/pdflush.c 624
LAST_NORM

include/linux/namei.h 503
LAST_PKMAP

include/asm-i386/highmem.h 307
last_pkmap_nr

mm/highmem.c 309
LAST_ROOT

include/linux/namei.h 503
LATCH

include/linux/jiffies.h 230
__le16

include/linux/types.h 742
__le32

include/linux/types.h 742

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 877

link_path_walk
fs/namei.c 498

linux_binfmt
include/linux/binfmts.h 825

linux_binprm
include/linux/binfmts.h 829

list_add
include/linux/list.h 88

list_add_tail
include/linux/list.h 88

list_del
include/linux/list.h 88

list_empty
include/linux/list.h 88

list_entry
include/linux/list.h 88

list_for_each
include/linux/list.h 88

LIST_HEAD
include/linux/list.h 87

list_head
include/linux/list.h 87

ll_rw_block
fs/buffer.c 621

load_balance
kernel/sched.c 288

load_elf_interp
fs/binfmt_elf.c 832

load_script
fs/binfmt_script.c 825

local_bh_disable
include/linux/interrupt.h 216

local_bh_disable()
include/linux/interrupt.h 176

local_bh_enable
kernel/softirq.c 216

local_irq_disable
include/asm-i386/system.h 215

local_irq_enable
include/asm-i386/system.h 215

local_irq_restore
include/asm-i386/system.h 216

local_irq_save
include/asm-i386/system.h 216

local_softirq_pending()
include/linux/irq_cpustat.h 174

LOCK_EX
include/asm-i386/fcntl.h 513

lock_kernel
lib/kernel_lock.c 223

LOCK_MAND
include/asm-i386/fcntl.h 513

LOCK_NB
include/asm-i386/fcntl.h 513

lock_page
include/linux/pagemap.h 607

LOCK_SH
include/asm-i386/fcntl.h 513

LOCK_UN
include/asm-i386/fcntl.h 513

LOOKUP_ACCESS
include/linux/namei.h 497

LOOKUP_CONTINUE
include/linux/namei.h 497

LOOKUP_CREATE
include/linux/namei.h 497

LOOKUP_DIRECTORY
include/linux/namei.h 497

LOOKUP_FOLLOW
include/linux/namei.h 497

lookup_mnt
fs/namespace.c 487

LOOKUP_NOALT
include/linux/namei.h 497

LOOKUP_OPEN
include/linux/namei.h 497

LOOKUP_PARENT
include/linux/namei.h 497

lookup_swap_cache
mm/swap_state.c 731

LOWMEMSIZE()
arch/i386/kernel/setup.c 66

lru_add_drain
mm/swap.c 696

lru_cache_add
mm/swap.c 692

lru_cache_add_active
mm/swap.c 692

M
machine_check

arch/i386/kernel/entry.S 140
machine_specific_memory_setup

include/asm-i386/mach-default/
setup_arch_post.h 66

MADV_NORMAL
include/asm-i386/mman.h 665

MADV_RANDOM
include/asm-i386/mman.h 665

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

878 | Source Code Index

MADV_SEQUENTIAL
include/asm-i386/mman.h 665

MADV_WILLNEED
include/asm-i386/mman.h 645

MAJOR
include/linux/kdev_t.h 538

make_pages_present
mm/memory.c 372

__make_request
drivers/block/ll_rw_blk.c 583

malloc_sizes
mm/slab.c 328

MAP_ANONYMOUS
include/asm-i386/mman.h 370

map_area_pmd
mm/vmalloc.c 347

map_area_pte
mm/vmalloc.c 347

map_area_pud
mm/vmalloc.c 347

MAP_DENYWRITE
include/asm-i386/mman.h 369

MAP_EXECUTABLE
include/asm-i386/mman.h 369

MAP_FIXED
include/asm-i386/mman.h 370

MAP_GROWSDOWN
include/asm-i386/mman.h 369

MAP_LOCKED
include/asm-i386/mman.h 369

map_new_virtual
mm/highmem.c 308

MAP_NONBLOCK
include/asm-i386/mman.h 370

MAP_NORESERVE
include/asm-i386/mman.h 370

MAP_POPULATE
include/asm-i386/mman.h 370

MAP_PRIVATE
include/asm-i386/mman.h 370

MAP_SHARED
include/asm-i386/mman.h 370

map_vm_area
mm/vmalloc.c 346

mark_inode_dirty
include/linux/fs.h 760

mark_page_accessed
mm/swap.c 693

mask_and_ack_8259A
arch/i386/kernel/i8259.c 158

math_state_restore
arch/i386/kernel/traps.c 113

max_low_pfn
mm/bootmem.c 67

max_pfn
mm/bootmem.c 67

MAX_SWAPFILES
include/linux/swap.h 714

max_threads
kernel/fork.c 120

maybe_mkwrite
mm/memory.c 387

mb()
include/asm-i386/system.h 199

memcpy_fromio
include/asm-i386/io.h 546

memcpy_toio
include/asm-i386/io.h 546

mem_init
mm/init.c 841

mem_map
mm/memory.c 295

mempool_alloc
mm/mempool.c 342

mempool_alloc_slab
mm/mempool.c 342

mempool_create
mm/mempool.c 342

mempool_destroy
mm/mempool.c 342

mempool_free
mm/mempool.c 342

mempool_free_slab
mm/mempool.c 342

mempool_t
include/linux/mempool.h 341

memset_io
include/asm-i386/io.h 546

min_free_kbytes
mm/page_alloc.c 302

min_low_pfn
mm/bootmem.c 67

MINOR
include/linux/kdev_t.h 538

MKDEV
include/linux/kdev_t.h 538

mk_pte
include/asm-i386/pgtable.h 63

mk_pte_huge
include/asm-i386/pgtable.h 62

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 879

mm_alloc
kernel/fork.c 356

mmdrop
include/linux/sched.h 356

mmlist_lock
kernel/fork.c 356

mmput
kernel/fork.c 356

mm_release
kernel/fork.c 394

mm_struct
include/linux/sched.h 353

mmu_gathers
arch/i386/mm/init.c 376

MNT_NODEV
include/linux/mount.h 487

MNT_NOEXEC
include/linux/mount.h 487

MNT_NOSUID
include/linux/mount.h 487

mod_timer
kernel/timer.c 246

module
include/linux/module.h 844

MODULE_LICENSE
include/linux/module.h 843

modules
kernel/module.c 844

MODULE_STATE_COMING
include/linux/module.h 845

MODULE_STATE_GOING
include/linux/module.h 845

MODULE_STATE_LIVE
include/linux/module.h 845

module_use
kernel/module.c 847

mount_hashtable
fs/namespace.c 486

mount_root
init/do_mounts.c 493

move_tasks
kernel/sched.c 289

mpage_bio_submit
fs/mpage.c 657

mpage_end_io_read
fs/mpage.c 640

mpage_end_io_write
fs/mpage.c 657

mpage_readpage
fs/mpage.c 639

mpage_writepage
fs/mpage.c 657

mpage_writepages
fs/mpage.c 655

mqueue_inode_info
ipc/mqueue.c 807

MS_ASYNC
include/asm-i386/mman.h 665

MS_BIND
include/linux/fs.h 488

MS_DIRSYNC
include/linux/fs.h 488

msg_ids
ipc/msg.c 799

msg_msg
include/linux/msg.h 800

msg_msgseg
ipc/msgutil.c 801

msg_queue
include/linux/msg.h 800

msg_receiver
ipc/msg.c 801

MS_INVALIDATE
include/asm-i386/mman.h 666

MS_MANDLOCK
include/linux/fs.h 488

MS_MOVE
include/linux/fs.h 488

MS_NOATIME
include/linux/fs.h 488

MS_NODEV
include/linux/fs.h 488

MS_NODIRATIME
include/linux/fs.h 488

MS_NOEXEC
include/linux/fs.h 488

MS_NOSUID
include/linux/fs.h 487

MS_RDONLY
include/linux/fs.h 487

MS_REC
include/linux/fs.h 488

MS_REMOUNT
include/linux/fs.h 488

MS_SYNC
include/asm-i386/mman.h 665

MS_SYNCHRONOUS
include/linux/fs.h 488

MS_VERBOSE
include/linux/fs.h 488

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

880 | Source Code Index

msync_interval
mm/msync.c 666

N
nameidata

include/linux/namei.h 496
namespace

include/linux/namespace.h 484
ndelay

include/asm-i386/delay.h 251
NET_RX_SOFTIRQ

include/linux/interrupt.h 173
NET_TX_SOFTIRQ

include/linux/interrupt.h 173
new_inode

fs/inode.c 758
next_thread

kernel/exit.c 96
nmi

arch/i386/kernel/entry.S 140
NOT_IDLE

include/linux/sched.h 287
NR_CPUS

include/linux/threads.h 77
__NR_fork

include/asm-i386/unistd.h 409
NR_IRQS

include/asm-i386/mach-default/
irq_vectors.h 162

NR_OPEN
include/linux/fs.h 479

nr_pdflush_threads
mm/pdflush.c 624

__NR_restart_syscall
include/asm-i386/unistd.h 449

nr_swapfiles
mm/swapfile.c 717

nr_swap_pages
mm/page_alloc.c 718

NR_syscalls
include/asm-i386/unistd.h 401

nr_threads
kernel/fork.c 120

__NR_write
include/asm-i386/unistd.h 418

_NSIG
include/asm-i386/signal.h 427

num_physpages
mm/memory.c 67

O
O_APPEND

include/asm-i386/fcntl.h 506
O_CREAT

include/asm-i386/fcntl.h 506
O_DIRECT

include/asm-i386/fcntl.h 669
O_DIRECTORY

include/asm-i386/fcntl.h 506
O_EXCL

include/asm-i386/fcntl.h 506
O_LARGEFILE

include/asm-i386/fcntl.h 506
old_mmap

arch/i386/kernel/sys_i386.c 660
old_sigaction

include/asm-i386/signal.h 451
O_NDELAY

include/asm-i386/fcntl.h 506
O_NOATIME

include/asm-i386/fcntl.h 506
O_NOCTTY

include/asm-i386/fcntl.h 506
O_NOFOLLOW

include/asm-i386/fcntl.h 506
O_NONBLOCK

include/asm-i386/fcntl.h 506
oom_kill_process

mm/oom_kill.c 711
open_bdev_excl

fs/block_dev.c 491
open_namei

fs/namei.c 507
open_softirq

kernel/softirq.c 174
O_RDONLY

include/asm-i386/fcntl.h 506
O_RDWR

include/asm-i386/fcntl.h 506
O_SYNC

include/asm-i386/fcntl.h 506
O_TRUNC

include/asm-i386/fcntl.h 506
outb

include/asm-i386/io.h 522
outb_p

include/asm-i386/io.h 522
outl

include/asm-i386/io.h 522

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 881

outl_p
include/asm-i386/io.h 522

out_of_memory
mm/oom_kill.c 710

outsb
include/asm-i386/io.h 522

outsl
include/asm-i386/io.h 522

outsw
include/asm-i386/io.h 522

outw
include/asm-i386/io.h 522

outw_p
include/asm-i386/io.h 522

overflow
arch/i386/kernel/entry.S 140

O_WRONLY
include/asm-i386/fcntl.h 506

P
__pa

include/asm-i386/page.h 70
page

include/linux/mm.h 295
PAGE_ACTIVATE

mm/vmscan.c 704
PageActive

include/linux/page-flags.h 297
page_add_anon_rmap

mm/rmap.c 736
page_address

mm/highmem.c 307
page_address_htable

mm/highmem.c 307
page_address_map

mm/highmem.c 307
page_alloc_init

mm/page_alloc.c 841
PageAnon

include/linux/mm.h 681
page_cache_read

mm/filemap.c 665
page_cache_readahead

mm/readahead.c 645
PAGECACHE_TAG_DIRTY

incude/linux/fs.h 610
PAGECACHE_TAG_WRITEBACK

include/linux/fs.h 610
PageChecked

include/linux/page-flags.h 297

PAGE_CLEAN
mm/vmscan.c 704

page_cluster
mm/swap.c 735

PageCompound
include/linux/page-flags.h 297

page_count
include/linux/mm.h 296

PageDirty
include/linux/page-flags.h 296

PageError
include/linux/page-flags.h 296

page_fault
arch/i386/kernel/entry.S 140

page_follow_link_light
fs/namei.c 756

PageHighMem
include/linux/page-flags.h 297

page_is_buddy
mm/page_alloc.c 316

PAGE_KEEP
mm/vmscan.c 704

PageLocked
include/linux/page-flags.h 296

PageLRU
include/linux/page-flags.h 297

page_mapcount
include/linux/mm.h 681

PageMappedToDisk
include/linux/page-flags.h 297

PAGE_MASK
include/asm-i386/page.h 59

PageNosave
include/linux/page-flags.h 297

PageNosaveFree
include/linux/page-flags.h 297

PAGE_OFFSET
include/asm-i386/page.h 68

pageout
mm/vmscan.c 704

PagePrivate
include/linux/page-flags.h 297

page_put_link
fs/namei.c 756

PageReclaim
include/linux/page-flags.h 297

PageReferenced
include/linux/page-flags.h 296

page_referenced
mm/rmap.c 694

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

882 | Source Code Index

page_referenced_anon
mm/rmap.c 694

page_referenced_file
mm/rmap.c 694

page_referenced_one
mm/rmap.c 694

PageReserved
include/linux/page-flags.h 297

PAGE_SHIFT
include/asm-i386/page.h 59

PAGE_SIZE
include/asm-i386/page.h 59

PageSlab
include/linux/page-flags.h 297

page_states
mm/page_alloc.c 621

PageSwapCache
include/linux/page-flags.h 297

pagetable_init
arch/i386/mm/init.c 70

PageUptodate
include/linux/page-flags.h 296

pagevec
include/linux/pagevec.h 692

PageWriteback
include/linux/page-flags.h 297

page_writeback_init
mm/page-writeback.c 628

page_zone
include/linux/mm.h 301

paging_init
arch/i386/mm/init.c 70

path_lookup
fs/namei.c 496

path_release
fs/namei.c 497

pci_alloc_consistent
include/asm-generic/

pci-dma-compat.h 550
pci_dev

include/linux/pci.h 532
pci_dma_sync_single_for_cpu

include/asm-generic/
pci-dma-compat.h 550

pci_dma_sync_single_for_device
include/asm-generic/

pci-dma-compat.h 550
pci_driver

include/linux/pci.h 534

pci_free_consistent
include/asm-generic/

pci-dma-compat.h 550
pci_map_page

include/asm-generic/
pci-dma-compat.h 550

pci_map_single
include/asm-generic/

pci-dma-compat.h 550
pci_read_config_byte

include/linux/pci.h 155
pci_register_driver

drivers/pci/pci-driver.c 541
pci_set_dma_mask

drivers/pci/pci.c 549
pci_unmap_page

include/asm-generic/
pci-dma-compat.h 551

pci_unmap_single
include/asm-generic/

pci-dma-compat.h 550
__pdflush

mm/pdflush.c 624
pdflush_list

mm/pdflush.c 624
pdflush_lock

mm/pdflush.c 624
pdflush_operation

mm/pdflush.c 624
pdflush_work

mm/pdflush.c 624
PER_BSD

include/linux/personality.h 828
per_cpu

include/asm-generic/percpu.h 195
per_cpu_pages

include/linux/mmzone.h 317
per_cpu_pageset

include/mm/mmzone.h 317
per_cpu_ptr

include/linux/percpu.h 195
PER_HPUX

include/linux/personality.h 828
PER_IRIX32

include/linux/personality.h 828
PER_IRIX64

include/linux/personality.h 828
PER_IRIXN32

include/linux/personality.h 828

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 883

PER_ISCR4
include/linux/personality.h 828

PER_LINUX
include/linux/personality.h 827

PER_LINUX32
include/linux/personality.h 828

PER_LINUX32_3GB
include/linux/personality.h 828

PER_LINUX_32BIT
include/linux/personality.h 827

PER_OSF4
include/linux/personality.h 828

PER_OSR5
include/linux/personality.h 827

PER_RISCOS
include/linux/personality.h 828

PER_SCOSVR3
include/linux/personality.h 827

PER_SOLARIS
include/linux/personality.h 828

PER_SUNOS
include/linux/personality.h 828

PER_SVR3
include/linux/personality.h 827

PER_SVR4
include/linux/personality.h 827

PER_UW7
include/linux/personality.h 828

PER_WYSEV386
include/linux/personality.h 828

PER_XENIX
include/linux/personality.h 828

PF_EXITING
include/linux/sched.h 127

PF_FORKNOEXEC
include/linux/sched.h 831

pfn_to_page
include/asm-i386/page.h 295

PF_SWAPOFF
include/linux/sched.h 722

PF_USED_MATH
include/linux/sched.h 112

pg0
arch/i386/kernel/vmlinux.lds.S 69

PG_active
include/linux/page-flags.h 297

PG_arch_1
include/linux/page-flags.h 297

PG_checked
include/linux/page-flags.h 297

PG_compound
include/linux/page-flags.h 297

__pgd
include/asm-i386/page.h 60

pgd_alloc
arch/i386/mm/pgtable.c 64

pg_data_t
include/linux/mmzone.h 298

pgdat_list
mm/page_alloc.c 298

pgd_bad
include/asm-generic/pgtable-nopud.h 61

pgd_clear
include/asm-generic/pgtable-nopud.h 60

pgd_free
arch/i386/mm/pgtable.c 64

pgd_index
include/asm-i386/pgtable.h 63

PGDIR_MASK
include/asm-i386/pgtable.h 60

PGDIR_SHIFT
include/asm-i386/pgtable-2level-defs.h60
include/asm-i386/pgtable-3level-defs.h60

