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Preface

In the spring semester of 1997, we taught a course on operating systems based on
Linux 2.0. The idea was to encourage students to read the source code. To achieve
this, we assigned term projects consisting of making changes to the kernel and per-
forming tests on the modified version. We also wrote course notes for our students
about a few critical features of Linux such as task switching and task scheduling.

Out of this work—and with a lot of support from our O’Reilly editor Andy Oram—
came the first edition of Understanding the Linux Kernel at the end of 2000, which
covered Linux 2.2 with a few anticipations on Linux 2.4. The success encountered by
this book encouraged us to continue along this line. At the end of 2002, we came out
with a second edition covering Linux 2.4. You are now looking at the third edition,
which covers Linux 2.6.

As in our previous experiences, we read thousands of lines of code, trying to make
sense of them. After all this work, we can say that it was worth the effort. We learned
a lot of things you don’t find in books, and we hope we have succeeded in conveying
some of this information in the following pages.

The Audience for This Book

All people curious about how Linux works and why it is so efficient will find answers
here. After reading the book, you will find your way through the many thousands of
lines of code, distinguishing between crucial data structures and secondary ones—in
short, becoming a true Linux hacker.

Our work might be considered a guided tour of the Linux kernel: most of the signifi-
cant data structures and many algorithms and programming tricks used in the kernel
are discussed. In many cases, the relevant fragments of code are discussed line by
line. Of course, you should have the Linux source code on hand and should be will-
ing to expend some effort deciphering some of the functions that are not, for sake of
brevity, fully described.

Xi



On another level, the book provides valuable insight to people who want to know
more about the critical design issues in a modern operating system. It is not specifi-
cally addressed to system administrators or programmers; it is mostly for people who
want to understand how things really work inside the machine! As with any good
guide, we try to go beyond superficial features. We offer a background, such as the
history of major features and the reasons why they were used.

Organization of the Material

When we began to write this book, we were faced with a critical decision: should we
refer to a specific hardware platform or skip the hardware-dependent details and
concentrate on the pure hardware-independent parts of the kernel?

Others books on Linux kernel internals have chosen the latter approach; we decided
to adopt the former one for the following reasons:

* Efficient kernels take advantage of most available hardware features, such as
addressing techniques, caches, processor exceptions, special instructions, pro-
cessor control registers, and so on. If we want to convince you that the kernel
indeed does quite a good job in performing a specific task, we must first tell
what kind of support comes from the hardware.

* Even if a large portion of a Unix kernel source code is processor-independent
and coded in C language, a small and critical part is coded in assembly lan-
guage. A thorough knowledge of the kernel, therefore, requires the study of a
few assembly language fragments that interact with the hardware.

When covering hardware features, our strategy is quite simple: only sketch the features
that are totally hardware-driven while detailing those that need some software sup-
port. In fact, we are interested in kernel design rather than in computer architecture.

Our next step in choosing our path consisted of selecting the computer system to
describe. Although Linux is now running on several kinds of personal computers and
workstations, we decided to concentrate on the very popular and cheap IBM-compat-
ible personal computers—and thus on the 80x86 microprocessors and on some sup-
port chips included in these personal computers. The term 80X 86 microprocessor
will be used in the forthcoming chapters to denote the Intel 80386, 80486, Pentium,
Pentium Pro, Pentium II, Pentium III, and Pentium 4 microprocessors or compatible
models. In a few cases, explicit references will be made to specific models.

One more choice we had to make was the order to follow in studying Linux com-
ponents. We tried a bottom-up approach: start with topics that are hardware-
dependent and end with those that are totally hardware-independent. In fact, we’ll
make many references to the 80x86 microprocessors in the first part of the book,
while the rest of it is relatively hardware-independent. Significant exceptions are
made in Chapter 13 and Chapter 14. In practice, following a bottom-up approach
is not as simple as it looks, because the areas of memory management, process
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management, and filesystems are intertwined; a few forward references—that is,
references to topics yet to be explained—are unavoidable.

Each chapter starts with a theoretical overview of the topics covered. The material is
then presented according to the bottom-up approach. We start with the data struc-
tures needed to support the functionalities described in the chapter. Then we usu-
ally move from the lowest level of functions to higher levels, often ending by showing
how system calls issued by user applications are supported.

Level of Description

Linux source code for all supported architectures is contained in more than 14,000 C
and assembly language files stored in about 1000 subdirectories; it consists of
roughly 6 million lines of code, which occupy over 230 megabytes of disk space. Of
course, this book can cover only a very small portion of that code. Just to figure out
how big the Linux source is, consider that the whole source code of the book you are
reading occupies less than 3 megabytes. Therefore, we would need more than 75
books like this to list all code, without even commenting on it!

So we had to make some choices about the parts to describe. This is a rough assess-
ment of our decisions:

* We describe process and memory management fairly thoroughly.

* We cover the Virtual Filesystem and the Ext2 and Ext3 filesystems, although
many functions are just mentioned without detailing the code; we do not dis-
cuss other filesystems supported by Linux.

* We describe device drivers, which account for roughly 50% of the kernel, as far
as the kernel interface is concerned, but do not attempt analysis of each specific
driver.

The book describes the official 2.6.11 version of the Linux kernel, which can be
downloaded from the web site http://www.kernel.org.

Be aware that most distributions of GNU/Linux modify the official kernel to imple-
ment new features or to improve its efficiency. In a few cases, the source code pro-
vided by your favorite distribution might differ significantly from the one described
in this book.

In many cases, we show fragments of the original code rewritten in an easier-to-read
but less efficient way. This occurs at time-critical points at which sections of pro-
grams are often written in a mixture of hand-optimized C and assembly code. Once
again, our aim is to provide some help in studying the original Linux code.

While discussing kernel code, we often end up describing the underpinnings of many
familiar features that Unix programmers have heard of and about which they may be
curious (shared and mapped memory, signals, pipes, symbolic links, and so on).
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Overview of the Book

To make life easier, Chapter 1, Introduction, presents a general picture of what is
inside a Unix kernel and how Linux competes against other well-known Unix systems.

The heart of any Unix kernel is memory management. Chapter 2, Memory Addressing,
explains how 80x86 processors include special circuits to address data in memory and
how Linux exploits them.

Processes are a fundamental abstraction offered by Linux and are introduced in
Chapter 3, Processes. Here we also explain how each process runs either in an unprivi-
leged User Mode or in a privileged Kernel Mode. Transitions between User Mode and
Kernel Mode happen only through well-established hardware mechanisms called inter-
rupts and exceptions. These are introduced in Chapter 4, Interrupts and Exceptions.

In many occasions, the kernel has to deal with bursts of interrupt signals coming from
different devices and processors. Synchronization mechanisms are needed so that all
these requests can be serviced in an interleaved way by the kernel: they are discussed in
Chapter 5, Kernel Synchronization, for both uniprocessor and multiprocessor systems.