PGDIR_SIZE
include/asm-i386/pgtable.h 60

PG_dirty
include/linux/page-flags.h 296

pgd_none
include/asm-generic/pgtable-nopud.h 60

pgd_offset
include/asm-i386/pgtable.h 63

pgd_offset_k
include/asm-i386/pgtable.h 63

pgd_page
include/asm-generic/pgtable-nopud.h 63

pgd_present
include/asm-generic/pgtable-nopud.h 61

pgd_t
include/asm-i386/page.h 60

pgd_val
include/asm-i386/page.h 60

PG_error
include/linux/page-flags.h 296

PG_highmem
include/linux/page-flags.h 297

PG_locked
include/linux/page-flags.h 296

PG_lru
include/linux/page-flags.h 297

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

884 | Source Code Index

PG_mappedtodisk
include/linux/page-flags.h 297

PG_nosave
include/linux/page-flags.h 297

PG_nosave_free
include/linux/page-flags.h 297

pgoff_to_pte
include/asm-i386/pgtable-2level.h 64

PG_private
include/linux/page-flags.h 297

__pgprot
include/asm-i386/page.h 60

pgprot_t
include/asm-i386/page.h 60

pgprot_val
include/asm-i386/page.h 60

PG_reclaim
include/linux/page-flags.h 297

PG_referenced
include/linux/page-flags.h 296

PG_reserved
include/linux/page-flags.h 297

PG_slab
include/linux/page-flags.h 297

PG_swapcache
include/linux/page-flags.h 297

PG_uptodate
include/linux/page-flags.h 296

PG_writeback
include/linux/page-flags.h 297

phys_domains
kernel/sched.c 287

pid
include/linux/pid.h 94

pid_hash
kernel/pid.c 92

pid_hashfn
kernel/pid.c 93

pidhash_shift
kernel/pid.c 93

pidmap_array
kernel/pid.c 84

PID_MAX_DEFAULT
include/linux/threads.h 84

PIDTYPE_PGID
include/linux/pid.h 92

PIDTYPE_PID
include/linux/pid.h 92

PIDTYPE_SID
include/linux/pid.h 92

PIDTYPE_TGID
include/linux/pid.h 92

pipe_buffer
include/linux/pipe_fs_i.h 780

pipe_buf_operations
include/linux/pipe_fs_i.h 780

pipefs_read_super
fs/pipe.c 781

pipe_fs_type
fs/pipe.c 781

pipe_inode_info
include/linux/pipe_fs_i.h 779

pipe_mnt
fs/pipe.c 781

pipe_read
fs/pipe.c 783

pipe_read_release
fs/pipe.c 782

pipe_release
fs/pipe.c 782

pipe_write
fs/pipe.c 785

pipe_write_release
fs/pipe.c 782

PKMAP_BASE
include/asm-i386/highmem.h 307

pkmap_count
mm/highmem.c 307

pkmap_map_wait
mm/highmem.c 309

pkmap_page_table
mm/highmem.c 307

__pmd
include/asm-i386/page.h 60

pmd_alloc
include/linux/mm.h 65

pmd_bad
include/asm-i386/pgtable.h 61

pmd_clear
include/asm-i386/pgtable.h 60

pmd_free
include/asm-generic/pgtable-nopmd.h 65
include/asm-i386/pgalloc.h 65

pmd_index
include/asm-i386/pgtable.h 63

pmd_large
include/asm-i386/pgtable.h 61

PMD_MASK
include/asm-generic/pgtable-nopmd.h 59
include/asm-i386/pgtable.h 59

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 885

pmd_none
include/asm-i386/pgtable.h 60

pmd_offset
include/asm-generic/pgtable-nopmd.h 63
include/asm-i386/pgtable-3level.h 63

pmd_page
include/asm-i386/pgtable-2level.h 63
include/asm-i386/pgtable-3level.h 63

pmd_present
include/asm-i386/pgtable.h 61

PMD_SHIFT
include/asm-generic/pgtable-nopmd.h 59
include/asm-i386/pgtable-3level-defs.h59

PMD_SIZE
include/asm-generic/pgtable-nopmd.h 59
include/asm-i386/pgtable.h 59

pmd_t
include/asm-i386/page.h 60

pmd_val
include/asm-i386/page.h 60

POSIX_FADV_NOREUSE
include/linux/fadvise.h 645

POSIX_FADV_NORMAL
include/linux/fadvise.h 644

POSIX_FADV_RANDOM
include/linux/fadvise.h 644

POSIX_FADV_SEQUENTIAL
include/linux/fadvise.h 644

POSIX_FADV_WILLNEED
include/linux/fadvise.h 645

__posix_lock_file
fs/locks.c 517

posix_locks_conflict
fs/locks.c 517

posix_locks_deadlock
fs/locks.c 517

preempt_count
include/linux/preempt.h 191

preempt_disable
include/linux/preempt.h 191

preempt_enable
include/linux/preempt.h 192

preempt_enable_no_resched
include/linux/preempt.h 192

preempt_schedule
kernel/sched.c 192

preempt_schedule_irq
kernel/sched.c 187

prefetch
include/asm-i386/processor.h 281

prepare_binprm
fs/exec.c 830

prepare_namespace
init/do_mounts.c 493

prepare_to_wait
kernel/wait.c 99

prepare_to_wait_exclusive
kernel/wait.c 99

printk
kernel/printk.c 147

prio_array
kernel/sched.c 90

prio_array_t
include/linux/sched.h 90

PRIO_PGRP
include/linux/resource.h 291

PRIO_PROCESS
include/linux/resource.h 291

prio_tree_node
include/linux/prio_tree.h 688

PRIO_USER
include/linux/resource.h 291

probe
drivers/base/map.c 553

process_timeout
kernel/timer.c 251

profile_tick
kernel/profile.c 243

protection_map
mm/mmap.c 365

PROT_EXEC
include/asm-i386/mman.h 369

PROT_NONE
include/asm-i386/mman.h 369

PROT_READ
include/asm-i386/mman.h 369

PROT_WRITE
include/asm-i386/mman.h 369

prune_dcache
fs/dcache.c 706

prune_icache
fs/inode.c 707

PT_DTRACE
include/linux/ptrace.h 824

__pte
include/asm-i386/page.h 60

pte_alloc_kernel
mm/memory.c 65

pte_alloc_map
mm/memory.c 65

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

886 | Source Code Index

pte_alloc_one
arch/i386/mm/pgtable.c 65

pte_clear
include/asm-i386/pgtable.h 60

pte_dirty
include/asm-i386/pgtable.h 62

pte_exec
include/asm-i386/pgtable.h 61

pte_exprotect
include/asm-i386/pgtable.h 62

pte_file
include/asm-i386/pgtable.h 62

pte_free
include/asm-i386/pgalloc.h 65

pte_free_kernel
include/asm-i386/pgalloc.h 65

pte_index
include/asm-i386/pgtable.h 63

pte_mkclean
include/asm-i386/pgtable.h 62

pte_mkdirty
include/asm-i386/pgtable.h 62

pte_mkexec
include/asm-i386/pgtable.h 62

pte_mkold
include/asm-i386/pgtable.h 62

pte_mkread
include/asm-i386/pgtable.h 62

pte_mkwrite
include/asm-i386/pgtable.h 62

pte_mkyoung
include/asm-i386/pgtable.h 62

pte_modify
include/asm-i386/pgtable.h 62

pte_none
include/asm-i386/pgtable-2level.h 60
include/asm-i386/pgtable-3level.h 60

pte_offset_kernel
include/asm-i386/pgtable.h 63

pte_offset_map
include/asm-i386/pgtable.h 64

pte_offset_map_nested
include/asm-i386/pgtable.h 64

pte_page
include/asm-i386/pgtable-2level.h 64
include/asm-i386/pgtable-3level.h 64

ptep_get_and_clear
include/asm-generic/pgtable.h 60
include/asm-i386/pgtable-3level.h 60

ptep_mkdirty
include/asm-i386/pgtable.h 62

pte_present
include/asm-i386/pgtable.h 61

ptep_set_access_flags
include/asm-i386/pgtable.h 62

ptep_set_wrprotect
include/asm-i386/pgtable.h 62

ptep_test_and_clear_dirty
include/asm-i386/pgtable.h 62

ptep_test_and_clear_young
include/asm-i386/pgtable.h 62

pte_rdprotect
include/asm-i386/pgtable.h 62

pte_read
include/asm-i386/pgtable.h 61

pte_same
include/asm-generic/pgtable.h 61
include/asm-i386/pgtable-3level.h 61

pte_t
include/asm-i386/page.h 60

pte_to_pgoff
include/asm-i386/pgtable-2level.h 64
include/asm-i386/pgtable-3level.h 64

pte_unmap
include/asm-i386/pgtable.h 64

pte_unmap_nested
include/asm-i386/pgtable.h 64

pte_user
include/asm-i386/pgtable.h 61

pte_val
include/asm-i386/page.h 60

pte_write
include/asm-i386/pgtable.h 61

pte_wrprotect
include/asm-i386/pgtable.h 62

pte_young
include/asm-i386/pgtable.h 62

PT_PTRACED
include/linux/ptrace.h 824

PTRACE_ATTACH
include/linux/ptrace.h 823

PTRACE_CONT
include/linux/ptrace.h 823

PTRACE_DETACH
include/linux/ptrace.h 823

PTRACE_GETEVENTMSG
include/linux/ptrace.h 823

PTRACE_GETFPREGS
include/asm-i386/ptrace.h 823

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 887

PTRACE_GETFPXREGS
include/asm-i386/ptrace.h 823

PTRACE_GETREGS
include/asm-i386/ptrace.h 823

PTRACE_GETSIGINFO
include/linux/ptrace.h 823

PTRACE_GET_THREAD_AREA
include/asm-i386/ptrace.h 823

PTRACE_KILL
include/linux/ptrace.h 823

ptrace_notify
kernel/signal.c 118

PTRACE_OLDSETOPTIONS
include/asm-i386/ptrace.h 823

PTRACE_PEEKDATA
include/linux/ptrace.h 823

PTRACE_PEEKTEXT
include/linux/ptrace.h 823

PTRACE_PEEKUSR
include/linux/ptrace.h 823

PTRACE_POKEDATA
include/linux/ptrace.h 823

PTRACE_POKETEXT
include/linux/ptrace.h 823

PTRACE_POKEUSR
include/linux/ptrace.h 823

PTRACE_SETFPREGS
include/asm-i386/ptrace.h 823

PTRACE_SETFPXREGS
include/asm-i386/ptrace.h 823

PTRACE_SETOPTIONS
include/linux/ptrace.h 823

PTRACE_SETREGS
include/asm-i386/ptrace.h 823

PTRACE_SETSIGINFO
include/linux/ptrace.h 823

PTRACE_SET_THREAD_AREA
include/asm-i386/ptrace.h 823

PTRACE_SINGLESTEP
include/linux/ptrace.h 823

PTRACE_SYSCALL
include/linux/ptrace.h 823

PTRACE_TRACEME
include/linux/ptrace.h 823

pt_regs
include/asm-i386/ptrace.h 168

PTRS_PER_PGD
include/asm-i386/pgtable-2level-defs.h60
include/asm-i386/pgtable-3level-defs.h60

PTRS_PER_PMD
include/asm-generic/pgtable-nopmd.h 60
include/asm-i386/pgtable-3level-defs.h60

PTRS_PER_PTE
include/asm-i386/pgtable-2level-defs.h60
include/asm-i386/pgtable-3level-defs.h60

PTRS_PER_PUD
include/asm-generic/pgtable-nopud.h 60

__pud
include/asm-generic/pgtable-nopud.h 60

pud_alloc
include/linux/mm.h 65

pud_bad
include/asm-generic/pgtable-nopmd.h 61
include/asm-i386/pgtable-3level.h 61

pud_clear
include/asm-generic/pgtable-nopmd.h 60
include/asm-i386/pgtable-3level.h 60

pud_free
include/asm-generic/pgtable-nopud.h 65

PUD_MASK
include/asm-generic/pgtable-nopud.h 60

pud_none
include/asm-generic/pgtable-nopmd.h 60
include/asm-i386/pgtable-3level.h 60

pud_offset
include/asm-generic/pgtable-nopud.h 63

pud_page
include/asm-generic/pgtable-nopmd.h 63
include/asm-i386/pgtable-3level.h 63

pud_present
include/asm-generic/pgtable-nopmd.h 61
include/asm-i386/pgtable-3level.h 61