One type of interrupt is crucial for allowing Linux to take care of elapsed time; fur-
ther details can be found in Chapter 6, Timing Measurements.

Chapter 7, Process Scheduling, explains how Linux executes, in turn, every active
process in the system so that all of them can progress toward their completions.

Next we focus again on memory. Chapter 8, Memory Management, describes the
sophisticated techniques required to handle the most precious resource in the sys-
tem (besides the processors, of course): available memory. This resource must be
granted both to the Linux kernel and to the user applications. Chapter 9, Process
Addpress Space, shows how the kernel copes with the requests for memory issued by
greedy application programs.

Chapter 10, System Calls, explains how a process running in User Mode makes
requests to the kernel, while Chapter 11, Signals, describes how a process may send
synchronization signals to other processes. Now we are ready to move on to another
essential topic, how Linux implements the filesystem. A series of chapters cover this
topic. Chapter 12, The Virtual Filesystem, introduces a general layer that supports
many different filesystems. Some Linux files are special because they provide trap-
doors to reach hardware devices; Chapter 13, I/O Architecture and Device Drivers,
and Chapter 14, Block Device Drivers, offer insights on these special files and on the
corresponding hardware device drivers.

Another issue to consider is disk access time; Chapter 15, The Page Cache, shows
how a clever use of RAM reduces disk accesses, therefore improving system perfor-
mance significantly. Building on the material covered in these last chapters, we can
now explain in Chapter 16, Accessing Files, how user applications access normal
files. Chapter 17, Page Frame Reclaiming, completes our discussion of Linux mem-
ory management and explains the techniques used by Linux to ensure that enough

xiv | Preface



memory is always available. The last chapter dealing with files is Chapter 18, The
Ext2 and Ext3 Filesystems, which illustrates the most frequently used Linux filesys-
tem, namely Ext2 and its recent evolution, Ext3.

The last two chapters end our detailed tour of the Linux kernel: Chapter 19, Process
Communication, introduces communication mechanisms other than signals avail-
able to User Mode processes; Chapter 20, Program Execution, explains how user
applications are started.

Last, but not least, are the appendixes: Appendix A, System Startup, sketches out
how Linux is booted, while Appendix B, Modules, describes how to dynamically
reconfigure the running kernel, adding and removing functionalities as needed.
The Source Code Index includes all the Linux symbols referenced in the book; here
you will find the name of the Linux file defining each symbol and the book’s page
number where it is explained. We think you’ll find it quite handy.

Background Information

No prerequisites are required, except some skill in C programming language and per-
haps some knowledge of an assembly language.

Conventions in This Book

The following is a list of typographical conventions used in this book:

Constant Width
Used to show the contents of code files or the output from commands, and to
indicate source code keywords that appear in code.

Italic
Used for file and directory names, program and command names, command-line
options, and URLs, and for emphasizing new terms.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/understandlk/
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To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://lwww.oreilly.com

Safari® Enabled

=- When you see a Safari® Enabled icon on the cover of your favorite tech-
B§°a!°a" nology book, it means the book is available online through the O’Reilly
wrreams Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.
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CHAPTER 1
Introduction

Linux" is a member of the large family of Unix-like operating systems. A relative new-
comer experiencing sudden spectacular popularity starting in the late 1990s, Linux
joins such well-known commercial Unix operating systems as System V Release 4
(SVR4), developed by AT&T (now owned by the SCO Group); the 4.4 BSD release
from the University of California at Berkeley (4.4BSD); Digital UNIX from Digital
Equipment Corporation (now Hewlett-Packard); AIX from IBM; HP-UX from
Hewlett-Packard; Solaris from Sun Microsystems; and Mac OS X from Apple Com-
puter, Inc. Beside Linux, a few other opensource Unix-like kernels exist, such as
FreeBSD, NetBSD, and OpenBSD.

Linux was initially developed by Linus Torvalds in 1991 as an operating system for
IBM-compatible personal computers based on the Intel 80386 microprocessor. Linus
remains deeply involved with improving Linux, keeping it up-to-date with various
hardware developments and coordinating the activity of hundreds of Linux develop-
ers around the world. Over the years, developers have worked to make Linux avail-
able on other architectures, including Hewlett-Packard’s Alpha, Intel’s Itanium,
AMD’s AMDG64, PowerPC, and IBM’s zSeries.

One of the more appealing benefits to Linux is that it isn’t a commercial operating
system: its source code under the GNU General Public License (GPL)T is open and
available to anyone to study (as we will in this book); if you download the code (the
official site is http://www.kernel.org) or check the sources on a Linux CD, you will be
able to explore, from top to bottom, one of the most successful modern operating
systems. This book, in fact, assumes you have the source code on hand and can
apply what we say to your own explorations.

* LINUX® is a registered trademark of Linus Torvalds.

T The GNU project is coordinated by the Free Software Foundation, Inc. (http://www.gnu.org); its aim is to
implement a whole operating system freely usable by everyone. The availability of a GNU C compiler has
been essential for the success of the Linux project.




Technically speaking, Linux is a true Unix kernel, although it is not a full Unix operat-
ing system because it does not include all the Unix applications, such as filesystem
utilities, windowing systems and graphical desktops, system administrator com-
mands, text editors, compilers, and so on. However, because most of these programs
are freely available under the GPL, they can be installed in every Linux-based system.

Because the Linux kernel requires so much additional software to provide a useful
environment, many Linux users prefer to rely on commercial distributions, available on
CD-ROM, to get the code included in a standard Unix system. Alternatively, the code
may be obtained from several different sites, for instance http://www.kernel.org. Sev-
eral distributions put the Linux source code in the /usr/src/linux directory. In the rest of
this book, all file pathnames will refer implicitly to the Linux source code directory.

Linux Versus Other Unix-Like Kernels

The various Unix-like systems on the market, some of which have a long history and
show signs of archaic practices, differ in many important respects. All commercial
variants were derived from either SVR4 or 4.4BSD, and all tend to agree on some
common standards like IEEE’s Portable Operating Systems based on Unix (POSIX)
and X/Open’s Common Applications Environment (CAE).

The current standards specify only an application programming interface (API)—
that is, a well-defined environment in which user programs should run. Therefore,
the standards do not impose any restriction on internal design choices of a compli-
ant kernel.”

To define a common user interface, Unix-like kernels often share fundamental design
ideas and features. In this respect, Linux is comparable with the other Unix-like
operating systems. Reading this book and studying the Linux kernel, therefore, may
help you understand the other Unix variants, too.

The 2.6 version of the Linux kernel aims to be compliant with the IEEE POSIX stan-
dard. This, of course, means that most existing Unix programs can be compiled and
executed on a Linux system with very little effort or even without the need for
patches to the source code. Moreover, Linux includes all the features of a modern
Unix operating system, such as virtual memory, a virtual filesystem, lightweight pro-
cesses, Unix signals, SVR4 interprocess communications, support for Symmetric
Multiprocessor (SMP) systems, and so on.

When Linus Torvalds wrote the first kernel, he referred to some classical books on
Unix internals, like Maurice Bach’s The Design of the Unix Operating System (Pren-
tice Hall, 1986). Actually, Linux still has some bias toward the Unix baseline

* As a matter of fact, several non-Unix operating systems, such as Windows NT and its descendents, are
POSIX-compliant.
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described in Bach’s book (i.e., SVR2). However, Linux doesn’t stick to any particu-
lar variant. Instead, it tries to adopt the best features and design choices of several
different Unix kernels.

The following list describes how Linux competes against some well-known commer-
cial Unix kernels:

Monolithic kernel
It is a large, complex do-it-yourself program, composed of several logically dif-
ferent components. In this, it is quite conventional, most commercial Unix vari-
ants are monolithic. (Notable exceptions are the Apple Mac OS X and the GNU
Hurd operating systems, both derived from the Carnegie-Mellon’s Mach, which
follow a microkernel approach.)

Compiled and statically linked traditional Unix kernels
Most modern kernels can dynamically load and unload some portions of the ker-
nel code (typically, device drivers), which are usually called modules. Linux’s
support for modules is very good, because it is able to automatically load and
unload modules on demand. Among the main commercial Unix variants, only
the SVR4.2 and Solaris kernels have a similar feature.

Kernel threading

Some Unix kernels, such as Solaris and SVR4.2/MP, are organized as a set of ker-
nel threads. A kernel thread is an execution context that can be independently
scheduled; it may be associated with a user program, or it may run only some
kernel functions. Context switches between kernel threads are usually much less
expensive than context switches between ordinary processes, because the former
usually operate on a common address space. Linux uses kernel threads in a very
limited way to execute a few kernel functions periodically; however, they do not
represent the basic execution context abstraction. (That’s the topic of the next
item.)

Multithreaded application support

Most modern operating systems have some kind of support for multithreaded
applications—that is, user programs that are designed in terms of many rela-
tively independent execution flows that share a large portion of the application
data structures. A multithreaded user application could be composed of many
lightweight processes (LWP), which are processes that can operate on a com-
mon address space, common physical memory pages, common opened files, and
so on. Linux defines its own version of lightweight processes, which is different
from the types used on other systems such as SVR4 and Solaris. While all the
commercial Unix variants of LWP are based on kernel threads, Linux regards
lightweight processes as the basic execution context and handles them via the
nonstandard clone( ) system call.
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Preemptive kernel
When compiled with the “Preemptible Kernel” option, Linux 2.6 can arbitrarily
interleave execution flows while they are in privileged mode. Besides Linux 2.6,
a few other conventional, general-purpose Unix systems, such as Solaris and
Mach 3.0, are fully preemptive kernels. SVR4.2/MP introduces some fixed pre-
emption points as a method to get limited preemption capability.

Multiprocessor support
Several Unix kernel variants take advantage of multiprocessor systems. Linux 2.6
supports symmetric multiprocessing (SMP) for different memory models, includ-
ing NUMA: the system can use multiple processors and each processor can han-
dle any task—there is no discrimination among them. Although a few parts of
the kernel code are still serialized by means of a single “big kernel lock,” it is fair
to say that Linux 2.6 makes a near optimal use of SMP.

Filesystem

Linux’s standard filesystems come in many flavors. You can use the plain old
Ext2 filesystem if you don’t have specific needs. You might switch to Ext3 if you
want to avoid lengthy filesystem checks after a system crash. If you’ll have to
deal with many small files, the ReiserFS filesystem is likely to be the best choice.
Besides Ext3 and ReiserFS, several other journaling filesystems can be used in
Linux; they include IBM AIX’s Journaling File System (JFS) and Silicon Graph-
ics IRIX’s XFS filesystem. Thanks to a powerful object-oriented Virtual File Sys-
tem technology (inspired by Solaris and SVR4), porting a foreign filesystem to
Linux is generally easier than porting to other kernels.

STREAMS
Linux has no analog to the STREAMS I/O subsystem introduced in SVR4,
although it is included now in most Unix kernels and has become the preferred
interface for writing device drivers, terminal drivers, and network protocols.

This assessment suggests that Linux is fully competitive nowadays with commercial
operating systems. Moreover, Linux has several features that make it an exciting
operating system. Commercial Unix kernels often introduce new features to gain a
larger slice of the market, but these features are not necessarily useful, stable, or pro-
ductive. As a matter of fact, modern Unix kernels tend to be quite bloated. By con-
trast, Linux—together with the other open source operating systems—doesn’t suffer
from the restrictions and the conditioning imposed by the market, hence it can freely
evolve according to the ideas of its designers (mainly Linus Torvalds). Specifically,
Linux offers the following advantages over its commercial competitors:

Linux is cost-free. You can install a complete Unix system at no expense other than
the hardware (of course).

Linux is fully customizable in all its components. Thanks to the compilation
options, you can customize the kernel by selecting only the features really
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needed. Moreover, thanks to the GPL, you are allowed to freely read and mod-
ify the source code of the kernel and of all system programs.”

Linux runs on low-end, inexpensive hardware platforms. You are able to build a
network server using an old Intel 80386 system with 4 MB of RAM.

Linux is powerful. Linux systems are very fast, because they fully exploit the fea-
tures of the hardware components. The main Linux goal is efficiency, and
indeed many design choices of commercial variants, like the STREAMS I/O sub-
system, have been rejected by Linus because of their implied performance pen-
alty.

Linux developers are excellent programmers. Linux systems are very stable; they
have a very low failure rate and system maintenance time.

The Linux kernel can be very small and compact. 1t is possible to fit a kernel image,
including a few system programs, on just one 1.44 MB floppy disk. As far as we
know, none of the commercial Unix variants is able to boot from a single floppy

disk.

Linux is highly compatible with many common operating systems. Linux lets you
directly mount filesystems for all versions of MS-DOS and Microsoft Windows,
SVR4, OS/2, Mac OS X, Solaris, SunOS, NEXTSTEP, many BSD variants, and so
on. Linux also is able to operate with many network layers, such as Ethernet (as
well as Fast Ethernet, Gigabit Ethernet, and 10 Gigabit Ethernet), Fiber Distrib-
uted Data Interface (FDDI), High Performance Parallel Interface (HIPPI), IEEE
802.11 (Wireless LAN), and IEEE 802.15 (Bluetooth). By using suitable librar-
ies, Linux systems are even able to directly run programs written for other oper-
ating systems. For example, Linux is able to execute some applications written
for MS-DOS, Microsoft Windows, SVR3 and R4, 4.4BSD, SCO Unix, Xenix,
and others on the 80x86 platform.