PUD_SHIFT
include/asm-generic/pgtable-nopud.h 60

PUD_SIZE
include/asm-generic/pgtable-nopud.h 60

pud_t
include/asm-generic/pgtable-nopud.h 60

pud_val
include/asm-generic/pgtable-nopud.h 60

pull_task
kernel/sched.c 289

put_cpu()
include/linux/smp.h 192

put_cpu_no_resched
include/linux/smp.h 192

put_cpu_var
include/linux/percpu.h 195

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

888 | Source Code Index

put_device
drivers/base/core.c 532

put_driver
drivers/base/driver.c 533

put_task_struct
include/linux/sched.h 130

__put_user
include/asm-i386/uaccess.h 414

put_user
include/asm-i386/uaccess.h 413

__put_user_64
include/asm-i386/uaccess.h 413

__put_user_asm
include/asm-i386/uaccess.h 413

Q
queue_delayed_work

kernel/workqueue.c 182
QUEUE_FLAG_PLUGGED

include/linux/blkdev.h 579
QUEUE_FLAG_READFULL

include/linux/blkdev.h 579
QUEUE_FLAG_WRITEFULL

include/linux/blkdev.h 579
queue_work

kernel/workqueue.c 182

R
radix_tree_delete

lib/radix-tree.c 609
radix_tree_extend

lib/radix-tree.c 608
radix_tree_gang_lookup

lib/radix-tree.c 607
radix_tree_insert

lib/radix-tree.c 608
radix_tree_lookup

lib/radix-tree.c 607
radix_tree_maxindex

lib/radix-tree.c 608
radix_tree_node

lib/radix-tree.c 604
radix_tree_node_alloc

lib/radix-tree.c 608
radix_tree_node_cachep

lib/radix-tree.c 608
radix_tree_path

lib/radix-tree.c 609

radix_tree_preload
lib/radix-tree.c 608

radix_tree_preload_end
include/linux/radix-tree.h 608

radix_tree_preloads
lib/radix-tree.c 608

radix_tree_root
include/linux/radix-tree.h 605

radix_tree_tag_clear
lib/radix-tree.c 611

radix_tree_tagged
lib/radix-tree.c 611

radix_tree_tag_set
lib/radix-tree.c 610

RA_FLAG_INCACHE
include/linux/fs.h 645

RA_FLAG_MISS
include/linux/fs.h 645

raise_softirq
kernel/softirq.c 174

raise_softirq_irqoff
kernel/softirq.c 179

ramfs_fill_super
fs/ramfs/inode.c 492

_raw_read_trylock
include/asm-i386/spinlock.h 204

_raw_spin_trylock
include/asm-i386/spinlock.h 201

_raw_write_trylock
include/asm-i386/spinlock.h 205

rb_entry
include/linux/rbtree.h 366

rb_node
include/linux/rbtree.h 362

rcu_read_lock()
include/linux/rcupdate.h 207

rcu_read_unlock()
include/linux/rcupdate.h 207

rcu_tasklet
kernel/rcupdate.c 208

rdwr_fifo_fops
fs/pipe.c 789

__reacquire_kernel_lock
lib/kernel_lock.c 284

READ
include/linux/fs.h 577

READA
include/linux/fs.h 622

readb
include/asm-i386/io.h 546

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 889

read_cache_page
mm/filemap.c 609

read_descriptor_t
include/linux/fs.h 635

read_fifo_fops
fs/pipe.c 789

read_inode_bitmap
fs/ext2/ialloc.c 759

readl
include/asm-i386/io.h 546

read_lock
include/linux/spinlock.h 204

read_lock_bh
include/linux/spinlock.h 220

__read_lock_failed
arch/i386/kernel/semaphore.c 205

read_lock_irq
include/linux/spinlock.h 220

read_lock_irqsave
include/linux/spinlock.h 220

read_pipe_fops
fs/pipe.c 783

read_seqbegin
include/linux/seqlock.h 207

read_seqbegin_irqsave
include/linux/seqlock.h 220

read_seqlretry
include/linux/seqlock.h 207

read_seqretry_irqrestore
include/linux/seqlock.h 220

read_swap_cache_async
mm/swap_state.c 736

read_unlock
include/linux/spinlock.h 205

read_unlock_bh
include/linux/spinlock.h 220

read_unlock_irq
include/linux/spinlock.h 220

read_unlock_irqrestore
include/linux/spinlock.h 220

readw
include/asm-i386/io.h 546

real_lookup
fs/namei.c 500

reap_work
mm/slab.c 709

rebalance_tick
kernel/sched.c 287

recalc_sigpending
kernel/signal.c 432

recalc_sigpending_tsk
kernel/signal.c 432

recalc_task_prio
kernel/sched.c 275

reclaim_state
include/linux/swap.h 322

refill_inactive_zone
mm/vmscan.c 694

register_binfmt
fs/exec.c 825

register_blkdev
drivers/block/genhd.c 589

register_chrdev
fs/char_dev.c 556

__register_chrdev_region
fs/char_dev.c 555

register_chrdev_region
fs/char_dev.c 555

register_filesystem
fs/filesystems.c 483

release_region
include/linux/ioport.h 523

release_resource
kernel/resource.c 523

release_task
kernel/exit.c 129

remove_from_page_cache
mm/filemap.c 609

REMOVE_LINKS
include/linux/sched.h 89

remove_vm_area
mm/vmalloc.c 349

remove_wait_queue
kernel/wait.c 98

REQ_BAR_POSTFLUSH
include/linux/blkdev.h 578

REQ_BAR_PREFLUSH
include/linux/blkdev.h 578

REQ_BLOCK_PC
include/linux/blkdev.h 577

REQ_CMD
include/linux/blkdev.h 577

REQ_DONTPREP
include/linux/blkdev.h 577

REQ_DRIVE_CMD
include/linux/blkdev.h 578

REQ_DRIVE_TASK
include/linux/blkdev.h 578

REQ_DRIVE_TASKFILE
include/linux/blkdev.h 578

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

890 | Source Code Index

REQ_FAILED
include/linux/blkdev.h 577

REQ_FAILFAST
include/linux/blkdev.h 577

REQ_HARDBARRIER
include/linux/blkdev.h 577

REQ_NOMERGE
include/linux/blkdev.h 577

REQ_PC
include/linux/blkdev.h 577

REQ_PM_RESUME
include/linux/blkdev.h 578

REQ_PM_SHUTDOWN
include/linux/blkdev.h 578

REQ_PM_SUSPEND
include/linux/blkdev.h 578

REQ_PREEMPT
include/linux/blkdev.h 578

REQ_QUEUED
include/linux/blkdev.h 577

REQ_QUIET
include/linux/blkdev.h 577

REQ_RW
include/linux/blkdev.h 577

REQ_SENSE
include/linux/blkdev.h 577

REQ_SOFTBARRIER
include/linux/blkdev.h 577

REQ_SPECIAL
include/linux/blkdev.h 577

REQ_STARTED
include/linux/blkdev.h 577

request
include/linux/blkdev.h 575

request_irq
kernel/irq/manage.c 169

request_list
include/linux/blkdev.h 578

request_module
kernel/kmod.c 851

request_queue
include/linux/blkdev.h 573

request_region
include/linux/ioport.h 523

request_resource
kernel/resource.c 523

resched_task
kernel/sched.c 275

reschedule_interrupt
include/asm-i386/mach-default/

entry_arch.h 170
RESCHEDULE_VECTOR

include/asm-i386/mach-default/
irq_vectors.h 170

resource
include/linux/ioport.h 522

restore_fpu
arch/i386/kernel/i387.c 114

restore_sigcontext
arch/i386/kernel/signal.c 447

ret_from_fork
arch/i386/kernel/entry.S 122

rlimit
include/linux/resource.h 101

RLIMIT_AS
include/asm-generic/resource.h 101

RLIMIT_CORE
include/asm-generic/resource.h 101

RLIMIT_CPU
include/asm-generic/resource.h 101

RLIMIT_DATA
include/asm-generic/resource.h 101

RLIMIT_FSIZE
include/asm-generic/resource.h 102

RLIMIT_INFINITY
include/asm-generic/resource.h 102

RLIMIT_LOCKS
include/asm-generic/resource.h 102

RLIMIT_MEMLOCK
include/asm-generic/resource.h 102

RLIMIT_MSGQUEUE
include/asm-generic/resource.h 102

RLIMIT_NOFILE
include/asm-generic/resource.h 102

RLIMIT_NPROC
include/asm-generic/resource.h 102

RLIMIT_RSS
include/asm-generic/resource.h 102

RLIMIT_SIGPENDING
include/asm-generic/resource.h 102

RLIMIT_STACK
include/asm-generic/resource.h 102

rmb()
include/asm-i386/system.h 199

rm_from_queue
kernel/signal.c 432

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 891

__rmqueue
mm/page_alloc.c 314

ROOT_DEV
init/do_mounts.c 491

root_device_name
init/do_mounts.c 493

root_mountflags
init/do_mounts.c 491

RQ_ACTIVE
include/linux/blkdev.h 576

rq_for_each_bio
include/linux/blkdev.h 577

RQ_INACTIVE
include/linux/blkdev.h 576

rt_sigframe
arch/i386/kernel/signal.c 445

runqueue
kernel/sched.c 266

runqueues
kernel/sched.c 266

run_timer_softirq
kernel/timer.c 248

run_workqueue
kernel/workqueue.c 182

rwlock_init
include/asm-i386/spinlock.h 204

rwlock_t
include/asm-i386/spinlock.h 204

rw_semaphore
include/asm-i386/rwsem.h 213

rwsem_waiter
lib/rwsem.c 214

rw_verify_area
fs/read_write.c 509

S
__s16

include/asm-i386/types.h 742
__s32

include/asm-i386/types.h 742
__s8

include/asm-i386/types.h 742
SA_INTERRUPT

include/asm-i386/signal.h 159
SA_NOCLDSTOP

include/asm-i386/signal.h 429
SA_NOCLDWAIT

include/asm-i386/signal.h 429
SA_NODEFER

include/asm-i386/signal.h 429

SA_NOMASK
include/asm-i386/signal.h 429

SA_ONESHOT
include/asm-i386/signal.h 429

SA_ONSTACK
include/asm-i386/signal.h 429

SA_RESETHAND
include/asm-i386/signal.h 429

SA_RESTART
include/asm-i386/signal.h 429

SA_SAMPLE_RANDOM
include/asm-i386/signal.h 159

SA_SHIRQ
include/asm-i386/signal.h 159

SA_SIGINFO
include/asm-i386/signal.h 429

SAVE_ALL
arch/i386/kernel/entry.S 162

save_init_fpu
include/asm-i386/i387.h 113

save_v86_state
arch/i386/kernel/vm86.c 188

sb_lock
fs/super.c 464

scan_control
mm/vmscan.c 694

scan_swap_map
mm/swapfile.c 726

sched_clock
arch/i386/kernel/timers/timer_tsc.c 270

sched_domain
include/linux/sched.h 287

sched_exec
kernel/sched.c 830

sched_exit
kernel/sched.c 130

SCHED_FIFO
include/linux/sched.h 262

sched_find_first_bit
include/asm-i386/bitops.h 280

sched_fork
kernel/sched.c 121

sched_group
include/linux/sched.h 287

SCHED_IDLE
include/linux/sched.h 287

sched_init
kernel/sched.c 841

SCHED_NORMAL
include/linux/sched.h 263

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

892 | Source Code Index

SCHED_RR
include/linux/sched.h 262

schedule
kernel/sched.c 277

schedule_delayed_work
kernel/workqueue.c 183

schedule_delayed_work_on
kernel/workqueue.c 183

scheduler_tick
kernel/sched.c 270

schedule_tail
kernel/sched.c 122

schedule_timeout
kernel/timer.c 250

schedule_work
kernel/workqueue.c 183

SCSI_SOFTIRQ
include/linux/interrupt.h 173

search_binary_handler
fs/exec.c 830

search_exceptions_tables
kernel/extable.c 416

sector_t
include/asm-i386/types.h 564

security_operations
include/linux/security.h 814

security_ops
security/security.c 814

security_task_alloc
include/linux/security.h 119

security_task_create
include/linux/security.h 119

security_vm_enough_memory
include/linux/security.h 372

segment_not_present
arch/i386/kernel/entry.S 140

SEGV_ACCERR
include/asm-i386/siginfo.h 382

SEGV_MAPERR
include/asm-i386/siginfo.h 382

select_bad_process
mm/oom_kill.c 710

select_timer
arch/i386/kernel/timers/timer.c 233

sem
include/linux/sem.h 796

semaphore
include/asm-i386/semaphore.h 209

sem_array
include/linux/sem.h 796

sem_ids
ipc/sem.c 795

sem_queue
include/linux/sem.h 798

SEM_UNDO
include/linux/sem.h 796

sem_undo
include/linux/sem.h 796

sem_undo_list
include/linux/sem.h 797

send_group_sig_info
kernel/signal.c 433

send_IPI_all
include/asm-i386/mach-default/

mach_ipi.h 171
send_IPI_allbutself

include/asm-i386/mach-default/
mach_ipi.h 171

send_IPI_mask
include/asm-i386/mach-default/

mach_ipi.h 171
send_IPI_self

arch/i386/kernel/smp.c 171
send_sig

kernel/signal.c 433
send_sig_info

kernel/signal.c 433
send_signal

kernel/signal.c 435
seqlock_init

include/linux/seqlock.h 206
seqlock_t

include/linux/seqlock.h 206
SEQLOCK_UNLOCKED

include/linux/seqlock.h 206
set_anon_super

fs/super.c 482
set_bit

include/asm-i386/bitops.h 197
set_capacity

include/linux/genhd.h 590
set_current_state

include/linux/sched.h 83
set_fixmap

include/asm-i386/fixmap.h 74
set_fixmap_nocache

include/asm-i386/fixmap.h 74
set_fs

include/asm-i386/uaccess.h 412

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 893

set_intr_gate
arch/i386/kernel/traps.c 146

set_ioapic_affinity_irq
arch/i386/kernel/io_apic.c 160

SET_LINKS
include/linux/sched.h 89

SetPageActive
include/linux/page-flags.h 297

set_page_address
mm/highmem.c 309

SetPageChecked
include/linux/page-flags.h 297

SetPageCompound
include/linux/page-flags.h 297

SetPageDirty
include/linux/page-flags.h 296

SetPageError
include/linux/page-flags.h 296

SetPageLocked
include/linux/page-flags.h 296

SetPageLRU
include/linux/page-flags.h 297

SetPageMappedToDisk
include/linux/page-flags.h 297

SetPageNosave
include/linux/page-flags.h 297

SetPageNosaveFree
include/linux/page-flags.h 297

SetPagePrivate
include/linux/page-flags.h 297

SetPageReclaim
include/linux/page-flags.h 297

SetPageReferenced
include/linux/page-flags.h 296

SetPageReserved
include/linux/page-flags.h 297

SetPageSlab
include/linux/page-flags.h 297

SetPageSwapCache
include/linux/page-flags.h 297

SetPageUptodate
include/linux/page-flags.h 296

SetPageWriteback
include/linux/page-flags.h 297

set_pgd
include/asm-generic/pgtable-nopud.h 61

set_pmd
include/asm-i386/pgtable-2level.h 61
include/asm-i386/pgtable-3level.h 61

set_pte
include/asm-i386/pgtable-2level.h 61
include/asm-i386/pgtable-3level.h 61

set_pte_atomic
include/asm-i386/pgtable.h 61

set_pud
include/asm-generic/pgtable-nopmd.h 61
include/asm-i386/pgtable-3level.h 61

set_rtc_mmss
arch/i386/kernel/time.c 238

set_shrinker
mm/vmscan.c 705

set_system_gate
arch/i386/kernel/traps.c 146

set_system_intr_gate
arch/i386/kernel/traps.c 146

set_task_gate
arch/i386/kernel/traps.c 147

set_task_state
include/linux/sched.h 83

set_trap_gate
arch/i386/kernel/traps.c 146

set_tsk_need_resched
include/linux/sched.h 272

setup
arch/i386/boot/setup.S 838

setup_APIC_timer
arch/i386/kernel/apic.c 239

setup_arg_pages
fs/exec.c 832

setup_frame
arch/i386/kernel/signal.c 443

setup_idt
arch/i386/kernel/head.S 147

setup_IO_APIC_irqs
arch/i386/kernel/io_apic.c 160

setup_irq
kernel/irq/manage.c 169

setup_local_APIC
arch/i386/kernel/apic.c 160

setup_memory
arch/i386/kernel/setup.c 67

setup_pit_timer
arch/i386/kernel/timer_pit.c 230

setup_rt_frame
arch/i386/kernel/signal.c 445

set_user_nice
kernel/sched.c 290

sget
fs/super.c 491

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

894 | Source Code Index

shmem_aops
mm/shmem.c 804

shmem_inode_info
include/linux/shmem_fs.h 804

shmem_nopage
mm/shmem.c 805

shmem_unuse
mm/shmem.c 725

shmem_writepage
mm/shmem.c 804

shmid_kernel
include/linux/shm.h 803

shm_ids
ipc/shm.c 802

shm_mmap
ipc/shm.c 803

shrink_cache
mm/vmscan.c 701

shrink_caches
mm/vmscan.c 699

shrink_dcache_memory
fs/dcache.c 706

shrinker
mm/vmscan.c 705

shrinker_list
mm/vmscan.c 705

shrink_icache_memory
fs/inode.c 707

shrink_list
mm/vmscan.c 702

shrink_slab
mm/vmscan.c 705

shrink_zone
mm/vmscan.c 700

shutdown_8259A_irq
arch/i386/kernel/i8259.c 158

SI_ASYNCIO
include/asm-generic/siginfo.h 431

S_IFIFO
include/linux/stat.h 788

SIGABRT
include/asm-i386/signal.h 421

sigaction
include/asm-i386/signal.h 429

sigaddset
include/linux/signal.h 431

sigaddsetmask
include/linux/signal.h 431

SIGALRM
include/asm-i386/signal.h 255

sigandsets
include/linux/signal.h 432

SIG_BLOCK
include/asm-i386/signal.h 453

SIGBUS
include/asm-i386/signal.h 421

SIGCHLD
include/asm-i386/signal.h 115

SIGCONT
include/asm-i386/signal.h 118

sigcontext
include/asm-i386/sigcontext.h 444

sigdelset
include/linux/signal.h 431

sigdelsetmask
include/linux/signal.h 431

SIG_DFL
include/asm-i386/signal.h 429

sigemptyset
include/linux/signal.h 431

sigfillset
include/linux/signal.h 431

SIGFPE
include/asm-i386/signal.h 148

sigframe
arch/i386/kernel/sigframe.h 444

sighand_struct
include/linux/sched.h 428

SIGHUP
include/asm-i386/signal.h 421

SIG_IGN
include/asm-i386/signal.h 429

SIGILL
include/asm-i386/signal.h 421

siginfo_t
include/asm-generic/siginfo.h 430

siginitset
include/linux/signal.h 432

siginitsetinv
include/linux/signal.h 432

SIGINT
include/asm-i386/signal.h 421

SIGIO
include/asm-i386/signal.h 421

SIGIOT
include/asm-i386/signal.h 421

sigismeber
include/linux/signal.h 431

SIGKILL
include/asm-i386/signal.h 425

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 895

sigmask
include/linux/signal.h 431

SIGNAL_GROUP_EXIT
include/linux/sched.h 127

signal_pending
include/linux/sched.h 432

signal_struct
include/linux/sched.h 427

signandsets
include/linux/signal.h 432

sigorsets
include/linux/signal.h 432

sigpending
include/linux/signal.h 430

SIGPIPE
include/asm-i386/signal.h 785

SIGPOLL
include/asm-i386/signal.h 421

SIGPROF
include/asm-i386/signal.h 255

SIGPWR
include/asm-i386/signal.h 421

sigqueue
include/linux/signal.h 430

SIGQUIT
include/asm-i386/signal.h 421

SIGSEGV
include/asm-i386/signal.h 381

SIG_SETMASK
include/asm-i386/signal.h 453

sigset_t
include/asm-i386/signal.h 427

SIGSTKFLT
include/asm-i386/signal.h 421

SIGSTOP
include/asm-i386/signal.h 82

SIGSYS
include/asm-i386/signal.h 422

SIGTERM
include/asm-i386/signal.h 421

sigtestsetmask
include/linux/signal.h 432

SIGTRAP
include/asm-i386/signal.h 421

SIGTSTP
include/asm-i386/signal.h 82

SIGTTIN
include/asm-i386/signal.h 82

SIGTTOU
include/asm-i386/signal.h 82

SIG_UNBLOCK
include/asm-i386/signal.h 453

SIGUNUSED
include/asm-i386/signal.h 422

SIGURG
include/asm-i386/signal.h 421

SIGUSR1
include/asm-i386/signal.h 421

SIGUSR2
include/asm-i386/signal.h 421

SIGVTALRM
include/asm-i386/signal.h 255

SIGWINCH
include/asm-i386/signal.h 421

SIGXCPU
include/asm-i386/signal.h 101

SIGXFSZ
include/asm-i386/signal.h 102

SI_KERNEL
include/asm-generic/siginfo.h 430

simd_coprocessor_error
arch/i386/kernel/entry.S 140

SI_QUEUE
include/asm-generic/siginfo.h 430

SI_TIMER
include/asm-generic/siginfo.h 431

SI_TKILL
include/asm-generic/siginfo.h 431

SI_USER
include/asm-generic/siginfo.h 430

slab
mm/slab.c 327

slab_destroy
mm/slab.c 331

SLAB_DESTROY_BY_RCU
include/linux/slab.h 332

SLAB_HWCACHE_ALIGN
include/linux/slab.h 333

SLAB_NO_REAP
include/linux/slab.h 709

SLAB_RECLAIM_ACCOUNT
include/linux/slab.h 330

slab_reclaim_pages
mm/slab.c 722

sleep_on
kernel/sched.c 98

sleep_on_timeout
kernel/sched.c 99

smp_apic_timer_interrupt
arch/i386/kernel/apic.c 239

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

896 | Source Code Index

smp_call_function
arch/i386/kernel/smp.c 170

smp_call_function_interrupt
arch/i386/kernel/smp.c 171

smp_invalidate_interrupt
arch/i386/kernel/smp.c 171

smp_local_timer_interrupt
arch/i386/kernel/apic.c 240

smp_mb()
include/asm-i386/system.h 199

smp_processor_id
include/asm-i386/smp.h 108

smp_reschedule_interrupt
arch/i386/kernel/smp.c 171

smp_rmb()
include/asm-i386/system.h 199

smp_wmb()
include/asm-i386/system.h 199

softirq_action
include/linux/interrupt.h 173

softirq_ctx
arch/i386/kernel/irq.c 161

softirq_init
kernel/softirq.c 841

softirq_stack
arch/i386/kernel/irq.c 161

softirq_vec
kernel/softirq.c 173

specific_send_sig_info
kernel/signal.c 434

spin_is_locked
include/asm-i386/spinlock.h 201

spin_lock
include/linux/spinlock.h 201

spin_lock_bh
include/linux/spinlock.h 220

spin_lock_init
include/asm-i386/spinlock.h 201

spin_lock_irq
include/linux/spinlock.h 220

spin_lock_irqsave
include/linux/spinlock.h 220

spinlock_t
include/asm-i386/spinlock.h 200

spin_trylock
include/linux/spinlock.h 201

spin_unlock
include/linux/spinlock.h 203

spin_unlock_bh
include/linux/spinlock.h 220

spin_unlock_irq
include/linux/spinlock.h 220

spin_unlock_irqrestore
include/linux/spinlock.h 220

spin_unlock_wait
include/asm-i386/spinlock.h 201

split_vma
mm/mmap.c 375

S_SWAPFILE
include/linux/fs.h 721

S_SYNC
include/linux/fs.h 649

stack_segment
arch/i386/kernel/entry.S 140

start_kernel
init/main.c 841

start_thread
include/asm-i386/processor.h 833

startup_32
arch/i386/boot/compressed/head.S 839
arch/i386/kernel/head.S 840

startup_8259A_irq
arch/i386/kernel/i8259.c 158

strlen_user
include/asm-i386/uaccess.h 414

__strncpy_from_user
arch/i386/lib/usercopy.c 414

strncpy_from_user
arch/i386/lib/usercopy.c 414

strnlen_user
arch/i386/lib/usercopy.c 414

stts()
include/asm-i386/system.h 113

submit_bh
fs/buffer.c 620

submit_bio
drivers/block/ll_rw_blk.c 621

subsys_get
include/linux/kobject.h 530

subsys_put
include/linux/kobject.h 530

subsystem
include/linux/kobject.h 529

subsystem_register
lib/kobject.c 531

subsystem_unregister
lib/kobject.c 531

super_block
include/linux/fs.h 462

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 897

super_blocks
fs/super.c 464

super_operations
include/linux/fs.h 464

SWAP_AGAIN
include/linux/rmap.h 682

swap_duplicate
mm/swapfile.c 719

swap_extent
include/linux/swap.h 715

SWAP_FAIL
include/linux/rmap.h 682

SWAPFILE_CLUSTER
mm/swapfile.c 726

SWAP_FLAG_PREFER
include/linux/swap.h 719

swap_free
mm/swapfile.c 728

swap_header
include/linux/swap.h 714

swap_info
mm/swapfile.c 717

swap_info_struct
include/linux/swap.h 715

swapin_readahead
mm/memory.c 735

swap_list
mm/swapfile.c 717

swap_list_t
include/linux/swap.h 717

swaplock
mm/swapfile.c 718

SWAP_MAP_BAD
include/linux/swap.h 716

SWAP_MAP_MAX
include/linux/swap.h 716

swapper_pg_dir
arch/i386/kernel/head.S 69

swapper_space
mm/swap_state.c 731

swap_readpage
mm/page_io.c 737

SWAP_SUCCESS
include/linux/rmap.h 682

swap_token_default_timeout
mm/thrash.c 712

swap_token_mm
mm/thrash.c 711

swap_writepage
mm/page_io.c 733

__switch_to
arch/i386/kernel/process.c 108

switch_to
include/asm-i386/system.h 105

SWP_ACTIVE
include/linux/swap.h 716

swp_entry
include/linux/swapops.h 718

swp_offset
include/linux/swapops.h 718

swp_type
include/linux/swapops.h 718

SWP_USED
include/linux/swap.h 716

SWP_WRITEOK
include/linux/swap.h 716

sync_blockdev
fs/buffer.c 630

sync_dirty_buffer
fs/buffer.c 759

sync_filesystems
fs/super.c 630

sync_inodes
fs/fs-writeback.c 630

sync_page_range
mm/filemap.c 649

sync_sb_inodes
fs/fs-writeback.c 627

sync_supers
fs/super.c 630

sys_brk
mm/mmap.c 395

_syscall0
include/asm-i386/unistd.h 418

sys_call_table
arch/i386/kernel/entry.S 400

sys_clone
arch/i386/kernel/process.c 117

sys_close
fs/open.c 509

sysctl_legacy_va_layout
kernel/sysctl.c 820

sysctl_vfs_cache_pressure
fs/dcache.c 706

sys_delete_module
kernel/module.c 849

sysenter_entry
arch/i386/kernel/entry.S 407

sysenter_setup
arch/i386/kernel/sysenter.c 406

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

898 | Source Code Index

sys_execve
arch/i386/kernel/process.c 829

sys_exit
kernel/exit.c 126

sys_exit_group
kernel/exit.c 126

sys_fcntl
fs/fcntl.c 516

sys_fdatasync
fs/buffer.c 630

sys_flock
fs/locks.c 514

sys_fork
arch/i386/kernel/process.c 117

sysfs_create_file
fs/sysfs/file.c 531

sysfs_create_link
fs/sysfs/symlink.c 531

sys_fsync
fs/buffer.c 630

sys_getpriority
kernel/sys.c 291

sys_gettimeofday
kernel/time.c 253

sys_init_module
kernel/module.c 847

sys_io_destroy
fs/aio.c 674

sys_io_setup
fs/aio.c 674

sys_io_submit
fs/aio.c 674

sys_ipc
arch/i386/kernel/sys_i386.c 793

sys_kill
kernel/signal.c 450

sys_listxattr
fs/xattr.c 747

sys_mmap2
arch/i386/kernel/sys_i386.c 660

sys_mount
fs/namespace.c 487

sys_msgctl
ipc/msg.c 793

sys_msgget
ipc/msg.c 790

sys_msgrcv
ipc/msg.c 799

sys_msgsnd
ipc/msg.c 799

sys_msync
mm/msync.c 666

sys_munmap
mm/mmap.c 662

sys_nanosleep
kernel/timer.c 250

sys_nice
kernel/sched.c 290

sys_ni_syscall
kernel/sys_ni.c 401

sys_open
fs/open.c 506

sys_pipe
arch/i386/kernel/sys_i386.c 781

sys_ptrace
arch/i386/kernel/ptrace.c 822

sys_read
fs/read_write.c 509

sys_remap_file_pages
mm/fremap.c 667

sys_restart_syscall
kernel/signal.c 449

sys_rt_sigaction
arch/i386/kernel/signal.c 450

sys_rt_sigreturn
arch/i386/kernel/signal.c 447

sys_sched_getaffinity
kernel/sched.c 291

sys_sched_getparam
kernel/sched.c 293

sys_sched_get_priority_max
kernel/sched.c 293

sys_sched_get_priority_min
kernel/sched.c 293

sys_sched_getscheduler
kernel/sched.c 292

sys_sched_rr_get_interval
kernel/sched.c 293

sys_sched_setaffinity
kernel/sched.c 292

sys_sched_setparam
kernel/sched.c 293

sys_sched_setscheduler
kernel/sched.c 292

sys_sched_yield
kernel/sched.c 293

sys_semctl
ipc/sem.c 793

sys_semget
ipc/sem.c 790

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 899

sys_semop
ipc/sem.c 795

sys_setitimer
kernel/itimer.c 255

sys_setpriority
kernel/sys.c 291

sys_settimeofday
kernel/time.c 254

sys_shmctl
ipc/shm.c 793

sys_shmdt
ipc/shm.c 802

sys_shmget
ipc/shm.c 790

sys_sigaction
arch/i386/kernel/signal.c 451

sys_signal
kernel/signal.c 452

sys_sigpending
kernel/signal.c 453

sys_sigprocmask
kernel/signal.c 453

sys_sigreturn
arch/i386/kernel/signal.c 446

sys_sigsuspend
arch/i386/kernel/signal.c 454

sys_swapoff
mm/swapfile.c 721

sys_swapon
mm/swapfile.c 719

sys_sync
fs/buffer.c 629

system_call
arch/i386/kernel/entry.S 402

sys_tgkill
kernel/signal.c 451

sys_tkill
kernel/signal.c 451

sys_umount
fs/namespace.c 494

sys_vfork
arch/i386/kernel/process.c 117

sys_write
fs/read_write.c 509

T
TASK_INTERACTIVE

kernel/sched.c 273
TASK_INTERRUPTIBLE

include/linux/sched.h 81

tasklet_action
kernel/softirq.c 179

tasklet_disable
include/linux/interrupt.h 179

tasklet_disable_nosync
include/linux/interrupt.h 179

tasklet_enable
include/linux/interrupt.h 179

tasklet_head
kernel/softirq.c 178

tasklet_hi_action
kernel/softirq.c 179

tasklet_hi_schedule
include/linux/interrupt.h 179

tasklet_hi_vec
kernel/softirq.c 178

tasklet_init
kernel/softirq.c 179

tasklet_schedule
include/linux/interrupt.h 179

TASKLET_SOFTIRQ
include/linux/interrupt.h 173

TASKLET_STATE_RUN
include/linux/interrupt.h 179

TASKLET_STATE_SCHED
include/linux/interrupt.h 178

tasklet_struct
include/linux/interrupt.h 178

tasklet_vec
kernel/softirq.c 178

task_rq_lock
kernel/sched.c 274

task_rq_unlock
kernel/sched.c 275

TASK_RUNNING
include/linux/sched.h 81

TASK_SIZE
include/asm-i386/processor.h 356

TASK_STOPPED
include/linux/sched.h 82

task_struct
include/linux/sched.h 81

task_t
include/linux/sched.h 81

task_timeslice
kernel/sched.c 271

TASK_TRACED
include/linux/sched.h 82

TASK_UNINTERRUPTIBLE
include/linux/sched.h 81

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

900 | Source Code Index

test_and_change_bit
include/asm-i386/bitops.h 197

test_and_clear_bit
include/asm-i386/bitops.h 197

test_and_set_bit
include/asm-i386/bitops.h 197

test_bit
include/asm-i386/bitops.h 197

TestClearPageActive
include/linux/page-flags.h 297

TestClearPageDirty
include/linux/page-flags.h 296

TestClearPageLocked
include/linux/page-flags.h 296

TestClearPageLRU
include/linux/page-flags.h 297

TestClearPageNosave
include/linux/page-flags.h 297

TestClearPageReclaim
include/linux/page-flags.h 297

TestClearPageReferenced
include/linux/page-flags.h 296

TestClearPageSlab
include/linux/page-flags.h 297

TestClearPageWriteback
include/linux/page-flags.h 297

TestSetPageActive
include/linux/page-flags.h 297

TestSetPageDirty
include/linux/page-flags.h 296

TestSetPageLocked
include/linux/page-flags.h 296

TestSetPageLRU
include/linux/page-flags.h 297

TestSetPageNosave
include/linux/page-flags.h 297

TestSetPageSlab
include/linux/page-flags.h 297

TestSetPageWriteback
include/linux/page-flags.h 297

T_FINISHED
include/linux/jbd.h 771

this_rq()
kernel/sched.c 266

thread_info
include/asm-i386/thread_info.h 85

thread_struct
include/asm-i386/processor.h 105

thread_union
include/linux/sched.h 86

tick_nsec
kernel/timer.c 229

TIF_IRET
include/asm-i386/thread_info.h 184

TIF_MEMDIE
include/asm-i386/thread_info.h 184

TIF_NEED_RESCHED
include/asm-i386/thread_info.h 184

TIF_NOTIFY_RESUME
include/asm-i386/thread_info.h 184

TIF_POLLING_NRFLAG
include/asm-i386/thread_info.h 184

TIF_SIGPENDING
include/asm-i386/thread_info.h 184

TIF_SINGLESTEP
include/asm-i386/thread_info.h 184

TIF_SYSCALL_AUDIT
include/asm-i386/thread_info.h 184

TIF_SYSCALL_TRACE
include/asm-i386/thread_info.h 184

time_after
include/linux/jiffies.h 234

time_after_eq
include/linux/jiffies.h 234

time_before
include/linux/jiffies.h 234

time_before_eq
include/linux/jiffies.h 234

time_init
arch/i386/kernel/time.c 236

timer_hpet
arch/i386/kernel/timers/timer_hpet.c 234

timer_interrupt
arch/i386/kernel/time.c 237

timer_list
include/linux/timer.h 245

timer_none
arch/i386/kernel/timers/timer_none.c233

timer_notify
drivers/oprofile/timer_int.c 243

timer_opts
include/asm-i386/timer.h 233

timer_pit
arch/i386/kernel/timers/timer_pit.c 234

timer_pmtmr
arch/i386/kernel/timers/timer_pm.c 234

TIMER_SOFTIRQ
include/linux/interrupt.h 173

timer_tsc
arch/i386/kernel/timers/timer_tsc.c 234

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 901

TIMESLICE_GRANULARITY
kernel/sched.c 273

timespec
include/linux/time.h 235

timespec_to_jiffies
include/linux/jiffies.h 250

timeval
include/linux/time.h 252

timex
include/linux/timex.h 254

tlb_finish_mmu
include/asm-generic/tlb.h 376

tlb_gather_mmu
include/asm-generic/tlb.h 376

TLBSTATE_LAZY
include/asm-i386/tlbflush.h 77

TLBSTATE_OK
include/asm-i386/tlbflush.h 77

T_LOCKED
include/linux/jbd.h 771

total_forks
kernel/fork.c 122

totalhigh_pages
mm/page_alloc.c 67

totalram_pages
mm/page_alloc.c 67

total_swap_pages
mm/swapfile.c 718

transaction_t
include/linux/journal-head.h 771

trap_init
arch/i386/kernel/traps.c 148

T_RUNNING
include/linux/jbd.h 771, 772

try_to_free_buffers
fs/buffer.c 617

try_to_free_pages
mm/vmscan.c 698

try_to_release_page
fs/buffers.c 617

try_to_unmap
mm/rmap.c 681

try_to_unmap_anon
mm/rmap.c 684

try_to_unmap_cluster
mm/rmap.c 689

try_to_unmap_file
mm/rmap.c 688

try_to_unmap_one
mm/rmap.c 684

try_to_unuse
mm/swapfile.c 723

try_to_wake_up
kernel/sched.c 273

tss_struct
include/asm-i386/processor.h 104

TS_USEDFPU
include/asm-i386/thread_info.h 112

tvec_bases
kernel/timer.c 247

tvec_base_t
kernel/timer.c 247

tvec_root_t
kernel/timer.c 247

tvec_t
kernel/timer.c 247

U
__u16

include/asm-i386/types.h 742
__u32

include/asm-i386/types.h 742
__u8

include/asm-i386/types.h 742
udelay

include/asm-i386/delay.h 251
umount_tree

fs/namespace.c 495
__unhash_process

kernel/exit.c 130
__unlazy_fpu

include/asm-i386/i387.h 113
unlock_kernel

lib/kernel_lock.c 223
unlock_page

mm/filemap.c 607
unmap_area_pmd

mm/vmalloc.c 349
unmap_area_pte

mm/vmalloc.c 349
unmap_area_pud

mm/vmalloc.c 349
unmap_mapping_range

mm/memory.c 670
unmap_region

mm/mmap.c 376
unmap_underlying_metadata

fs/buffer.c 653
unmap_vma

mm/mmap.c 375

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

902 | Source Code Index

unmap_vm_area
mm/vmalloc.c 349

unmap_vmas
mm/memory.c 376

unnamed_dev_idr
fs/super.c 482

unregister_binfmt
fs/exec.c 825

unregister_filesystem
fs/filesystems.c 483

unshare_files
kernel/fork.c 831

unuse_process
mm/swapfile.c 724

__up
arch/i386/kernel/semaphore.c 210

up
include/asm-i386/semaphore.h 210

update_atime
fs/inode.c 638

update_process_times
kernel/timer.c 241

update_times
kernel/timer.c 240

update_wall_time
kernel/timer.c 241

update_wall_time_one_tick
kernel/timer.c 241

up_read
include/linux/rwsem.h 214

up_write
include/linux/rwsem.h 214

__USER_CS
include/asm-i386/segment.h 42

__USER_DS
include/asm-i386/segment.h 42

user_struct
include/linux/sched.h 120

V
__va

include/asm-i386/page.h 70
verify_area

include/asm-i386/uaccess.h 412
vfree

mm/vmalloc.c 348
__vfs_follow_link

fs/namei.c 505
vfsmount

include/linux/mount.h 485

vfsmount_lock
fs/namespace.c 487

virt_to_page
include/asm-i386/page.h 295

VM_ACCOUNT
include/linux/mm.h 363

vma_link
mm/mmap.c 368

VM_ALLOC
include/linux/vmalloc.h 344

vmalloc
mm/vmalloc.c 345

vmalloc_32
mm/vmalloc.c 348

VMALLOC_END
include/asm-i386/pgtable.h 344

VMALLOC_OFFSET
include/asm-i386/pgtable.h 343

VMALLOC_START
include/asm-i386/pgtable.h 344

vma_merge
mm/mmap.c 372

vmap
mm/vmalloc.c 348

vma_prio_tree_foreach
include/linux/mm.h 688

vma_prio_tree_insert
mm/prio_tree.c 688

vma_prio_tree_remove
mm/prio_tree.c 688

vm_area_struct
include/linux/mm.h 357

__vma_unlink
include/linux/mm.h 369

VM_DENYWRITE
include/linux/mm.h 363

VM_DONTCOPY
include/linux/mm.h 363

VM_DONTEXPAND
include/linux/mm.h 363

VM_EXEC
include/linux/mm.h 363

VM_EXECUTABLE
include/linux/mm.h 363

VM_FAULT_MAJOR
include/linux/mm.h 383

VM_FAULT_MINOR
include/linux/mm.h 383

VM_FAULT_OOM
include/linux/mm.h 383

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Source Code Index | 903

VM_FAULT_SIGBUS
include/linux/mm.h 383

VM_GROWSDOWN
include/linux/mm.h 363

VM_GROWSUP
include/linux/mm.h 363

VM_HUGETLB
include/linux/mm.h 363

VM_IO
include/linux/mm.h 363

VM_IOREMAP
include/linux/vmalloc.h 344

vmlist
mm/vmalloc.c 344

vmlist_lock
mm/vmalloc.c 344

VM_LOCKED
include/linux/mm.h 363

VM_MAP
include/linux/vmalloc.h 344

VM_MAYEXEC
include/linux/mm.h 363

VM_MAYREAD
include/linux/mm.h 363

VM_MAYSHARE
include/linux/mm.h 363

VM_MAYWRITE
include/linux/mm.h 363

VM_NONLINEAR
include/linux/mm.h 363

vm_operations_struct
include/linux/mm.h 359

VM_RAND_READ
include/linux/mm.h 363

VM_READ
include/linux/mm.h 363

VM_RESERVED
include/linux/mm.h 363

VM_SEQ_READ
include/linux/mm.h 363

VM_SHARED
include/linux/mm.h 363

VM_SHM
include/linux/mm.h 363

vm_struct
include/linux/vmalloc.h 344

VM_WRITE
include/linux/mm.h 363

__vunmap
mm/vmalloc.c 348

vunmap
mm/vmalloc.c 348

W
wait_event

include/linux/wait.h 99
wait_event_interruptible

include/linux/wait.h 99
wait_for_completion

kernel/sched.c 215
__wait_on_bit_bit

kernel/wait.c 607
wait_on_buffer

include/linux/buffer_head.h 620
waitqueue_active

include/linux/wait.h 98
wait_queue_func_t

include/linux/wait.h 97
wait_queue_head_t

include/linux/wait.h 97
wait_queue_t

include/linux/wait.h 97
wake_up

include/linux/wait.h 100
wake_up_all

include/linux/wait.h 100
wakeup_bdflush

mm/page-writeback.c 625
wake_up_interruptible

include/linux/wait.h 100
wake_up_interruptible_all

include/linux/wait.h 100
wake_up_interruptible_nr

include/linux/wait.h 100
wake_up_interruptible_sync

include/linux/wait.h 100
wake_up_locked

include/linux/wait.h 100
wake_up_new_task

kernel/sched.c 118
wake_up_nr

include/linux/wait.h 100
wakeup_softirqd

kernel/softirq.c 175
wall_jiffies

kernel/timer.c 240
wall_to_monotonic

kernel/timer.c 236
wb_kupdate

mm/page-writeback.c 629

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

904 | Source Code Index

WB_SYNC_ALL
include/linux/writeback.h 626

WB_SYNC_HOLD
include/linux/writeback.h 626

WB_SYNC_NONE
include/linux/writeback.h 626

wb_timer
mm/page-writeback.c 628

wb_timer_fn
mm/page-writeback.c 629

while_each_task_pid
include/linux/pid.h 95

wmb()
include/asm-i386/system.h 199

worker_thread
kernel/workqueue.c 182

workqueue_struct
kernel/workqueue.c 181

work_struct
include/linux/workqueue.h 181

WRITE
include/linux/fs.h 577

writeb
include/asm-i386/io.h 546

writeback_control
include/linux/writeback.h 626

writeback_inodes
fs/fs-writeback.c 627

__writeback_single_inode
fs/fs-writeback.c 627

write_fifo_fops
fs/pipe.c 789

writel
include/asm-i386/io.h 546

write_lock
include/linux/spinlock.h 205

write_lock_bh
include/linux/spinlock.h 220

write_lock_irq
include/linux/spinlock.h 220

write_lock_irqsave
include/linux/spinlock.h 220

write_pipe_fops
fs/pipe.c 785

write_seqlock
include/linux/seqlock.h 206

write_seqlock_bh
include/linux/seqlock.h 220

write_seqlock_irq
include/linux/seqlock.h 220

write_seqlock_irqsave
include/linux/seqlock.h 220

write_sequnlock_bh
include/linux/seqlock.h 220

write_sequnlock_irq
include/linux/seqlock.h 220

write_sequnlock_irqrestore
include/linux/seqlock.h 220

write_unlock
include/linux/spinlock.h 206

write_unlock_bh
include/linux/spinlock.h 220

write_unlock_irq
include/linux/spinlock.h 220

write_unlock_irqrestore
include/linux/spinlock.h 220

writew
include/asm-i386/io.h 546

X
xtime

kernel/timer.c 235
xtime_lock

kernel/timer.c 235

Z
zap_low_mappings

arch/i386/mm/init.c 71
zap_other_threads

kernel/signal.c 127
zone

include/linux/mmzone.h 299
ZONE_DMA

include/linux/mmzone.h 299
ZONE_HIGHMEM

include/linux/mmzone.h 299
zonelist

include/linux/mmzone.h 301
ZONE_NORMAL

include/linux/mmzone.h 299
zone_table

mm/page_alloc.c 301
zone_watermark_ok

mm/page_alloc.c 320

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

905

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
aborts, 134
Accelerated Graphics Ports (see AGPs)
access control lists, 747
access rights, 15
ACL (see access control lists)
ACPI, 66, 236, 836, 838