Linux is well supported. Believe it or not, it may be a lot easier to get patches and
updates for Linux than for any proprietary operating system. The answer to a
problem often comes back within a few hours after sending a message to some
newsgroup or mailing list. Moreover, drivers for Linux are usually available a
few weeks after new hardware products have been introduced on the market. By
contrast, hardware manufacturers release device drivers for only a few commer-
cial operating systems—usually Microsoft’s. Therefore, all commercial Unix
variants run on a restricted subset of hardware components.

With an estimated installed base of several tens of millions, people who are used to
certain features that are standard under other operating systems are starting to
expect the same from Linux. In that regard, the demand on Linux developers is also

* Many commercial companies are now supporting their products under Linux. However, many of them
aren’t distributed under an open source license, so you might not be allowed to read or modify their source
code.
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increasing. Luckily, though, Linux has evolved under the close direction of Linus and
his subsystem maintainers to accommodate the needs of the masses.

Hardware Dependency

Linux tries to maintain a neat distinction between hardware-dependent and hard-
ware-independent source code. To that end, both the arch and the include directo-
ries include 23 subdirectories that correspond to the different types of hardware
platforms supported. The standard names of the platforms are:

alpha
Hewlett-Packard’s Alpha workstations (originally Digital, then Compaq; no
longer manufactured)

arm, arm26
ARM processor-based computers such as PDAs and embedded devices
cris
“Code Reduced Instruction Set” CPUs used by Axis in its thin-servers, such as
web cameras or development boards
frv
Embedded systems based on microprocessors of the Fujitsu’s FR-V family
h8300
Hitachi h8/300 and h8S RISC 8/16-bit microprocessors
i386
IBM-compatible personal computers based on 80x86 microprocessors
ia64
Workstations based on the Intel 64-bit Itanium microprocessor
m32r
Computers based on the Renesas M32R family of microprocessors
m68k, m6Sknommu
Personal computers based on Motorola MC680x0 microprocessors
mips
Workstations based on MIPS microprocessors, such as those marketed by Sili-
con Graphics
parisc
Workstations based on Hewlett Packard HP 9000 PA-RISC microprocessors
ppc, ppc64
Workstations based on the 32-bit and 64-bit Motorola-IBM PowerPC micropro-
Ccessors
s390
IBM ESA/390 and zSeries mainframes
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sh, sh64
Embedded systems based on SuperH microprocessors developed by Hitachi and
STMicroelectronics

sparc, sparc64
Workstations based on Sun Microsystems SPARC and 64-bit Ultra SPARC
microprocessors

um
User Mode Linux, a virtual platform that allows developers to run a kernel in
User Mode

v850
NEC V850 microcontrollers that incorporate a 32-bit RISC core based on the
Harvard architecture

x86_64
Workstations based on the AMD’s 64-bit microprocessors—such Athlon and
Opteron—and Intel’s ia32e/EM64T 64-bit microprocessors

Linux Versions

Up to kernel version 2.5, Linux identified kernels through a simple numbering
scheme. Each version was characterized by three numbers, separated by periods. The
first two numbers were used to identify the version; the third number identified the
release. The first version number, namely 2, has stayed unchanged since 1996. The
second version number identified the type of kernel: if it was even, it denoted a sta-
ble version; otherwise, it denoted a development version.

As the name suggests, stable versions were thoroughly checked by Linux distribu-
tors and kernel hackers. A new stable version was released only to address bugs and
to add new device drivers. Development versions, on the other hand, differed quite
significantly from one another; kernel developers were free to experiment with differ-
ent solutions that occasionally lead to drastic kernel changes. Users who relied on
development versions for running applications could experience unpleasant sur-
prises when upgrading their kernel to a newer release.

During development of Linux kernel version 2.6, however, a significant change in the
version numbering scheme has taken place. Basically, the second number no longer
identifies stable or development versions; thus, nowadays kernel developers intro-
duce large and significant changes in the current kernel version 2.6. A new kernel 2.7
branch will be created only when kernel developers will have to test a really disrup-
tive change; this 2.7 branch will lead to a new current kernel version, or it will be
backported to the 2.6 version, or finally it will simply be dropped as a dead end.

The new model of Linux development implies that two kernels having the same ver-
sion but different release numbers—for instance, 2.6.10 and 2.6.11—can differ sig-
nificantly even in core components and in fundamental algorithms. Thus, when a
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new kernel release appears, it is potentially unstable and buggy. To address this
problem, the kernel developers may release patched versions of any kernel, which are
identified by a fourth number in the version numbering scheme. For instance, at the
time this paragraph was written, the latest “stable” kernel version was 2.6.11.12.

Please be aware that the kernel version described in this book is Linux 2.6.11.

Basic Operating System Concepts

Each computer system includes a basic set of programs called the operating system.
The most important program in the set is called the kernel. It is loaded into RAM
when the system boots and contains many critical procedures that are needed for the
system to operate. The other programs are less crucial utilities; they can provide a
wide variety of interactive experiences for the user—as well as doing all the jobs the
user bought the computer for—but the essential shape and capabilities of the system
are determined by the kernel. The kernel provides key facilities to everything else on
the system and determines many of the characteristics of higher software. Hence, we
often use the term “operating system” as a synonym for “kernel.”

The operating system must fulfill two main objectives:

* Interact with the hardware components, servicing all low-level programmable
elements included in the hardware platform.

* Provide an execution environment to the applications that run on the computer
system (the so-called user programs).

Some operating systems allow all user programs to directly play with the hardware
components (a typical example is MS-DOS). In contrast, a Unix-like operating sys-
tem hides all low-level details concerning the physical organization of the computer
from applications run by the user. When a program wants to use a hardware
resource, it must issue a request to the operating system. The kernel evaluates the
request and, if it chooses to grant the resource, interacts with the proper hardware
components on behalf of the user program.

To enforce this mechanism, modern operating systems rely on the availability of spe-
cific hardware features that forbid user programs to directly interact with low-level
hardware components or to access arbitrary memory locations. In particular, the
hardware introduces at least two different execution modes for the CPU: a nonprivi-
leged mode for user programs and a privileged mode for the kernel. Unix calls these
User Mode and Kernel Mode, respectively.

In the rest of this chapter, we introduce the basic concepts that have motivated the
design of Unix over the past two decades, as well as Linux and other operating sys-
tems. While the concepts are probably familiar to you as a Linux user, these sections
try to delve into them a bit more deeply than usual to explain the requirements they
place on an operating system kernel. These broad considerations refer to virtually all
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Unix-like systems. The other chapters of this book will hopefully help you under-
stand the Linux kernel internals.

Multiuser Systems

A multiuser system is a computer that is able to concurrently and independently exe-
cute several applications belonging to two or more users. Concurrently means that
applications can be active at the same time and contend for the various resources
such as CPU, memory, hard disks, and so on. Independently means that each applica-
tion can perform its task with no concern for what the applications of the other users
are doing. Switching from one application to another, of course, slows down each of
them and affects the response time seen by the users. Many of the complexities of
modern operating system kernels, which we will examine in this book, are present to
minimize the delays enforced on each program and to provide the user with
responses that are as fast as possible.