Power Management Timer, 231, 234, 253
address spaces, 10, 351–395, 409–417, 441,

473, 515, 558, 601, 608, 631, 637,
658, 669, 678, 681, 703, 719, 731,
783, 793, 809, 819, 832

creating, 392
deleting, 394
IPC shared memory regions, 801

Advanced Configuration and Power Interface
(see ACPI)

Advanced Power Management (see APM)
Advanced Programmable Interrupt

Controllers (see APICs)
AGPs, 545
AIO rings, 673
anonymous mapping, 387
a.out executable format, 825
APICs, 135–137

CPU local timer, 230
I/O APICs, 135
local APICs, 135

arbitration, 137
interrupts, 135
time interrupt handlers, 239

timers, synchronization of, 238
APM, 44, 839

assembly language fragments
asm statements, 199
embedded in the C code, 199
extended inline assembly language, 106

assembly language instructions
bound, 134, 138, 146
bsfl, 280
call, 43
cld, 150
cli, 135, 167, 186, 198, 215, 243
clts, 114
ESCAPE instructions, 111, 138
far jmp, 103
fnsave, 113
FPU instructions, 111–114
frstor, 114
fxrstor, 114
fxsave, 113
hlt, 125
in, 104, 520, 551
ins, 520
int, 131, 134, 145, 146, 190, 401, 406,

409, 419, 447
int3, 134, 138, 146
into, 134, 138, 146
invlpg, 75
iret, 143, 147, 186, 198, 401, 404, 408
lfence, 198
lidt, 140, 147
lock byte, 196, 198, 202
mfence, 198
MMX instructions, 111–114, 138
movsb, 150
movzwl, 413

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

906 | Index

out, 104, 520, 551
outb, 230
outs, 520
pause, 202
rdtsc, 228
rep bytes, 196, 417
ret, 110
scasb, 417
sfence, 198
SSE/SSE2 instructions, 111–114, 138
sti, 135, 167, 198, 215
string instructions, 150, 417
sysenter, 108, 131, 190, 401, 404–409,

447
sysexit, 401, 404–409
xchg, 201

asynchronous DMA mappings
see streaming DMA mappings, 549

asynchronous interrupts, 131
asynchronous I/O contexts, 673
asynchronous notifications, 26
atomic memory allocation requests, 301
atomic operations, 24, 195–197

B
backside buses, 520
base time quantum, 263
Basic Input/Output System (see BIOS)
big kernel lock, 4, 120, 223–224, 278, 284,

473, 488, 569
big-endian ordering, 742
BIOS, 44, 835–840

bootstrap procedure, 836
Enhanced Disk Drive Services, 839
real mode addressing, usage of, 836

bios, 566
bounce bios, 585

BKL (see big kernel lock)
block buffers, 564
block device buffer pages, 614
block device drivers, 560–598
block device files, 536
block device requests, 572
block devices, 536

holders, 587
plugging and unplugging, 579

blockdev’s pages (see block device buffer
pages)

blocks, 564
boot loaders, 836
boot sectors, 836
bootstrapping, 835–841

bridges, 520
bss segments, 818
buddy system, 302, 311–317

allocating a block of page frames, 314
data structures, 313
freeing of a block of page frames, 315
slab allocator and, 329

buffer bouncing, 585
buffer cache, 612
buffer heads, 564, 612
buffer pages, 612
buffers, 564
bus addresses, 548
bus masters, 547
bus mouse interfaces, 524
buses, 519

C
cache lines, 54
caches

types of, 327
call gates, 45
capability (see process capabilities)
chained lists, 92
character device drivers, 552–559
character device files, 536
character devices, 536
child filesystems, 483
child processes, 28
clocks, 228–240
Code Segment Descriptors, 38
code segment registers, 37
COFF executable format, 825
coherent DMA mappings, 549
command-line arguments, 808, 815
common file model, 458–461
completions, 214
concurrency level, 217
consistent DMA mappings

see coherent DMA mappings, 549
context switch (see process switches)
conventional processes, 263
Copy On Write (see COW)
core dumps, 27
COW, 115–118, 225, 385, 388–391, 394,

659, 663, 685, 725, 736, 809, 821
cp program, 456, 506, 508
CPL (Current Privilege Level), 37, 142
CPU control registers (80x86)

cr0, 46, 56, 70, 111, 113, 138, 148, 839
cr2, 48, 378
cr3, 47, 52, 57, 59, 70, 75, 283, 391, 840

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 907

cr4, 48
debug registers, 109, 138, 198, 823, 831
eflags, 104, 107, 138, 142, 150, 163, 165,

174, 186, 188, 198, 215, 402, 407,
824, 840

gdtr, 37–43, 104, 142, 841
idtr, 140, 145–147, 841
ldtr, 37, 41
MSR registers, 404
MTRR registers, 170
tr, 104, 142

CPU execution modes, 8
CPU local timer, 230
CPUs (see microprocessors)
critical regions, 24, 192
Current Privilege Level (see CPL)
current working directory, 13
custom I/O interfaces, 523

D
Data Segment Descriptors, 38
data segment registers, 37
deadlocks, 26
debugfs program, 754
deferrable functions

activation of, 172
disabling, 216
execution of, 172
initialization of, 172
protecting data structures accessed

by, 220
protecting data structures accessed by

exceptions and, 222
protecting data structures accessed by

interrupts and, 222
protecting data structures accessed by

interrupts, exceptions, and, 222
delay functions, 244
demand paging, 32, 353, 385–388, 660, 677,

718, 801, 833
for IPC shared memory, 805
for memory mapping, 662–665

dentry cache, 460, 495, 499, 599, 678, 705,
753

reclaiming page frames from, 706–707
dentry operations (see dentry operations

under VFS)
dentry (see dentry objects under VFS)
Descriptor Privilege Level (see DPL)
device control registers, 521
device controllers, 525–546
device driver model, 526

device drivers, 33, 540–545
buffering strategies, 558
IRQ-configuration, 155, 157
registering, 540
resources, 522

device files, 536–540
examples, 537
VFS, handling by, 539

device hotplugging, 539
device input registers, 521
device output registers, 521
device status registers, 521
digital signal processors (DSP), 547
direct I/O transfers, 668–671
Direct Memory Access Controllers (see

controllers under DMA)
dirty background threshold, 625
disk block fragmentation, 740
disk caches, 460, 468, 525, 563, 566, 599,

618, 662, 669, 676, 678, 773
reclaiming pages of, 705–707

disk controllers, 525
disk geometry, 590
disk interfaces, 524
disk superblocks, 742
disks, 568
dispatch latency, 191
distress value, 696
DMA, 547–551

circuits, 547
controllers, 36
hardware segment, 566
mapping types, 549
physical segments, 566
segments, 565

DPL, 38, 142
dumpe2fs program, 754
dynamic address checking, 414
dynamic distribution of IRQs, 137
dynamic linker, 817
dynamic memory, 294
dynamic timers, 244–251

example, 250
handling, 247
race conditions and, 246

E
e2fsck program, 740, 768, 769, 771, 774
EDD, 839
elevators (see I/O schedulers)
ELF executable format, 824
Enhanced Disk Drive Services (see EDD)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

908 | Index

environment variables, 809, 815
errno variable, 399
exception stack, 85, 161, 168
exceptions, 20–23, 32, 40, 109, 131,

138–140, 448
exception handlers, 24, 32, 133, 138,

141–151, 212
entering and leaving, 150
memory allocations performed by, 707
nested execution of, 143
termination phase, 183–188, 439

exception handling, 148–151
exception tables, 415–418, 844, 845

fixup code, 416
generating, 416

exception types, 133
Alignment check, 139
Bounds check, 138, 146
Breakpoint, 138, 146
Coprocessor segment overrun, 139
Debug, 138, 149, 824
Device not available, 111–114, 138,

148, 150
Divide error, 138, 148
Double fault, 45, 138, 141, 146
Floating-point error, 139
General protection, 104, 110, 139,

142, 145
Invalid opcode, 138
Invalid TSS, 139
Machine check, 139
Overflow, 138, 146
Page Fault, 45, 48, 51, 61, 139, 144,

148, 225, 294, 352, 364–365,
376–392, 412, 414, 417, 662, 713,
734, 805

Segment not present, 139
SIMD floating point exception, 139
Stack segment fault, 139

hardware error codes, 138
hardware handling of, 142–143
Kernel Mode, raised in, 126, 144, 151,

380, 382
processor-detected exceptions, 133
programmed exceptions, 134
protecting data structures accessed

by, 218
protecting data structures accessed by

deferrable functions and, 222
protecting data structures accessed by

interrupts and, 221

protecting data structures accessed by
interrupts, deferrable functions,
and, 222

User Mode, raised in, 190
Executable and Linking Format (see ELF

executable format)
executable files, 809–824
execution context, 809
execution domain descriptors, 827
execution tracing, 822
Ext2 filesystem, 457, 485, 603, 632, 649,

652, 655, 738–766, 810, 813
allocating data blocks, 764–765

goal, 765
bitmap, 744
block groups, 741
creating, 753–755
data blocks, 761–763

addressing, 761–763
file holes, 763

data blocks, usage by file types, 748–750
disk data structures, 741–750
disk space management, 757–766
features, 739
group descriptors, 744
indirect blocks, 762
inode descriptors, 753
inode tables, 745–746
inodes, 758–761

creating, 758–760
deleting, 760–761

memory data structures, 750–753
metadata, 768
methods, 755–757

file operations, 756
inode operations, 755
superblock operations, 755

preallocation of blocks, 739
releasing data blocks, 766
superblocks, 464, 742

Ext3 filesystem, 457, 603, 630, 638, 766–774
as a journaling filesystem, 767, 772–774
journaling modes, 768

journal mode, 768, 773
ordered mode, 768, 773
writeback mode, 769, 773, 774

metadata, 768, 773
extended attributes, 747
Extended Filesystem (see ExtFS under

filesystems)
extended frames, 445
extended paging, 49

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 909

F
faults, 133
fdformat program, 753
fdisk program, 837
FHS (see Filesystem Hierarchy Standard)
FIFOs, 787–789

creating and opening, 788
file operations, 789
pipes, contrasted with, 787

file block numbers, 561, 639–641, 654,
761–765

file descriptors, 17, 102, 411, 461, 479–481,
506, 747, 777, 782, 790, 807, 810

file holes, 639, 641, 657, 763
file locks, 510–518

active locks, 513
advisory locks, 510
blocked locks, 513
mandatory locks, 510
read locks, 510
write locks, 510

file modes, 15
file objects (see file objects under VFS)
file operations (see file operations under VFS)
file pointers, 17, 461, 462, 471–473, 508,

515, 635, 670
file read-ahead, 642–648

ahead window, 643
current window, 643
sequential accesses, 643

filename length, 13
filenames, 13, 467, 475, 477, 478, 495–505

comparing, 477
encoding in Ext2, 749
extensions of, 826
of device files, 537

files, 12
access rights

Execute, 16
Read, 16
Write, 16

accessing, 17, 631–675
direct I/O transfers (see direct I/O

transfers)
memory mapping (see memory

mappings)
addressing of, 17
append-only files, 740
closing, 18
deleting, 19
fragmentation, 757
immutable files, 740

opening, 16
reading from, 633–648
renaming, 19
types of, 14
undeletion of, 740
writing to, 632, 648–654

filesystem control blocks (see disk
superblocks), 459

Filesystem Hierarchy Standard, 809
filesystem type registration, 482
filesystems, 4, 456, 457

ADFS, 457
AFFS, 457
corrupted filesystems, 464
disk-based filesystems, 457–461, 464,

490, 493, 517
Ext2 (see Ext2 filesystem)
Ext3 (see Ext3 filesystem)
ExtFS, 738
HFS, 457
High Sierra, 457
HPFS, 457
ISO9660, 457
JFS, 4, 458, 768
MINIX, 738
mounting, 485–494

a generic filesystems, 487–491
the root filesystem, 491–494

MS-DOS, 459, 846
NTFS, 456, 457
ReiserFS, 4, 457
sysv, 457
types of, 481–483
UDF, 457
UFS, 457
Unix filesystem, 12–19
unmounting, 494
VERITAS VxFS, 457
VFAT, 457
XFS, 4, 458, 768
(see also journaling filesystems, network

filesystems, and special filesystems)
filesystem’s root directories, 13, 483
fixed preemption points, 4
fix-mapped linear addresses, 71–74, 147,

310, 343
flexible memory region layout, 819
floating point unit (see FPU)
floppy disks, 5, 152, 169, 244, 456, 458, 485,

491, 536, 541, 558, 568, 753, 836,
846

flushing dirty pages, 623

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

910 | Index

focus processors, 160
FPU, 108, 111–114, 839

Kernel Mode, using in, 114
frame buffers, 524
frontside buses, 520

G
GART, 545
GDT, 37
general-purpose I/O interfaces, 524
generic block layer, 562
Global Descriptor Table (see GDT)
global kernel lock (see big kernel lock)
GNU General Public License, 1, 5, 843–845
GPL (see GNU General Public License)
graphic interfaces, 524
Graphics Address Remapping Table (see

GART)
groups (see user groups)

H
hard IRQ stack, 161
hard links, 14
hardware caches, 43, 48, 54–56

controllers, 55
direct mapped, 54
entry tags, 55
fully associative, 54
function footprints, 325
handling, 74
hits, 55
L1-caches, L2-caches, L3-caches, 56
lines, 54
misses, 55
N-way set associative, 54
snooping, 56
write-back, 55
write-through, 55

hardware clocks, 228–232
hardware context, 103

switches, 103
hash chaining, 93
hash collision, 93
heaps, 395, 818

managing, 395–397
hibernation, 600
hibernation reclaiming, 689
High Precision Event Timer, 231

comparators, 231
counters, 231

match registers, 231
high-memory, 305

kernel mapping of, 305–311
host bridges, 520
hot spots, in the kernel, identified by a

profiler, 242
hotplug program, 539
HPET (see High Precision Event Timer)
hyper-threaded microprocessors, 285

I
idle CPU, 280
idle processes (see swapper processes)
IDT, 140

initializing, 145–148
preliminary initialization, 147

interrupt handlers
for local timers, 239

init process, 29, 91, 125, 128, 129, 425, 441,
450, 484, 711, 841

init program, 841
initialized data segments, 818
inode cache, 477, 500, 588, 599, 678,

705–707
inode numbers, 459
inodes (see inode objects under VFS)
insmod program, 847
interpreted scripts, 825
interpreter program, 826
interprocess communications, 26, 775–807

Unix, mechanisms available in, 775
interprocessor interrupts, 137
interrupt context, 172
Interrupt Descriptor Table (see IDT)
interrupt descriptors, 145
interrupt gates, 141, 146, 158
interrupt handlers, 20, 151–171

exception handlers, contrasted with, 144
nested execution of, 143
registers, saving, 162

Interrupt Redirection Tables, 136
Interrupt ReQuests (see IRQs)
interrupt service routines, 152, 156, 159,

163–171
interrupt signals, 131
interrupt vectors, 153
interrupts, 20, 131–137

actions following, 152
disabling, 25, 215–216
laptops and, 132
multiprocessor systems, handling on, 170

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 911

numerical identification, 134
protecting data structures accessed

by, 219
protecting data structures accessed by

deferrable functions and, 222
protecting data structures accessed by

exceptions and, 221
protecting data structures accessed by

exceptions, deferrable functions,
and, 222

termination phase, 183–188
types of, 133
unexpected, 157
unhandled, 157
vectors, 134

interval timers, 244, 254–256
I/O address spaces, 520
I/O APICs

initialization at bootstrap, 160
I/O buses, 520
I/O devices, 519–559

I/O shared memory, 526
accessing, 545–546
address mapping, 545

levels of kernel support, 551–552
I/O interfaces, 523–525
I/O interrupt handling, 152–170
I/O Memory Management Units

(see IO-MMUs)
I/O operations

interrupt mode, 543
monitoring, 542–545
polling mode, 542

I/O ports, 520–523
I/O schedulers, 572

deadline queues, 582
dispatch queues, 581
elevator objects, 581
request deadlines, 582
request starvation, 582
sorted queues, 582

I/O-bound processes, 259
IO-MMUs, 548
IPC, 789–805

IPC identifiers, 790
IPC keys, 790
IPC resources, 790–793
message queues, 27
messages, 799–801

message headers, 799
message queues, 799

message texts, 799
message types, 799

multiplexer system call, 793
semaphores, 27, 794–798

primitive semaphores, 794
queue of pending requests, 798

shared memory, 27, 801–805
data structures, 802
page swapping, 804
process address spaces, 801
regions, 801
shm filesystem, 803

slot indexes, 791
slot usage sequence numbers, 791
undoable semaphore operations, 794

IRQ affinity, 160
IRQs, 134–137

allocation of IRQ lines, 168–170
data structures, 156
I/O APIC and, 136
line selection, IRQ configurable

devices, 155, 157
ISRs (see interrupt service routines)

J
JBD (see Journaling Block Device layer)
jiffies, 234

timer implementation and, 244
Journaling Block Device layer, 769
journaling filesystems, 458, 466, 604, 613,

630, 632, 767
data committed to the filesystem, 767
data committed to the journal, 767
Ext3 (see Ext3 filesystem)
JFS, 458, 649, 768
ReiserFS, 457
XFS, 458, 705, 768

journals, 767
atomic operation handles, 770
log records, 769
transactions, 771

active transactions, 772

K
kernel code segment, 42
kernel control paths, 22–26, 85, 132, 143,

173, 183, 186, 192
interleaving of, 144
race conditions and, 192

kernel data segment, 42

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

912 | Index

Kernel Memory Allocator, 31
Kernel Mode, 8, 19

exceptions in, 144
kernel oops, 151, 382
kernel page tables, 68
kernel preemption, 24, 173, 187, 190–192,

195
kernel profiling, 242
kernel symbol tables, 846
kernel threads, 3, 20, 68, 76, 116, 123–126,

172, 180, 192, 276, 281–282, 356,
379, 391, 394, 412, 418, 592, 711,
723, 841, 850

aio, 675
bdflush, 623
events, 690
kapmd, 125
kblockd, 126, 579
keventd, 125, 183
kirqd, 160
ksoftirqd, 126, 175–178
kswapd, 126, 298, 321, 690, 704,

707–709
kupdate, 623
memory descriptors of, 356
migration, 267, 289, 292
pdflush, 126, 623, 625, 627, 628, 630,

697, 698, 699, 704
swapper (see swapper processes)
used for page frame reclaiming, 689
worker threads, 180

kernel wrapper routines, 398, 418–419
keyboard interfaces, 524
KMA (see Kernel Memory Allocator)
kobjects, 528, 568, 570, 574

attributes, 531
classes, 535

logical devices, 535
ksets, 529

devices, 534
drivers, 534

mapping domain, 553, 591, 597
registration, 530
subsystems, 529

L
lazy TLB mode, 77
ld.so, 817
LDTs (Local Descriptor Tables), 37
lease locks, 511
Least Recently Used (LRU) lists (see LRU

lists)

library functions, 833
aio_cancel(), 672
aio_error(), 672
aio_fsync(), 671
aio_read(), 671, 672
aio_return(), 672
aio_suspend(), 672
aio_write(), 671, 672
calloc(), 395, 399
chacl(), 748
dlopen(), 817
exit(), 126
fprintf(), 778
free(), 395, 399
fscanf(), 778
ftime(), 252
getfacl(), 748
kill(), 425
killpg(), 451
lockf(), 510
malloc(), 395, 399
mkfifo(), 788
mq_close(), 806, 807
mq_getattr(), 806
mq_notify(), 806, 807
mq_open(), 806
mq_receive(), 806
mq_send(), 806
mq_setattr(), 806
mq_timedreceive(), 806, 807
mq_timedsend(), 806, 807
mq_unlink(), 806, 807
msgget(), 793
pclose(), 778
popen(), 778
pthread_exit(), 127
raise(), 430, 451
realloc(), 395
sbrk(), 395
setfacl(), 748
sigqueue(), 425, 430, 455
sigtimedwait(), 455
sigwaitinfo(), 455
sleep(), 454
wait(), 83, 129
wait3(), 83

lightweight processes, 3, 80
creation in Linux, 115

linear address intervals, 369–376
allocating, 369–373

linear addresses, 36
and noncontiguous memory areas, 343

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 913

links (see hard links)
Linux

emulation of other operating
systems, 827

filesystems, 4
platforms supported by, 6
POSIX compliance, 2

Linux Security Modules, 814
LinuxThreads library, 80
little-endian ordering, 742
local CPU, 108
Local Descriptor Table Descriptors

(LDTDs), 39
Local Descriptor Tables (LDTs), 37
locality principle, 54, 385, 680
logical addresses, 35

displacements, 35
offset, 35
segments, 35

Linux, used in, 42
logical block numbers, 561, 612, 773
login name, 9
login sessions, 29
low on memory reclaiming, 689
LRU block cache, 618
LRU lists, 691

active list, 691
inactive list, 691
pages, moving across, 692

LRU replacement algorithms, 680
ls program, 809
LSM (see Linux Security Modules)
LWPs (see lightweight processes)

M
major faults, 383, 734, 735
major numbers, 536
mapping layer, 561
maskable interrupts, 133
masked signals, 423
masking of deferrable functions, 172
Master Boot Records, 837
master kernel Page Global Directory, 63, 68,

70
master kernel page tables, 63, 65, 68, 307,

348, 350, 391
master memory descriptor, 357
mathematical coprocessor (see FPU)
MBR (see Master Boot Records)
memory addresses, 35
memory addressing, 35–78
memory alignment, 333

memory allocation and demand paging, 32
memory arbiters, 36, 196, 547
memory area descriptors, 32
memory area management, 323–350

cache descriptors, 325
multiprocessor systems, 335
noncontiguous areas (see noncontiguous

memory area)
memory areas, 323
memory barriers, 198
memory caches, 460, 676, 678, 691, 780
memory descriptors, 353–357, 661, 663,

673, 678, 711, 723, 818, 831, 833
fields, 354
of kernel threads, 356
mmap_cache, 365
read/write semaphores, 224
red-black trees, 361–362

memory external fragmentation, 311
memory fragmentation, 31
memory internal fragmentation, 323
Memory Management Unit, 30
memory mappings, 23, 657–668

creating, 660–662
data structures, 658–660
demand paging for, 662–665
destroying, 662
flushing dirty pages to disk, 665
non-linear, 667–668
private, 657
shared, 657

memory nodes, 297
memory pools, 341
memory regions, 352–397, 411, 414,

657–668, 677–689, 712, 724–725,
736, 818–822, 831

access rights, 362–365
flags, 363
handling, 365–369

finding a free interval, 367
finding a region that ovelaps an

interval, 366
finding the closest region to an

address, 365
inserting a region in the memory

descriptor list, 368
merging, 358
system calls for creation, deletion, 353,

359
memory zones, 299

fallback zone, 305
modifiers, 305

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

914 | Index

metadata, 768
microkernels, 11
microprocessors

80286, 36, 839
80386, xii, 1, 5, 46, 51, 139, 154
80486, xii, 111, 232
8088, 839
80x86 microprocessors, xii, 19, 35–78,

107, 131, 135, 138, 154, 198, 228,
230, 298, 333, 364, 385, 393, 404,
410, 520, 680, 818

ARM, 6
Athlon, 7
ia32e/EM64T, 7
Itanium, 6
MIPS, 6
Opteron, 7, 746, 808
Pentium, xii, 36, 49, 51, 56, 74, 75, 111,

147, 186, 228, 294, 808, 824
Pentium 4, xii, 50, 74, 111, 136, 137,

154, 160, 170, 198, 202, 364
Pentium II, xii, 401
Pentium III, xii, 52, 111, 135, 136
Pentium Pro, xii, 48, 52, 75, 170
PowerPC, 6, 746

minor faults, 383, 734
minor numbers, 536
mke2fs program, 753
mkswap command, 714
MMU (see Memory Management Unit)
MMX registers, 108, 111, 823
modprobe program, 850
module symbol tables, 846
modules, 3, 11, 842–851

data structures and, 842
dependency between, 847
exception tables, 845
exporting of symbols, 846
implementation, 844
linking and unlinking, 847
linking on demand, 850
module objects, 844
module usage counters, 846

mount points, 483
mount program, 511, 769
mounted filesystem descriptors, 485
multiprocessing, 10
multiprocessor systems

caches and, 56
interrupt disabling and, 25
interrupt handling on, 170
memory area management, 335

nonpreemptive kernels and, 25
timekeeping architecture, 238–240

multiprogramming, 10
multithreaded applications, 3, 80
multiuser systems, 9

N
named pipes (see FIFOs)
namespace, 484
Native POSIX Thread Library (NPTL), 80
network filesystems, 458, 466, 476, 499,

511, 632
AFS, 458
CIFS, 458, 474
Coda, 458
NCP, 458
NFS, 458, 474

network interfaces, 524
Next Generation Posix Threading Package

(NGPT), 80
NMI interrupts, 159, 243
non-coherent DMA mappings (see streaming

DMA mappings)
noncontiguous memory area, 342–350

allocating noncontiguous area, 345
descriptors, 344
linear addresses, 343
Page Faults and, 348, 391
releasing memory area, 348

nonmaskable interrupts, 133
nonpreemptable processes, 10
nonpreemptive kernels, 24

multiprocessor systems and, 25
NUMA (Non-Uniform Memory Access), 297

nodes, 297
nodes descriptors, 298

O
object files, 816
OOM killer (see out of memory killer)
operating systems, 8

GNU Hurd, 3
MS-DOS, 5, 8, 35, 149, 456–459, 477,

505, 825–827, 835, 846, 850, 851
OS/2, 5, 457
Windows, 2, 5, 10, 35, 45, 456, 457, 458,

826, 827, 837
(see also Unix-like operating systems)

oprofile profiler, 243
optimization barriers, 198
out of memory killer, 710

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 915

P
PAE, 50–53, 70, 71
page cache, 599–630

direct I/O transfers, bypassing with, 669
pages’ owners, 600

Page Directories, 46
Page Fault exception handler, 359, 376–392,

411
Page Faults, noncontiguous memory areas

and, 348
page frame reclaiming, 677
page frame reclaiming algorithm (see PFRA)
page frames, 30, 46

anonymous, 678
discardable, 677
free, 295
in-use, 680
mapping a file, 678
memory zones, 299
non-free, 677
non-shared, 678
page descriptors, 295
request and release of, 302–305
reserved, 65
shared, 678
swappable, 677
syncable, 677
unreclaimable, 677
unused, 680

page slots, 714
defective slots, 716
functions for allocation and release

of, 726–728
page tables, 46

handling, 60–65
kernel page tables, 68–72
of a process, 68
protection bits, 364

pages, 46
paging, 46

four-level, 57
in hardware, 45–57
in Linux, 57–78
vs. segmentation, 42
three-level, 53, 64, 72
two-level, 46, 53, 64

paging unit, 36
parallel ports, 524
parent filesystems, 484
parent processes, 28

partitions, 569
active partition, 837

passwords, 9
pathname lookup, 495–505
pathnames, 13
PCI buses, 519
PCMCIA interfaces, 525
pending signals, 423
Pentium microprocessors

(see microprocessors)
per-CPU variables, 194
periodic reclaiming, 689
periods in directory notation, 13
Peripheral Component Interconnect (see PCI

buses)
permanent kernel mappings, 307–310

temporary kernel mappings, contrasted
with, 306

personalities, 827
PFRA, 677–737

mapped ratio, 695
periodic reclaiming, 707–710
swap tendency value, 695

Physical Address Extension (see PAE)
physical addresses, 36
physical addresses map, 65
physical pages, 46
PIC objects, 158
PIC (see Programmable Interrupt

Controllers)
PID (process ID), 83
pidhash tables, 92
pipes, 776–786

creating and destroying, 781
data structures, 779–781
FIFOs, contrasted with, 787
full-duplex pipes, 777
half-duplex pipes, 777
limitations of, 787
pipe buffers, 779
pipe sizes, 780
read and write channels, 777
reading from, 783
writing into, 785

PIT (see Programmable Interval Timer)
Plug-and-Play (see PnP)
PMT (see ACPI, Power Management Timer)
PnP, 44
POSIX clocks, 256
POSIX interval timers, 129
POSIX message queues, 27, 102, 481, 806

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

916 | Index

POSIX (Portable Operating Systems based on
Unix), 2, 15, 17, 27, 80, 84, 255,
256, 293, 399, 410, 422, 424, 425,
428, 441, 451, 510, 632, 671, 672,
738, 745, 748, 777, 783, 785, 788,
806, 812, 827

POSIX timers, 256
Power-On Self-Test (POST), 66, 836
preemptable processes, 10, 260
preemptive kernel, 190
priority search trees, 686–688

heap indices, 686
overflow sup-trees, 687
radix indices, 686
size indices, 687

process 0 (see swapper processes)
process 1 (see init process)
process capabilities, 812–814
process credentials, 810
process descriptors, 21, 81–102

hardware context, saving of, 105
hash tables of process identifiers, 92
Kernel Mode stacks, coupled with, 86
parenthood relationships,

representing, 91
pointers to, 83
process list (see process list)
stored in dynamic memory, 84

process group ID, 29
process groups, 29

leaders, 29
process ID (PID), 83
process list, 89
process switches, 102–114

forced, 190
hardware context, 103
planned, 190

process time-outs, 250
processes, 10, 19, 79–130

address spaces, 23, 351–397
creating, 392
deleting, 394
functions and macros for

accessing, 414
children, 91
communication between (see interprocess

communications)
creating, 114–126
destroying, 126–130
execution domains, 827
hardware context (see hardware context)
I/O-bound or CPU-bound, 259

lightweight processes, 80
creation in Linux, 115

management, 28–29
nonpreemptable (see nonpreemptable

processes)
original parents, 91
parent, child, and sibling

relationships, 91
personality, 827
preemptable (see preemptable processes)
preemption of, 260
removal, 129
resource limits, 101
scheduling algorithm (see algorithm under

scheduling)
sibling, 91
sleeping, 97
suspending, 454
termination, 127
types of, 259
zombies, 28

process/kernel model, 11
program counters, 132
program execution, 808–834

command-line arguments, 815
environment variables, 815
exec functions, 828–834
executable files, 808–824
executable formats, 824–826
execution domains, 827
libraries, 816
segments, 818

program linking, 816
address resolution, 816

Programmable Interrupt
Controllers, 134–137

Programmable Interval Timer, 229
multiprocessor systems and, 238

protected mode, 36
provisional Page Global Directory, 69
PS/2 mouse, 839
PST (see priority search trees)
pthread (POSIX thread) libraries, 80, 451

Q
quantum (see time slices under scheduling)
quota system, 466

R
race conditions, 24

dynamic timers and, 246
prevention, 222–226

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 917

radix trees, 604
RAM

assigned to processes, 676
dynamic memory and, 294
kernel, loaded in, 8
partitioning into page frames, 30
usage by microkernels vs monolithic

kernels, 11
using for disk caches, 32

ramdisks, 491
random access memory (see RAM)
RCU (see read-copy update)
read operation descriptors, 635
read-ahead, 642–648
read-ahead algorithm, 643
read-copy update, 207–208

callback functions, 208
quiescent states, 208

readprofile profiler, 242
read/write semaphores, 213
read/write spin locks, 203–206
real mode, 36
real mode addresses, 836
Real Time Clock, 228
real-time processes, 262, 265–266, 271

FIFO, 262
round robin, 262
system calls related to, 292–293

real-time signals, 422, 455
red-black trees, 361–362

left children, 361
nodes, 361
right children, 361

reentrant functions, 21
reentrant kernels, 21–24

synchronization, 24
interrupt disabling, 25

reference counters, 223
regparm attribute, 108
regular signals, 422
request descriptors, 575–579
request queues, 572

congestion, 579
request starvation, 582

reverse mapping, 680–689
anonymous pages, for, 682–686
mapped pages, for, 686–689
object-based, 681

root directories
(see filesystem’s root directories)

root filesystems, 458, 483, 484, 491–494
root (see superuser)

RTC (see Real Time Clock)
runqueues, 90

S
scatter-gather DMA transfers, 565
schedule function, 277–284

direct invocation, 277
lazy invocation, 277

scheduling, 10, 258–293
active processes, 265
algorithm, 262–266
average sleep time, 264
base scheduling domains, 287
batch processes, 259
bonus, 264, 276
classes, 262
CPU-bound processes, 259
data structures, 266–270
domains, 286
dynamic priorities, 264
expired processes, 265
groups in a domain, 286
interactive delta, 265
interactive processes, 259
I/O-bound processes, 259
policy, 258–262
priority, assignment of, 259, 260
real-time priorities, 265
real-time processes (see real-time

processes)
static priorities, 263
system calls related to, 260, 290–293
time sharing, 258
time slice duration, 261
time slices, 232, 258

SCSI, 525
Second Extended Filesystem (see Ext2

filesystem)
sectors, 563

adjacent, 564
security hooks, 814
Security-Enhanced Linux, 815
segment descriptors, 37–40

Descriptor Privilege Level (DPL), 38
Segment-Present flag, 38

segment selectors, 37
Requestor Privilege Level, 40
Table Indicator, 40

segmentation
in Linux, 41–43
vs. paging, 42

segmentation registers, 37

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

918 | Index

segmentation unit, 36
segmentation units, 40
segments (see segments under logical

addresses, segments program
execution, or system segments)

self-caching applications, 668
SELinux (see Security-Enhanced Linux)
semaphores, 25, 208–214

acquiring, 210–213
kernel semaphores, 208–214
race conditions, preventing

with, 224–226
read/write semaphores, 213
releasing, 209

seqlocks, 206
serial ports, 524
Set Group ID (see sgid flags)
Set User ID (see suid flags)
setuid programs, 651, 811, 814
sgid flags, 16
shared libraries, 817
shared linked lists, insertion of elements

into, 217
share-mode mandatory locks, 511
shrinker functions, 705
signals, 2, 26, 82, 92, 131, 139, 420–455

blocking of, 423, 453
catching, 442–447
changing the action of, 451
data structures, 426–432

operations on, 431–432
default actions, 27, 424

executing, 441–442
delivering, 81, 99, 213, 423, 439–450,

508, 511, 724, 822, 823
exception handlers, used by, 139
fatal signals, 425, 711
generating, 148, 381, 383, 423, 433–439,

785, 813
ignoring, 440
masking of, 423
pending signals, 184, 188, 279, 423

queues of, 430
process descriptor fields for handling, 426
real-time signals, 422

system calls for, 455
regular signals, 422
sender codes, 149, 430
sent by interval timers, 254–257
SIG prefix, 420
signal descriptors, 101, 427

signal handlers, 420, 423, 425, 822
descriptors of, 428

stack extended frames, 445
stack frames, 444
system calls

for handling of, 450–455
reexecuting, 447–450

single-step execution, 138
slab allocator, 324–342

buddy system, interfacing with, 329
cache descriptors, 325
caches, 325
caches for general purpose memory

areas, 328
coloring, 334
general caches, 327
kmem_cache cache, 328
shared local cache, 336
slab allocation, 330
slab cache descriptors, 225
slab descriptors, 327

external, 327
internal, 327

slab local cache, 336
slab objects, 324

aligning objects in memory, 333
alignment factors, 333
caches, allocating in, 337–338
caches, releasing from, 338–340
constructors, 324
descriptors, 332
destructors, 324
external descriptors, 332
general purpose, 340
internal descriptors, 332

slabs, 325
specific caches, 327

sleeping processes, 97
Small Computer System Interface (see SCSI)
SMP, 4, 72, 135, 137, 159, 284–290
soft IRQ stack, 161
soft links, 14, 503–505
softirqs, 171, 173–178
software interrupts, 134, 171
software timers, 244
sound samples, 547
special, 494
special filesystems, 84, 458, 481–482, 490

bdev, 481, 586, 588, 596, 603, 614, 635,
640, 650

binfmt_misc, 481, 826
devfs, 568

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 919

devpts, 481
eventpollfs, 481
futexfs, 481
mqueue, 481, 807
pipefs, 481, 490, 781–782, 787
proc, 84, 458, 481, 511, 527, 794, 799,

820, 851
rootfs, 481, 491–494
shm, 481, 600, 803
sockfs, 481
sysfs, 482, 491, 527–535, 580, 839, 845,