Multiuser operating systems must include several features:

* An authentication mechanism for verifying the user’s identity

* A protection mechanism against buggy user programs that could block other
applications running in the system

* A protection mechanism against malicious user programs that could interfere
with or spy on the activity of other users

* An accounting mechanism that limits the amount of resource units assigned to
each user

To ensure safe protection mechanisms, operating systems must use the hardware
protection associated with the CPU privileged mode. Otherwise, a user program
would be able to directly access the system circuitry and overcome the imposed
bounds. Unix is a multiuser system that enforces the hardware protection of system
resources.

Users and Groups

In a multiuser system, each user has a private space on the machine; typically, he
owns some quota of the disk space to store files, receives private mail messages, and
so on. The operating system must ensure that the private portion of a user space is
visible only to its owner. In particular, it must ensure that no user can exploit a sys-
tem application for the purpose of violating the private space of another user.

All users are identified by a unique number called the User ID, or UID. Usually only
a restricted number of persons are allowed to make use of a computer system. When
one of these users starts a working session, the system asks for a login name and a
password. If the user does not input a valid pair, the system denies access. Because
the password is assumed to be secret, the user’s privacy is ensured.
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To selectively share material with other users, each user is a member of one or more
user groups, which are identified by a unique number called a user group ID. Each
file is associated with exactly one group. For example, access can be set so the user
owning the file has read and write privileges, the group has read-only privileges, and
other users on the system are denied access to the file.

Any Unix-like operating system has a special user called root or superuser. The sys-
tem administrator must log in as root to handle user accounts, perform maintenance
tasks such as system backups and program upgrades, and so on. The root user can
do almost everything, because the operating system does not apply the usual protec-
tion mechanisms to her. In particular, the root user can access every file on the sys-
tem and can manipulate every running user program.

Processes

All operating systems use one fundamental abstraction: the process. A process can be
defined either as “an instance of a program in execution” or as the “execution con-
text” of a running program. In traditional operating systems, a process executes a sin-
gle sequence of instructions in an address space; the address space is the set of
memory addresses that the process is allowed to reference. Modern operating sys-
tems allow processes with multiple execution flows—that is, multiple sequences of
instructions executed in the same address space.

Multiuser systems must enforce an execution environment in which several pro-
cesses can be active concurrently and contend for system resources, mainly the CPU.
Systems that allow concurrent active processes are said to be multiprogramming or
multiprocessing.” It is important to distinguish programs from processes; several pro-
cesses can execute the same program concurrently, while the same process can exe-
cute several programs sequentially.

On uniprocessor systems, just one process can hold the CPU, and hence just one
execution flow can progress at a time. In general, the number of CPUs is always
restricted, and therefore only a few processes can progress at once. An operating sys-
tem component called the scheduler chooses the process that can progress. Some
operating systems allow only nonpreemptable processes, which means that the sched-
uler is invoked only when a process voluntarily relinquishes the CPU. But processes
of a multiuser system must be preemptable; the operating system tracks how long
each process holds the CPU and periodically activates the scheduler.

Unix is a multiprocessing operating system with preemptable processes. Even when
no user is logged in and no application is running, several system processes monitor
the peripheral devices. In particular, several processes listen at the system terminals
waiting for user logins. When a user inputs a login name, the listening process runs a
program that validates the user password. If the user identity is acknowledged, the

* Some multiprocessing operating systems are not multiuser; an example is Microsoft Windows 98.
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process creates another process that runs a shell into which commands are entered.
When a graphical display is activated, one process runs the window manager, and
each window on the display is usually run by a separate process. When a user cre-
ates a graphics shell, one process runs the graphics windows and a second process
runs the shell into which the user can enter the commands. For each user command,
the shell process creates another process that executes the corresponding program.

Unix-like operating systems adopt a process/kernel model. Each process has the illu-
sion that it’s the only process on the machine, and it has exclusive access to the oper-
ating system services. Whenever a process makes a system call (i.e., a request to the
kernel, see Chapter 10), the hardware changes the privilege mode from User Mode to
Kernel Mode, and the process starts the execution of a kernel procedure with a
strictly limited purpose. In this way, the operating system acts within the execution
context of the process in order to satisfy its request. Whenever the request is fully
satisfied, the kernel procedure forces the hardware to return to User Mode and the
process continues its execution from the instruction following the system call.

Kernel Architecture

As stated before, most Unix kernels are monolithic: each kernel layer is integrated
into the whole kernel program and runs in Kernel Mode on behalf of the current pro-
cess. In contrast, microkernel operating systems demand a very small set of functions
from the kernel, generally including a few synchronization primitives, a simple
scheduler, and an interprocess communication mechanism. Several system processes
that run on top of the microkernel implement other operating system—layer func-
tions, like memory allocators, device drivers, and system call handlers.

Although academic research on operating systems is oriented toward microkernels,
such operating systems are generally slower than monolithic ones, because the
explicit message passing between the different layers of the operating system has a
cost. However, microkernel operating systems might have some theoretical advan-
tages over monolithic ones. Microkernels force the system programmers to adopt a
modularized approach, because each operating system layer is a relatively indepen-
dent program that must interact with the other layers through well-defined and clean
software interfaces. Moreover, an existing microkernel operating system can be eas-
ily ported to other architectures fairly easily, because all hardware-dependent com-
ponents are generally encapsulated in the microkernel code. Finally, microkernel
operating systems tend to make better use of random access memory (RAM) than
monolithic ones, because system processes that aren’t implementing needed func-
tionalities might be swapped out or destroyed.

To achieve many of the theoretical advantages of microkernels without introducing
performance penalties, the Linux kernel offers modules. A module is an object file
whose code can be linked to (and unlinked from) the kernel at runtime. The object
code usually consists of a set of functions that implements a filesystem, a device
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driver, or other features at the kernel’s upper layer. The module, unlike the external
layers of microkernel operating systems, does not run as a specific process. Instead, it
is executed in Kernel Mode on behalf of the current process, like any other statically
linked kernel function.

The main advantages of using modules include:

A modularized approach
Because any module can be linked and unlinked at runtime, system program-
mers must introduce well-defined software interfaces to access the data struc-
tures handled by modules. This makes it easy to develop new modules.

Platform independence
Even if it may rely on some specific hardware features, a module doesn’t depend
on a fixed hardware platform. For example, a disk driver module that relies on
the SCSI standard works as well on an IBM-compatible PC as it does on
Hewlett-Packard’s Alpha.

Frugal main memory usage
A module can be linked to the running kernel when its functionality is required
and unlinked when it is no longer useful; this is quite useful for small embedded
systems.

No performance penalty
Once linked in, the object code of a module is equivalent to the object code of
the statically linked kernel. Therefore, no explicit message passing is required
when the functions of the module are invoked.

An Overview of the Unix Filesystem

The Unix operating system design is centered on its filesystem, which has several
interesting characteristics. We’ll review the most significant ones, since they will be
mentioned quite often in forthcoming chapters.

Files

A Unix file is an information container structured as a sequence of bytes; the kernel
does not interpret the contents of a file. Many programming libraries implement
higher-level abstractions, such as records structured into fields and record address-
ing based on keys. However, the programs in these libraries must rely on system calls
offered by the kernel. From the user’s point of view, files are organized in a tree-
structured namespace, as shown in Figure 1-1.

* A small performance penalty occurs when the module is linked and unlinked. However, this penalty can be
compared to the penalty caused by the creation and deletion of system processes in microkernel operating
systems.
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Figure 1-1. An example of a directory tree

All the nodes of the tree, except the leaves, denote directory names. A directory node
contains information about the files and directories just beneath it. A file or direc-
tory name consists of a sequence of arbitrary ASCII characters,” with the exception of
/ and of the null character \0. Most filesystems place a limit on the length of a file-
name, typically no more than 255 characters. The directory corresponding to the
root of the tree is called the root directory. By convention, its name is a slash (/).
Names must be different within the same directory, but the same name may be used
in different directories.

Unix associates a current working directory with each process (see the section “The
Process/Kernel Model” later in this chapter); it belongs to the process execution con-
text, and it identifies the directory currently used by the process. To identify a spe-
cific file, the process uses a pathname, which consists of slashes alternating with a
sequence of directory names that lead to the file. If the first item in the pathname is
a slash, the pathname is said to be absolute, because its starting point is the root
directory. Otherwise, if the first item is a directory name or filename, the path-
name is said to be relative, because its starting point is the process’s current direc-
tory.

While specifying filenames, the notations “.” and “..” are also used. They denote the
current working directory and its parent directory, respectively. If the current work-
ing directory is the root directory, “.” and “..” coincide.

* Some operating systems allow filenames to be expressed in many different alphabets, based on 16-bit
extended coding of graphical characters such as Unicode.
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Hard and Soft Links

A filename included in a directory is called a file hard link, or more simply, a link.
The same file may have several links included in the same directory or in different
ones, so it may have several filenames.

The Unix command:

$ 1n p1 p2
is used to create a new hard link that has the pathname p2 for a file identified by the
pathname p1.

Hard links have two limitations:

* It is not possible to create hard links for directories. Doing so might transform
the directory tree into a graph with cycles, thus making it impossible to locate a
file according to its name.

* Links can be created only among files included in the same filesystem. This is a
serious limitation, because modern Unix systems may include several filesys-
tems located on different disks and/or partitions, and users may be unaware of
the physical divisions between them.

To overcome these limitations, soft links (also called symbolic links) were introduced
a long time ago. Symbolic links are short files that contain an arbitrary pathname of
another file. The pathname may refer to any file or directory located in any filesys-
tem; it may even refer to a nonexistent file.

The Unix command:
$ In -s p1 p2

creates a new soft link with pathname p2 that refers to pathname p1. When this com-
mand is executed, the filesystem extracts the directory part of p2 and creates a new
entry in that directory of type symbolic link, with the name indicated by p2. This new
file contains the name indicated by pathname p1. This way, each reference to p2 can
be translated automatically into a reference to p1.

File Types
Unix files may have one of the following types:
* Regular file
* Directory
* Symbolic link
* Block-oriented device file
* Character-oriented device file
* Pipe and named pipe (also called FIFO)
* Socket
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The first three file types are constituents of any Unix filesystem. Their implementa-
tion is described in detail in Chapter 18.

Device files are related both to I/O devices, and to device drivers integrated into the
kernel. For example, when a program accesses a device file, it acts directly on the I/O
device associated with that file (see Chapter 13).

Pipes and sockets are special files used for interprocess communication (see the sec-
tion “Synchronization and Critical Regions” later in this chapter; also see
Chapter 19).

File Descriptor and Inode

Unix makes a clear distinction between the contents of a file and the information
about a file. With the exception of device files and files of special filesystems, each
file consists of a sequence of bytes. The file does not include any control informa-
tion, such as its length or an end-of-file (EOF) delimiter.

All information needed by the filesystem to handle a file is included in a data struc-

ture called an inode. Each file has its own inode, which the filesystem uses to identify
the file.

While filesystems and the kernel functions handling them can vary widely from one
Unix system to another, they must always provide at least the following attributes,
which are specified in the POSIX standard:

* File type (see the previous section)

* Number of hard links associated with the file

* File length in bytes

* Device ID (i.e., an identifier of the device containing the file)
* Inode number that identifies the file within the filesystem

* UID of the file owner

* User group ID of the file

* Several timestamps that specify the inode status change time, the last access
time, and the last modify time

* Access rights and file mode (see the next section)

Access Rights and File Mode

The potential users of a file fall into three classes:
* The user who is the owner of the file
* The users who belong to the same group as the file, not including the owner

* All remaining users (others)
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There are three types of access rights—read, write, and execute—for each of these
three classes. Thus, the set of access rights associated with a file consists of nine dif-
ferent binary flags. Three additional flags, called suid (Set User ID), sgid (Set Group
ID), and sticky, define the file mode. These flags have the following meanings when
applied to executable files:

suid
A process executing a file normally keeps the User ID (UID) of the process
owner. However, if the executable file has the suid flag set, the process gets the
UID of the file owner.

sgid
A process executing a file keeps the user group ID of the process group. How-

ever, if the executable file has the sgid flag set, the process gets the user group ID
of the file.

sticky
An executable file with the sticky flag set corresponds to a request to the kernel
to keep the program in memory after its execution terminates.”

When a file is created by a process, its owner ID is the UID of the process. Its owner
user group ID can be either the process group ID of the creator process or the user
group ID of the parent directory, depending on the value of the sgid flag of the par-
ent directory.

File-Handling System Calls

When a user accesses the contents of either a regular file or a directory, he actually
accesses some data stored in a hardware block device. In this sense, a filesystem is a
user-level view of the physical organization of a hard disk partition. Because a pro-
cess in User Mode cannot directly interact with the low-level hardware components,
each actual file operation must be performed in Kernel Mode. Therefore, the Unix
operating system defines several system calls related to file handling.

All Unix kernels devote great attention to the efficient handling of hardware block
devices to achieve good overall system performance. In the chapters that follow, we
will describe topics related to file handling in Linux and specifically how the kernel
reacts to file-related system calls. To understand those descriptions, you will need to
know how the main file-handling system calls are used; these are described in the
next section.

Opening a file

Processes can access only “opened” files. To open a file, the process invokes the sys-
tem call:

fd = open(path, flag, mode)

* This flag has become obsolete; other approaches based on sharing of code pages are now used (see Chapter 9).
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The three parameters have the following meanings:

path
Denotes the pathname (relative or absolute) of the file to be opened.

flag
Specifies how the file must be opened (e.g., read, write, read/write, append). It
also can specify whether a nonexisting file should be created.

mode
Specifies the access rights of a newly created file.