848
tmpfs, 482, 491, 660, 678
usbfs, 482

spin locks, 26, 199–206
SSE/SSE2 extensions (Streaming SIMD

Extensions), 111
stack segment registers, 37
stack segments, 818
static distribution of IRQs, 136
static libraries, 817
sticky flags, 16
stopped processes, 82
strategy routines, 572
streaming DMA mappings, 549
suid flags, 16
superblock operations (see superblock

operations under VFS)
superblocks (see superblock objects under

VFS and disk superblocks)
superformat program, 753
superuser, 10
swap areas, 714–715

active, 715
descriptors, 715–718
multiple areas, advantages, 714
page slots, 714

allocating and releasing, 726–728
defective page slots, 716

swap extents, 715
swap cache, 728–732

helper functions, 731
swap tendency, 695
swap thrashing, 711
swap token, 711
swapoff program, 713, 719
swapon program, 719
swapped-out page identifiers, 718
swapper processes, 89, 124, 125, 242, 262,

266, 270, 279, 287, 357, 425, 450,
711

swappiness, 696

symbolic links (see soft links)
symmetric multiprocessing (see SMP)
synchronization primitives, 194–226

atomic operations, 195–197
choosing among, 218
completions, 214
kernel data structures, access

using, 217–222
memory barriers, 198
read-copy update, 207–208
semaphores, 208–214
seqlocks, 206–207
spin locks, 199–206

synchronous DMA mappings
see coherent DMA mappings, 549

synchronous interrupts, 131
synchronous notifications, 26
SYSENTER_CS_MSR register, 404
SYSENTER_EIP_MSR register, 404
SYSENTER_ESP_MSR register, 404
system administrators, 10
system buses, 519
system call dispatch tables, 400
system call handlers, 399–401

similar to exception handlers, 400, 410
system call numbers, 399
system call service routines, 117, 193, 212,

217, 250, 281, 380, 400, 443, 448,
459, 808

system calls, 11, 19, 146, 398–419
access(), 461
adjtimex(), 241, 254
adtimex(), 238
alarm(), 256
bind(), 461
brk(), 32, 353, 395, 399, 821
capget(), 814
capset(), 814
chdir(), 461
chmod(), 461
chown(), 461
chown16(), 461
chroot(), 461, 484
clock_getres(), 256
clock_gettime(), 256
clock_nanosleep(), 256
clock_settime(), 256
clone(), 3, 115–123, 393, 427, 484, 797
close(), 18, 461, 509, 777, 782, 788, 807
connect(), 461
creat(), 461
delete_module(), 849

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

920 | Index

system calls (continued)
dup(), 461, 472, 479
dup2(), 461, 479, 777
exec-like, 28, 32, 828–834
execve(), 112, 120, 125, 353, 406, 777,

809, 815, 829–834, 851
_exit(), 28, 81, 124, 126, 353, 624
exit_group(), 126
fchdir(), 461
fchmod(), 461
fchown(), 461
fchown16(), 461
fcntl(), 461, 474, 479, 510–518, 631, 669,

783, 810, 831
fcntl64(), 461
fdatasync(), 462, 623, 630
fgetxattr(), 462, 747
flistxattr(), 462, 747
flock(), 462, 474, 510–518
fork(), 28, 115–123, 272, 353, 388, 392,

409, 418, 682, 777
fremovexattr(), 462, 747
fsetxattr(), 462, 747
fstat(), 461
fstat64(), 461
fstatfs64(), 461
fsync(), 462, 623, 630
ftatfs(), 461
ftruncate(), 461
ftruncate64(), 461
getcwd(), 461
getdents(), 461
getdents64(), 461
getpid(), 81, 84
getpriority(), 260, 290
getrlimit(), 102
get_thread_area(), 44
gettimeofday(), 252
getxattr(), 462, 747
init_module(), 847
io_cancel(), 462, 673–675
ioctl(), 459, 461, 473, 552, 569, 590
io_destroy(), 462, 673–675
io_getevents(), 462, 673–675
ioperm(), 461, 551, 813
iopl(), 551, 813
io_setup(), 462, 673–675
io_submit(), 462, 473, 673–675
ipc(), 793
kill(), 81, 92, 422, 425, 429, 430, 433,

436, 450–451
lchown(), 461
lchown16(), 461

lgetxattr(), 462, 747
link(), 461
listxattr(), 462
llistxattr(), 462, 747
_llseek(), 461
lookup_dcookie(), 461
lremovexattr(), 462, 747
lseek(), 17, 461, 462, 757
lsetxattr(), 462, 747
lstat(), 461
lstat64(), 461
madvise(), 462, 645, 665
mincore(), 462
mkdir(), 461
mknod(), 461, 493, 536, 788
mlock(), 102
mlockall(), 102, 371
mmap(), 23, 353, 367, 409, 462, 631,

658, 660, 667, 833
mmap2(), 353, 462
modify_ldt(), 45
mount(), 461, 487, 511, 850
mprotect(), 683
mq_getsetattr(), 807
mq_notify(), 807
mq_open(), 807
mq_timedreceive(), 807
mq_timedsend(), 807
mq_unlink(), 807
mremap(), 353, 363, 685
msgget(), 27
msgrcv(), 27
msgsnd(), 27
msync(), 462, 665
munmap(), 353, 462, 658, 662
nanosleep(), 250, 449
nice(), 260, 263, 266, 290, 813, 814
oldfstat(), 461
oldlstat(), 461
oldstat(), 461
open(), 16, 461, 481, 495, 506–508, 510,

512, 539, 552, 557, 595–598, 661,
669, 672, 748, 783, 788, 806

personality(), 827
pipe(), 461, 777–783
pivot_root(), 461, 484
poll(), 229, 461
posix_fadvise(), 644
prctl(), 814
pread64(), 462
ptrace(), 82, 91, 664, 813, 822–824
pwrite64(), 462
quotactl(), 466

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 921

read(), 18, 459, 461, 508–509, 510, 512,
543, 552, 560, 632–671, 672, 777,
779, 783, 788

readahead(), 461, 645
readdir(), 461
readlink(), 461
readv(), 461, 634
reexecuting, 447–450
remap_file_pages(), 353, 462, 668
removexattr(), 462, 747
rename(), 19, 226, 461, 495
restart_syscall(), 449
rmdir(), 461
rt_sigaction(), 422, 450, 452, 455
rt_sigpending(), 422, 455
rt_sigprocmask(), 422, 455
rt_sigqueueinfo(), 422, 429, 433, 447,

451, 455
rt_sigreturn(), 443, 447
rt_sigsuspend(), 422, 455
rt_sigtimedwait(), 422, 426, 455
sched_getaffinity(), 260, 291
sched_getparam(), 260, 292
sched_get_priority_max(), 260, 293
sched_get_priority_min(), 260, 293
sched_getscheduler(), 260, 292
sched_rr_get_interval(), 260, 293
sched_setaffinity(), 260, 291
sched_setparam(), 260, 266, 293
sched_setscheduler(), 260, 266, 277, 292
sched_yield(), 260, 266, 293, 698
select(), 229, 461
semget(), 27
sendfile(), 461, 474
sendfile64(), 461
setfsgid(), 811
setfsuid(), 811
setgid(), 811
setitimer(), 255
setpriority(), 260, 263, 266, 290, 813
setregid(), 811
setresgid(), 811
setresuid(), 811
setreuid(), 811
setrlimit(), 102
set_thread_area(), 44
settimeofday(), 254, 410
setuid(), 811
setxattr(), 462, 747
shmat(), 27, 353
shmdt(), 28, 353
shmget(), 27
sigaction(), 422, 429, 450, 451–452

sigaltstack(), 445
signal(), 422, 429, 452
sigpending(), 422, 453
sigprocmask(), 422, 453, 454
sigreturn(), 442, 443, 444, 446
sigsuspend(), 422, 454
socket(), 461
stat(), 461, 495
stat64(), 461
statfs(), 461
statfs64(), 461
stime(), 254
swapoff(), 719
swapon(), 719
symlink(), 461
sync(), 33, 462, 623, 625, 629
sysctl(), 302, 696, 706, 712, 820
sysfs(), 461
tgkill(), 422, 429, 431, 433, 451
time(), 252
timer_create(), 256
timer_delete), 256
timer_getoverrun(), 256
timer_gettime(), 256
timer_settime(), 256
tkill(), 422, 429, 431, 433, 451
truncate(), 461, 748
truncate64(), 461
umask(), 461
umount(), 461, 494
umount2(), 461
unlink(), 19, 461
uselib(), 825
ustat(), 461
utime(), 461
vfork(), 115, 115–123, 394
vhangup(), 813
wait4(), 28, 83, 129, 428, 779
wait-like, 129
waitpid(), 28, 83, 129
write(), 17, 410, 411, 418, 461, 508–509,

510, 512, 536, 552, 648–671, 672,
768, 772, 777, 779, 785, 788

writev(), 461, 650
system concurrency level, 217
system gates, 146
system interrupt gates, 146
system segments, 38
system startup, 835–841
system statistics, updating by kernel, 241
System V IPC (see IPC)
system’s root filesystem, 483

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

922 | Index

T
task gates, 141, 146
task priority registers, 137
task queues

replaced by work queues, 180
Task State Segment Descriptors (TSSDs), 38,

104
Task State Segments (TSSs), 43, 104
task switches (see process switches)
tasklets, 171, 178–180
tasks (see processes)
temporary kernel mappings, 310–311

permanent kernel mappings, contrasted
with, 306

text segments, 818
thread group ID, 451, 581
thread group leader, 84
thread groups, 80, 433
Thread-Local Storage (TLS) segments, 44
threads (see also processes)
ticks, 229
time interpolation, 233
time multiplexing (see time sharing under

scheduling)
time sharing (see time sharing under

scheduling)
Time Stamp Counter, 228
timekeeping architecture, 232–240

multiprocessor systems, 238–240
system calls related to, 252–257
time and date updates, 240
uniprocessor systems, 236–238

time-outs, 244
timer circuits, 228–232
timer interrupts, 229
timers, 244
timers (see dynamic timers, interval timers,

POSIX timers, software timers, or
timer circuits)

timing measurements, 227–257
via hardware, 228
types, 227

TLBs, 57
handling, 74
local TLBs, 57

Translation Lookaside Buffers (see TLBs)
trap gates, 141, 146
traps, 133
TSC (see Time Stamp Counter)

U
udev toolset, 539
UID, 15, 16, 431, 471, 810, 812, 814
umask, 116
unitialized data segments, 818
universal serial bus (see USB)
Unix-like operating systems, 1

AIX, 1
BSD, 1, 2, 5, 424, 451, 457, 510, 740,

825, 828
Coherent, 457, 632
Columbus Unix, 790
Digital UNIX, 1, 828
FreeBSD, 1
HP-UX, 1, 828
Interactive Unix, 828
IRIX, 4, 828
Mac OS X, 1, 3, 5
Mach 3.0, 4
MINIX, 457, 632, 738
NetBSD, 1
NEXTSTEP, 5, 457
OpenBSD, 1
RISC OS, 828
SCO OpenServer, 827
SCO Unix, 5, 827
Solaris, 1, 3, 4, 5, 31, 45, 324, 335, 401,

457, 824, 828
SunOS, 5, 458, 828
System III, 790
System V, 1, 2, 3, 4, 5, 23, 27, 424, 451,

452, 457, 510, 632, 740, 777, 788,
824, 827

UnixWare, 457, 828
Xenix, 5, 457, 632, 828

USB, 525
USB flash drives, 457
user code segment, 42
user data segment, 42
user group ID, 10, 15, 16, 471, 740, 745,

792, 810
user groups, 10
User ID (see UID)
User Mode, 8, 19

exceptions in, 144
user threads, 80

V413HAV
Typewritten Text
V413HAV

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 923

V
vectors, 134, 140
VFS, 456–518

common file model, 458–461
data structures, 462–481
dentry objects, 460, 475–478
dentry operations, 476–477
file locking, 510–518
file objects, 460, 471–474
file operations, 472–474
filesystem types, 481–483

registration, 482–483
inode objects, 15, 459, 467–470
inode operations, 469–470
inode semaphores, 225
objects, 459
superblock objects, 459, 462–466
superblock operations, 464–466
supported filesystems, 457
system calls, 461

implementation, 505–518
vi editor, 79
virtual address spaces, 30
virtual addresses (see linear addresses)
virtual block devices, 458
Virtual Filesystem (see VFS)
virtual memory, 30, 713
vsyscall page, 406

W
wait queues, 96–101

exclusive processes, 97
heads, 97
nonexclusive processes, 97

watchdog system, 243
work queues, 180–183, 574, 592

aio work queue, 675
kblockd work queue, 183, 579
keventd work queue, 690, 709
replace old task queues, 180

wrapper routines, 398, 418, 817, 829
(see also kernel wrapper routines)

X
X Window System, 34, 551, 711, 776, 841
XMM registers, 108, 111–113, 823

Z
zero page, 388
zombie processes, 28
zoned page frame allocator, 302

cold cache, 317
hot cache, 317
per-CPU page frame caches, 317
zone allocator, 302, 319–323

About the Authors
Daniel P. Bovet received his Ph.D. in computer science at UCLA in 1968 and is a full
professor at the University of Rome, Tor Vergata, Italy. He had to wait over 25 years
before being able to teach an operating systems course in a proper manner, due to the
lack of source code for modern, well-designed systems. Now, thanks to cheap PCs
and Linux, Dan and Marco are able to cover all the facets of an operating system and
can hand out tough, satisfying homework to their students. (These young students
working at home on their PCs are really spoiled; they never had to fight with punched
cards.) In fact, Dan was so fascinated by the accomplishments of Linus Torvalds and
his followers that he spent the last few years trying to unravel some of Linux’s
mysteries. It seemed natural, after all that work, to write a book about what he found.

Marco Cesati received a degree in mathematics in 1992 and a Ph.D. in computer
science at the University of Rome, La Sapienza, in 1995. He is now a research assis-
tant in the computer science department of the School of Engineering at the
University of Rome, Tor Vergata. In the past, he has served as a system administrator
and Unix programmer for the university (as a Ph.D. student) and for several institu-
tions (as a consultant). During the last few years, he has been continuously involved
in teaching his students how to change the Linux kernel in strange and funny ways.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

Darren Kelly was the production editor for Understanding the Linux Kernel , Third
Edition. Sharon Lundsford was the copyeditor and Julie Campbell was the proof-
reader. Mary Brady and Claire Cloutier provided quality control. Jansen Fernald and
Loranah Dimant provided production assistance. Amy Parker provided production
services.

Edie Freedman designed the cover of this book, based on a series design by herself
and Hanna Dyer. The cover image of a man with a bubble is a 19th-century
engraving from the Dover Pictorial Archive. Karen Montgomery produced the cover
layout with QuarkXPress 4.1 using Adobe’s ITC Garamond font.

David Futato designed the interior layout. The chapter opening image is from the
Dover Pictorial Archive. This book was converted to FrameMaker 5.5.6 by Keith
Fahlgren with a format conversion tool created by Erik Ray, Jason McIntosh, Neil
Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Lino-
type Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macro-
media FreeHand 9 and Adobe Photoshop 6.

	Table of Contents
	Preface
	The Audience for This Book
	Organization of the Material
	Level of Description
	Overview of the Book
	Background Information
	Conventions in This Book
	How to Contact Us
	Safari® Enabled
	Acknowledgments

	Introduction
	Linux Versus Other Unix-Like Kernels
	Hardware Dependency
	Linux Versions
	Basic Operating System Concepts
	Multiuser Systems
	Users and Groups
	Processes
	Kernel Architecture

	An Overview of the Unix Filesystem
	Files
	Hard and Soft Links
	File Types
	File Descriptor and Inode
	Access Rights and File Mode
	File-Handling System Calls
	Opening a file
	Accessing an opened file
	Closing a file
	Renaming and deleting a file

	An Overview of Unix Kernels
	The Process/Kernel Model
	Process Implementation
	Reentrant Kernels
	Process Address Space
	Synchronization and Critical Regions
	Kernel preemption disabling
	Interrupt disabling
	Semaphores
	Spin locks
	Avoiding deadlocks

	Signals and Interprocess Communication
	Process Management
	Zombie processes
	Process groups and login sessions

	Memory Management
	Virtual memory
	Random access memory usage
	Kernel Memory Allocator
	Process virtual address space handling
	Caching

	Device Drivers

	Memory Addressing
	Memory Addresses
	Segmentation in Hardware
	Segment Selectors and Segmentation Registers
	Segment Descriptors
	Fast Access to Segment Descriptors
	Segmentation Unit

	Segmentation in Linux
	The Linux GDT
	The Linux LDTs

	Paging in Hardware
	Regular Paging
	Extended Paging
	Hardware Protection Scheme
	An Example of Regular Paging
	The Physical Address Extension (PAE) Paging Mechanism
	Paging for 64-bit Architectures
	Hardware Cache
	Translation Lookaside Buffers (TLB)

	Paging in Linux
	The Linear Address Fields
	Page Table Handling
	Physical Memory Layout
	Process Page Tables
	Kernel Page Tables
	Provisional kernel Page Tables
	Final kernel Page Table when RAM size is less than 896�MB
	Final kernel Page Table when RAM size is between 896�MB and 4096�MB
	Final kernel Page Table when RAM size is more than 4096�MB

	Fix-Mapped Linear Addresses
	Handling the Hardware Cache and the TLB
	Handling the hardware cache
	Handling the TLB

	Processes
	Processes, Lightweight Processes, and�Threads
	Process Descriptor
	Process State
	Identifying a Process
	Process descriptors handling
	Identifying the current process
	Doubly linked lists
	The process list
	The lists of TASK_RUNNING processes

	Relationships Among Processes
	The pidhash table and chained lists

	How Processes Are Organized
	Wait queues
	Handling wait queues

	Process Resource Limits

	Process Switch
	Hardware Context
	Task State Segment
	The thread field

	Performing the Process Switch
	The switch_to macro
	The ��_��_switch_to�(��) ��function

	Saving and Loading the FPU, MMX, and XMM Registers
	Saving the FPU registers
	Loading the FPU registers
	Using the FPU, MMX, and SSE/SSE2 units in Kernel Mode

	Creating Processes
	The clone(��), fork(��), and vfork(��) System Calls
	The do_fork(��) function
	The copy_process(�) function

	Kernel Threads
	Creating a kernel thread
	Process 0
	Process 1
	Other kernel threads

	Destroying Processes
	Process Termination
	The do_group_exit(�) function
	The do_exit(�) function

	Process Removal

	Interrupts and Exceptions
	The Role of Interrupt Signals
	Interrupts and Exceptions
	IRQs and Interrupts
	The Advanced Programmable Interrupt Controller (APIC)

	Exceptions
	Interrupt Descriptor Table
	Hardware Handling of Interrupts and Exceptions

	Nested Execution of Exception and Interrupt Handlers
	Initializing the Interrupt Descriptor Table
	Interrupt, Trap, and System Gates
	Preliminary Initialization of the IDT

	Exception Handling
	Saving the Registers for the Exception Handler
	Entering and Leaving the Exception Handler