This system call creates an “open file” object and returns an identifier called a file
descriptor. An open file object contains:

* Some file-handling data structures, such as a set of flags specifying how the file
has been opened, an offset field that denotes the current position in the file from
which the next operation will take place (the so-called file pointer), and so on.

* Some pointers to kernel functions that the process can invoke. The set of permit-
ted functions depends on the value of the flag parameter.

We discuss open file objects in detail in Chapter 12. Let’s limit ourselves here to
describing some general properties specified by the POSIX semantics.

* A file descriptor represents an interaction between a process and an opened file,
while an open file object contains data related to that interaction. The same
open file object may be identified by several file descriptors in the same process.

* Several processes may concurrently open the same file. In this case, the filesys-
tem assigns a separate file descriptor to each file, along with a separate open file
object. When this occurs, the Unix filesystem does not provide any kind of syn-
chronization among the I/0O operations issued by the processes on the same file.
However, several system calls such as flock() are available to allow processes to
synchronize themselves on the entire file or on portions of it (see Chapter 12).

To create a new file, the process also may invoke the creat() system call, which is
handled by the kernel exactly like open( ).

Accessing an opened file

Regular Unix files can be addressed either sequentially or randomly, while device
files and named pipes are usually accessed sequentially. In both kinds of access, the
kernel stores the file pointer in the open file object—that is, the current position at
which the next read or write operation will take place.

Sequential access is implicitly assumed: the read() and write() system calls always
refer to the position of the current file pointer. To modify the value, a program must
explicitly invoke the 1seek(') system call. When a file is opened, the kernel sets the
file pointer to the position of the first byte in the file (offset 0).
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The 1seek( ) system call requires the following parameters:
newoffset = lseek(fd, offset, whence);

which have the following meanings:

fd
Indicates the file descriptor of the opened file

offset
Specifies a signed integer value that will be used for computing the new position
of the file pointer

whence
Specifies whether the new position should be computed by adding the offset
value to the number O (offset from the beginning of the file), the current file
pointer, or the position of the last byte (offset from the end of the file)

The read( ) system call requires the following parameters:
nread = read(fd, buf, count);

which have the following meanings:

fd
Indicates the file descriptor of the opened file

buf
Specifies the address of the buffer in the process’s address space to which the
data will be transferred

count
Denotes the number of bytes to read

When handling such a system call, the kernel attempts to read count bytes from the
file having the file descriptor fd, starting from the current value of the opened file’s
offset field. In some cases—end-of-file, empty pipe, and so on—the kernel does not
succeed in reading all count bytes. The returned nread value specifies the number of
bytes effectively read. The file pointer also is updated by adding nread to its previous
value. The write( ) parameters are similar.

Closing a file

When a process does not need to access the contents of a file anymore, it can invoke
the system call:

res = close(fd);

which releases the open file object corresponding to the file descriptor fd. When a
process terminates, the kernel closes all its remaining opened files.
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Renaming and deleting a file

To rename or delete a file, a process does not need to open it. Indeed, such opera-
tions do not act on the contents of the affected file, but rather on the contents of one
or more directories. For example, the system call:

res = rename(oldpath, newpath);
changes the name of a file link, while the system call:
res = unlink(pathname);

decreases the file link count and removes the corresponding directory entry. The file
is deleted only when the link count assumes the value 0.

An Overview of Unix Kernels

Unix kernels provide an execution environment in which applications may run.
Therefore, the kernel must implement a set of services and corresponding interfaces.
Applications use those interfaces and do not usually interact directly with hardware
resources.

The Process/Kernel Model

As already mentioned, a CPU can run in either User Mode or Kernel Mode. Actu-
ally, some CPUs can have more than two execution states. For instance, the 80x 86
microprocessors have four different execution states. But all standard Unix kernels
use only Kernel Mode and User Mode.

When a program is executed in User Mode, it cannot directly access the kernel data
structures or the kernel programs. When an application executes in Kernel Mode,
however, these restrictions no longer apply. Each CPU model provides special
instructions to switch from User Mode to Kernel Mode and vice versa. A program
usually executes in User Mode and switches to Kernel Mode only when requesting a
service provided by the kernel. When the kernel has satisfied the program’s request,
it puts the program back in User Mode.

Processes are dynamic entities that usually have a limited life span within the sys-
tem. The task of creating, eliminating, and synchronizing the existing processes is
delegated to a group of routines in the kernel.

The kernel itself is not a process but a process manager. The process/kernel model
assumes that processes that require a kernel service use specific programming con-
structs called system calls. Each system call sets up the group of parameters that iden-
tifies the process request and then executes the hardware-dependent CPU instruction
to switch from User Mode to Kernel Mode.

An Overview of Unix Kernels | 19



Besides user processes, Unix systems include a few privileged processes called kernel
threads with the following characteristics:

* They run in Kernel Mode in the kernel address space.
* They do not interact with users, and thus do not require terminal devices.

* They are usually created during system startup and remain alive until the system
is shut down.

On a uniprocessor system, only one process is running at a time, and it may run
either in User or in Kernel Mode. If it runs in Kernel Mode, the processor is execut-
ing some kernel routine. Figure 1-2 illustrates examples of transitions between User
and Kernel Mode. Process 1 in User Mode issues a system call, after which the pro-
cess switches to Kernel Mode, and the system call is serviced. Process 1 then resumes
execution in User Mode until a timer interrupt occurs, and the scheduler is activated
in Kernel Mode. A process switch takes place, and Process 2 starts its execution in
User Mode until a hardware device raises an interrupt. As a consequence of the inter-
rupt, Process 2 switches to Kernel Mode and services the interrupt.

Process 1 Process 1 Process 2 Process 2

USER MODE
KERNEL MODE
System call Interrupt
handler ] Scheduler handler
System call Timer interrupt Device interrupt
Time —»

Figure 1-2. Transitions between User and Kernel Mode

Unix kernels do much more than handle system calls; in fact, kernel routines can be
activated in several ways:

* A process invokes a system call.

* The CPU executing the process signals an exception, which is an unusual condi-
tion such as an invalid instruction. The kernel handles the exception on behalf of
the process that caused it.

* A peripheral device issues an interrupt signal to the CPU to notify it of an event
such as a request for attention, a status change, or the completion of an I/O
operation. Each interrupt signal is dealt by a kernel program called an interrupt
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handler. Because peripheral devices operate asynchronously with respect to the
CPU, interrupts occur at unpredictable times.

* A kernel thread is executed. Because it runs in Kernel Mode, the corresponding
program must be considered part of the kernel.

Process Implementation

To let the kernel manage processes, each process is represented by a process descrip-
tor that includes information about the current state of the process.