	Interrupt Handling
	I/O Interrupt Handling
	Interrupt vectors
	IRQ data structures
	IRQ distribution in multiprocessor systems
	Multiple Kernel Mode stacks
	Saving the registers for the interrupt handler
	The do_IRQ(��) function
	The _�_do_IRQ(�) function
	Reviving a lost interrupt
	Interrupt service routines
	Dynamic allocation of IRQ lines

	Interprocessor Interrupt Handling

	Softirqs and Tasklets
	Softirqs
	Data structures used for softirqs
	Handling softirqs
	The do_softirq(�) function
	The _�_do_softirq(�) function
	The ksoftirqd kernel threads

	Tasklets

	Work Queues
	Work queue data structures
	Work queue functions
	The predefined work queue

	Returning from Interrupts and Exceptions
	The entry points
	Resuming a kernel control path
	Checking for kernel preemption
	Resuming a User Mode program
	Checking for rescheduling
	Handling pending signals, virtual-8086 mode, and single stepping

	Kernel Synchronization
	How the Kernel Services Requests
	Kernel Preemption
	When Synchronization Is Necessary
	When Synchronization Is Not Necessary

	Synchronization Primitives
	Per-CPU Variables
	Atomic Operations
	Optimization and Memory Barriers
	Spin Locks
	The spin_lock macro with kernel preemption
	The spin_lock macro without kernel preemption
	The spin_unlock macro

	Read/Write Spin Locks
	Getting and releasing a lock for reading
	Getting and releasing a lock for writing

	Seqlocks
	Read-Copy Update (RCU)
	Semaphores
	Getting and releasing semaphores

	Read/Write Semaphores
	Completions
	Local Interrupt Disabling
	Disabling and Enabling Deferrable Functions

	Synchronizing Accesses to Kernel Data Structures
	Choosing Among Spin Locks, Semaphores, and Interrupt Disabling
	Protecting a data structure accessed by exceptions
	Protecting a data structure accessed by interrupts
	Protecting a data structure accessed by deferrable functions
	Protecting a data structure accessed by exceptions and interrupts
	Protecting a data structure accessed by exceptions and deferrable functions
	Protecting a data structure accessed by interrupts and deferrable functions
	Protecting a data structure accessed by exceptions, interrupts, and deferrable functions

	Examples of Race Condition Prevention
	Reference Counters
	The Big Kernel Lock
	Memory Descriptor Read/Write Semaphore
	Slab Cache List Semaphore
	Inode Semaphore

	Timing Measurements
	Clock and Timer Circuits
	Real Time Clock (RTC)
	Time Stamp Counter (TSC)
	Programmable Interval Timer (PIT)
	CPU Local Timer
	High Precision Event Timer (HPET)
	ACPI Power Management Timer

	The Linux Timekeeping Architecture
	Data Structures of the Timekeeping Architecture
	The timer object
	The jiffies variable
	The xtime variable

	Timekeeping Architecture in Uniprocessor Systems
	Initialization phase
	The timer interrupt handler

	Timekeeping Architecture in Multiprocessor Systems
	Initialization phase
	The global timer interrupt handler
	The local timer interrupt handler

	Updating the Time and Date
	Updating System Statistics
	Updating Local CPU Statistics
	Keeping Track of System Load
	Profiling the Kernel Code
	Checking the NMI Watchdogs

	Software Timers and Delay Functions
	Dynamic Timers
	Dynamic timers and race conditions
	Data structures for dynamic timers
	Dynamic timer handling

	An Application of Dynamic Timers: the nanosleep(�) System Call
	Delay Functions

	System Calls Related to Timing Measurements
	The time(��) and gettimeofday(��) System Calls
	The adjtimex(��) System Call
	The setitimer(��) and alarm(��) System Calls
	System Calls for POSIX Timers

	Process Scheduling
	Scheduling Policy
	Process Preemption
	How Long Must a Quantum Last?

	The Scheduling Algorithm
	Scheduling of Conventional Processes
	Base time quantum
	Dynamic priority and average sleep time
	Active and expired processes

	Scheduling of Real-Time Processes

	Data Structures Used by the Scheduler
	The runqueue Data Structure
	Process Descriptor

	Functions Used by the Scheduler
	The scheduler_tick(��) Function
	Updating the time slice of a real-time process
	Updating the time slice of a conventional process

	The try_to_wake_up(��) Function
	The recalc_task_prio(�) Function
	The schedule(��) Function
	Direct invocation
	Lazy invocation
	Actions performed by schedule(��) before a process switch
	Actions performed by schedule(�) to make the process switch
	Actions performed by schedule(�) after a process switch

	Runqueue Balancing in Multiprocessor Systems
	Scheduling Domains
	The rebalance_tick(�) Function
	The load_balance(�) Function
	The move_tasks(�) Function

	System Calls Related to Scheduling
	The nice(��) System Call
	The getpriority(��) and setpriority(��) System Calls
	The sched_getaffinity(�) and sched_setaffinity(�) System Calls
	System Calls Related to Real-Time Processes
	The sched_getscheduler(��) and sched_setscheduler(��) system calls
	The sched_�getparam(��) and sched_setparam(��) system calls
	The sched_�yield(��) system call
	The sched_�get_priority_min(��) and sched_�get_priority_max(��) system calls
	The sched_rr_�get_interval(��) system call

	Memory Management
	Page Frame Management
	Page Descriptors
	Non-Uniform Memory Access (NUMA)
	Memory Zones
	The Pool of Reserved Page Frames
	The Zoned Page Frame Allocator
	Requesting and releasing page frames

	Kernel Mappings of High-Memory Page Frames
	Permanent kernel mappings
	Temporary kernel mappings

	The Buddy System Algorithm
	Data structures
	Allocating a block
	Freeing a block

	The Per-CPU Page Frame Cache
	Allocating page frames through the per-CPU page frame caches
	Releasing page frames to the per-CPU page frame caches

	The Zone Allocator
	Releasing a group of page frames

	Memory Area Management
	The Slab Allocator
	Cache Descriptor
	Slab Descriptor
	General and Specific Caches
	Interfacing the Slab Allocator with the Zoned Page Frame Allocator
	Allocating a Slab to a Cache
	Releasing a Slab from a Cache
	Object Descriptor
	Aligning Objects in Memory
	Slab Coloring
	Local Caches of Free Slab Objects
	Allocating a Slab Object
	Freeing a Slab Object
	General Purpose Objects
	Memory Pools

	Noncontiguous Memory Area Management
	Linear Addresses of Noncontiguous Memory Areas
	Descriptors of Noncontiguous Memory Areas
	Allocating a Noncontiguous Memory Area
	Releasing a Noncontiguous Memory Area

	Process Address Space
	The Process’s Address Space
	The Memory Descriptor
	Memory Descriptor of Kernel Threads

	Memory Regions
	Memory Region Data Structures
	Memory Region Access Rights
	Memory Region Handling
	Finding the closest region to a given address: find_vma(�)
	Finding a region that overlaps a given interval: find_vma_intersection(�)
	Finding a free interval: get_unmapped_area(�)
	Inserting a region in the memory descriptor list: insert_vm_struct(�)

	Allocating a Linear Address Interval
	Releasing a Linear Address Interval
	The do_munmap(�) function
	The split_vma(�) function
	The unmap_region(�) function

	Page Fault Exception Handler
	Handling a Faulty Address Outside the Address Space
	Handling a Faulty Address Inside the Address Space
	Demand Paging
	Copy On Write
	Handling Noncontiguous Memory Area Accesses

	Creating and Deleting a Process Address Space
	Creating a Process Address Space
	Deleting a Process Address Space

	Managing the Heap

	System Calls
	POSIX APIs and System Calls
	System Call Handler and Service Routines
	Entering and Exiting a System Call
	Issuing a System Call via the int�$0x80 Instruction
	The system_call(�) function
	Exiting from the system call

	Issuing a System Call via the sysenter Instruction
	The sysenter instruction
	The vsyscall page
	Entering the system call
	Exiting from the system call
	The sysexit instruction
	The SYSENTER_RETURN code

	Parameter Passing
	Verifying the Parameters
	Accessing the Process Address Space
	Dynamic Address Checking: The Fix-up Code
	The Exception Tables
	Generating the Exception Tables and the Fixup Code

	Kernel Wrapper Routines

	Signals
	The Role of Signals
	Actions Performed upon Delivering a Signal
	POSIX Signals and Multithreaded Applications
	Data Structures Associated with Signals
	The signal descriptor and the signal handler descriptor
	The sigaction data structure
	The pending signal queues

	Operations on Signal Data Structures

	Generating a Signal
	The specific_send_sig_info(�) Function
	The send_signal(�) Function
	The group_send_sig_info(�) Function

	Delivering a Signal
	Executing the Default Action for the Signal
	Catching the Signal
	Setting up the frame
	Evaluating the signal flags
	Starting the signal handler
	Terminating the signal handler

	Reexecution of System Calls
	Restarting a system call interrupted by a non-caught signal
	Restarting a system call for a caught signal

	System Calls Related to Signal Handling
	The kill(��) System Call
	The tkill(�) and tgkill(�) System Calls
	Changing a Signal Action
	Examining the Pending Blocked Signals
	Modifying the Set of Blocked Signals
	Suspending the Process
	System Calls for Real-Time Signals

	The Virtual Filesystem
	The Role of the Virtual Filesystem (VFS)
	The Common File Model
	System Calls Handled by the VFS

	VFS Data Structures
	Superblock Objects
	Inode Objects
	File Objects
	dentry Objects
	The dentry Cache
	Files Associated with a Process

	Filesystem Types
	Special Filesystems
	Filesystem Type Registration

	Filesystem Handling
	Namespaces
	Filesystem Mounting
	Mounting a Generic Filesystem
	The do_kern_mount(�) function
	Allocating a superblock object

	Mounting the Root Filesystem
	Phase 1: Mounting the rootfs filesystem
	Phase 2: Mounting the real root filesystem

	Unmounting a Filesystem

	Pathname Lookup
	Standard Pathname Lookup
	Parent Pathname Lookup
	Lookup of Symbolic Links

	Implementations of VFS System Calls
	The open(��) System Call
	The read(��) and write(��) System Calls
	The close(��) System Call

	File Locking
	Linux File Locking
	File-Locking Data Structures
	FL_FLOCK Locks
	FL_POSIX Locks

	I/O Architecture and Device Drivers
	I/O Architecture
	I/O Ports
	Accessing I/O ports

	I/O Interfaces
	Custom I/O interfaces
	General-purpose I/O interfaces

	Device Controllers

	The Device Driver Model
	The sysfs Filesystem
	Kobjects
	Kobjects, ksets, and subsystems
	Registering kobjects, ksets, and subsystems

	Components of the Device Driver Model
	Devices
	Drivers
	Buses
	Classes

	Device Files
	User Mode Handling of Device Files
	Dynamic device number assignment
	Dynamic device file creation

	VFS Handling of Device Files

	Device Drivers
	Device Driver Registration
	Device Driver Initialization
	Monitoring I/O Operations
	Polling mode
	Interrupt mode

	Accessing the I/O Shared Memory
	Direct Memory Access (DMA)
	Synchronous and asynchronous DMA
	Helper functions for DMA transfers
	Bus addresses
	Cache coherency
	Helper functions for coherent DMA mappings
	Helper functions for streaming DMA mappings

	Levels of Kernel Support

	Character Device Drivers
	Assigning Device Numbers
	The register_chrdev_region(�) and alloc_chrdev_region(�) functions
	The register_chrdev(�) function

	Accessing a Character Device Driver
	Buffering Strategies for Character Devices

	Block Device Drivers
	Block Devices Handling
	Sectors
	Blocks
	Segments

	The Generic Block Layer
	The Bio Structure
	Representing Disks and Disk Partitions
	Submitting a Request

	The I/O Scheduler
	Request Queue Descriptors
	Request Descriptors
	Managing the allocation of request descriptors
	Avoiding request queue congestion

	Activating the Block Device Driver
	I/O Scheduling Algorithms
	The “Noop” elevator
	The “CFQ” elevator
	The “Deadline” elevator
	The “Anticipatory” elevator

	Issuing a Request to the I/O Scheduler
	The blk_queue_bounce(�) function

	Block Device Drivers
	Block Devices
	Accessing a block device

	Device Driver Registration and Initialization
	Defining a custom driver descriptor
	Initializing the custom descriptor
	Initializing the gendisk descriptor
	Initializing the table of block device methods
	Allocating and initializing a request queue
	Setting up the interrupt handler
	Registering the disk

	The Strategy Routine
	The Interrupt Handler

	Opening a Block Device File

	The Page Cache
	The Page Cache
	The address_space Object
	The Radix Tree
	Page Cache Handling Functions
	Finding a page
	Adding a page
	Removing a page
	Updating a page

	The Tags of the Radix Tree

	Storing Blocks in the Page Cache
	Block Buffers and Buffer Heads
	Managing the Buffer Heads
	Buffer Pages
	Allocating Block Device Buffer Pages
	Releasing Block Device Buffer Pages
	Searching Blocks in the Page Cache
	The _�_find_get_block(�) function
	The _�_getblk(�) function
	The _�_bread(�) function

	Submitting Buffer Heads to the Generic Block Layer
	The submit_bh(�) function
	The ll_rw_block(�) function

	Writing Dirty Pages to Disk
	The pdflush Kernel Threads
	Looking for Dirty Pages To Be Flushed
	Retrieving Old Dirty Pages

	The sync(��), fsync(��), and fdatasync(�) System Calls
	The sync�(�) System Call
	The fsync�(�) and fdatasync�(�) System Calls

	Accessing Files
	Reading and Writing a File
	Reading from a File
	The readpage method for regular files
	The readpage method for block device files

	Read-Ahead of Files
	The page_cache_readahead(�) function
	The handle_ra_miss(�) function

	Writing to a File
	The prepare_write and commit_write methods for regular files
	The prepare_write and commit_write methods for block device files

	Writing Dirty Pages to Disk

	Memory Mapping
	Memory Mapping Data Structures
	Creating a Memory Mapping
	Destroying a Memory Mapping
	Demand Paging for Memory Mapping
	Flushing Dirty Memory Mapping Pages to Disk
	Non-Linear Memory Mappings

	Direct I/O Transfers
	Asynchronous I/O
	Asynchronous I/O in Linux 2.6
	The asynchronous I/O context
	Submitting the asynchronous I/O operations

	Page Frame Reclaiming
	The Page Frame Reclaiming Algorithm
	Selecting a Target Page
	Design of the PFRA

	Reverse Mapping
	Reverse Mapping for Anonymous Pages
	The try_to_unmap_anon(�) function
	The try_to_unmap_one(�) function

	Reverse Mapping for Mapped Pages
	The priority search tree
	The try_to_unmap_file(�) function

	Implementing the PFRA
	The Least Recently Used (LRU) Lists
	Moving pages across the LRU lists
	The mark_page_accessed(�) function
	The page_referenced(�) function
	The refill_inactive_zone(�) function

	Low On Memory Reclaiming
	The free_more_memory(�) function
	The try_to_free_pages(�) function
	The shrink_caches(�) function
	The shrink_zone(�) function
	The shrink_cache(�) function
	The shrink_list(�) function
	The pageout(�) function

	Reclaiming Pages of Shrinkable Disk Caches
	Reclaiming page frames from the dentry cache
	Reclaiming page frames from the inode cache

	Periodic Reclaiming
	The kswapd kernel threads
	The cache_reap(�) function

	The Out of Memory Killer
	The Swap Token

	Swapping
	Swap Area
	Creating and activating a swap area
	How to distribute pages in the swap areas

	Swap Area Descriptor
	Swapped-Out Page Identifier
	Activating and Deactivating a Swap Area
	The sys_swapon(�) service routine
	The sys_swapoff(�) service routine
	The try_to_unuse(�) function

	Allocating and Releasing a Page Slot
	The scan_swap_map(�) function
	The get_swap_page(�) function
	The swap_free(�) function

	The Swap Cache
	Swap cache implementation
	Swap cache helper functions

	Swapping Out Pages
	Inserting the page frame in the swap cache
	Updating the Page Table entries
	Writing the page into the swap area
	Removing the page frame from the swap cache

	Swapping in Pages
	The do_swap_page(�) function
	The read_swap_cache_async(�) function

	The Ext2 and Ext3 Filesystems
	General Characteristics of Ext2
	Ext2 Disk Data Structures
	Superblock
	Group Descriptor and Bitmap
	Inode Table
	Extended Attributes of an Inode
	Access Control Lists
	How Various File Types Use Disk Blocks
	Regular file
	Directory
	Symbolic link
	Device file, pipe, and socket

	Ext2 Memory Data Structures
	The Ext2 Superblock Object
	The Ext2 inode Object

	Creating the Ext2 Filesystem
	Ext2 Methods
	Ext2 Superblock Operations
	Ext2 inode Operations
	Ext2 File Operations

	Managing Ext2 Disk Space
	Creating inodes
	Deleting inodes
	Data Blocks Addressing
	File Holes
	Allocating a Data Block
	Releasing a Data Block

	The Ext3 Filesystem
	Journaling Filesystems
	The Ext3 Journaling Filesystem
	The Journaling Block Device Layer
	Log records
	Atomic operation handles
	Transactions

	How Journaling Works

	Process Communication
	Pipes
	Using a Pipe
	Pipe Data Structures
	The pipefs special filesystem

	Creating and Destroying a Pipe
	Reading from a Pipe
	Writing into a Pipe

	FIFOs
	Creating and Opening a FIFO

	System V IPC
	Using an IPC Resource
	The ipc(��) System Call
	IPC Semaphores
	Undoable semaphore operations
	The queue of pending requests

	IPC Messages
	IPC Shared Memory
	Swapping out pages of IPC shared memory regions
	Demand paging for IPC shared memory regions

	POSIX Message Queues

	Program Execution
	Executable Files
	Process Credentials and Capabilities
	Process capabilities
	The Linux Security Modules framework

	Command-Line Arguments and Shell Environment
	Libraries
	Program Segments and Process Memory Regions
	Flexible memory region layout

	Execution Tracing

	Executable Formats
	Execution Domains
	The exec Functions

	System Startup
	Prehistoric Age: the BIOS
	Ancient Age: the Boot Loader
	Booting Linux from a Disk

	Middle Ages: the setup(��) Function
	Renaissance: the startup_32(��) Functions
	Modern Age: the start_kernel(��) Function

	Modules
	To Be (a Module) or Not to Be?
	Module Licenses

	Module Implementation
	Module Usage Counters
	Exporting Symbols
	Module Dependency

	Linking and Unlinking Modules
	Linking Modules on Demand
	The modprobe Program
	The request_module(��) Function

	Bibliography
	Books on Unix Kernels
	Books on the Linux Kernel
	Books on PC Architecture and Technical Manuals on Intel Microprocessors
	Other Online Documentation Sources
	Research Papers Related to Linux Development

	Source Code Index
	Index