When the kernel stops the execution of a process, it saves the current contents of
several processor registers in the process descriptor. These include:

* The program counter (PC) and stack pointer (SP) registers
* The general purpose registers
* The floating point registers

* The processor control registers (Processor Status Word) containing information
about the CPU state

* The memory management registers used to keep track of the RAM accessed by
the process

When the kernel decides to resume executing a process, it uses the proper process
descriptor fields to load the CPU registers. Because the stored value of the program
counter points to the instruction following the last instruction executed, the process
resumes execution at the point where it was stopped.

When a process is not executing on the CPU, it is waiting for some event. Unix ker-
nels distinguish many wait states, which are usually implemented by queues of
process descriptors; each (possibly empty) queue corresponds to the set of processes
waiting for a specific event.

Reentrant Kernels

All Unix kernels are reentrant. This means that several processes may be executing in
Kernel Mode at the same time. Of course, on uniprocessor systems, only one pro-
cess can progress, but many can be blocked in Kernel Mode when waiting for the
CPU or the completion of some I/O operation. For instance, after issuing a read to a
disk on behalf of a process, the kernel lets the disk controller handle it and resumes
executing other processes. An interrupt notifies the kernel when the device has satis-
fied the read, so the former process can resume the execution.

One way to provide reentrancy is to write functions so that they modify only local
variables and do not alter global data structures. Such functions are called reentrant
functions. But a reentrant kernel is not limited only to such reentrant functions
(although that is how some real-time kernels are implemented). Instead, the kernel
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can include nonreentrant functions and use locking mechanisms to ensure that only
one process can execute a nonreentrant function at a time.

If a hardware interrupt occurs, a reentrant kernel is able to suspend the current run-
ning process even if that process is in Kernel Mode. This capability is very impor-
tant, because it improves the throughput of the device controllers that issue
interrupts. Once a device has issued an interrupt, it waits until the CPU acknowl-
edges it. If the kernel is able to answer quickly, the device controller will be able to
perform other tasks while the CPU handles the interrupt.

Now let’s look at kernel reentrancy and its impact on the organization of the kernel.
A kernel control path denotes the sequence of instructions executed by the kernel to
handle a system call, an exception, or an interrupt.

In the simplest case, the CPU executes a kernel control path sequentially from the
first instruction to the last. When one of the following events occurs, however, the
CPU interleaves the kernel control paths:

* A process executing in User Mode invokes a system call, and the corresponding
kernel control path verifies that the request cannot be satisfied immediately; it
then invokes the scheduler to select a new process to run. As a result, a process
switch occurs. The first kernel control path is left unfinished, and the CPU
resumes the execution of some other kernel control path. In this case, the two
control paths are executed on behalf of two different processes.

* The CPU detects an exception—for example, access to a page not present in
RAM—while running a kernel control path. The first control path is suspended,
and the CPU starts the execution of a suitable procedure. In our example, this
type of procedure can allocate a new page for the process and read its contents
from disk. When the procedure terminates, the first control path can be
resumed. In this case, the two control paths are executed on behalf of the same
process.

* A hardware interrupt occurs while the CPU is running a kernel control path with
the interrupts enabled. The first kernel control path is left unfinished, and the
CPU starts processing another kernel control path to handle the interrupt. The
first kernel control path resumes when the interrupt handler terminates. In this
case, the two kernel control paths run in the execution context of the same pro-
cess, and the total system CPU time is accounted to it. However, the interrupt
handler doesn’t necessarily operate on behalf of the process.

* An interrupt occurs while the CPU is running with kernel preemption enabled,
and a higher priority process is runnable. In this case, the first kernel control
path is left unfinished, and the CPU resumes executing another kernel control
path on behalf of the higher priority process. This occurs only if the kernel has
been compiled with kernel preemption support.

Figure 1-3 illustrates a few examples of noninterleaved and interleaved kernel con-
trol paths. Three different CPU states are considered:
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* Running a process in User Mode (User)
* Running an exception or a system call handler (Excp)

* Running an interrupt handler (Intr)

TIME

Figure 1-3. Interleaving of kernel control paths

Process Address Space

Each process runs in its private address space. A process running in User Mode refers
to private stack, data, and code areas. When running in Kernel Mode, the process
addresses the kernel data and code areas and uses another private stack.

Because the kernel is reentrant, several kernel control paths—each related to a differ-
ent process—may be executed in turn. In this case, each kernel control path refers to
its own private kernel stack.

While it appears to each process that it has access to a private address space, there
are times when part of the address space is shared among processes. In some cases,
this sharing is explicitly requested by processes; in others, it is done automatically by
the kernel to reduce memory usage.

If the same program, say an editor, is needed simultaneously by several users, the
program is loaded into memory only once, and its instructions can be shared by all of
the users who need it. Its data, of course, must not be shared, because each user will
have separate data. This kind of shared address space is done automatically by the
kernel to save memory.

Processes also can share parts of their address space as a kind of interprocess com-
munication, using the “shared memory” technique introduced in System V and sup-
ported by Linux.

Finally, Linux supports the mmap() system call, which allows part of a file or the
information stored on a block device to be mapped into a part of a process address
space. Memory mapping can provide an alternative to normal reads and writes for
transferring data. If the same file is shared by several processes, its memory mapping
is included in the address space of each of the processes that share it.
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Synchronization and Critical Regions

Implementing a reentrant kernel requires the use of synchronization. If a kernel con-
trol path is suspended while acting on a kernel data structure, no other kernel con-
trol path should be allowed to act on the same data structure unless it has been reset
to a consistent state. Otherwise, the interaction of the two control paths could cor-
rupt the stored information.

For example, suppose a global variable V contains the number of available items of
some system resource. The first kernel control path, A, reads the variable and deter-
mines that there is just one available item. At this point, another kernel control path,
B, is activated and reads the same variable, which still contains the value 1. Thus, B
decreases V and starts using the resource item. Then A resumes the execution;
because it has already read the value of V, it assumes that it can decrease V and take
the resource item, which B already uses. As a final result, V contains —1, and two ker-
nel control paths use the same resource item with potentially disastrous effects.

When the outcome of a computation depends on how two or more processes are
scheduled, the code is incorrect. We say that there is a race condition.

In general, safe access to a global variable is ensured by using atomic operations. In
the previous example, data corruption is not possible if the two control paths read
and decrease V with a single, noninterruptible operation. However, kernels contain
many data structures that cannot be accessed with a single operation. For example, it
usually isn’t possible to remove an element from a linked list with a single operation,
because the kernel needs to access at least two pointers at once. Any section of code
that should be finished by each process that begins it before another process can
enter it is called a critical region.”

These problems occur not only among kernel control paths but also among pro-
cesses sharing common data. Several synchronization techniques have been adopted.
The following section concentrates on how to synchronize kernel control paths.

Kernel preemption disabling

To provide a drastically simple solution to synchronization problems, some tradi-
tional Unix kernels are nonpreemptive: when a process executes in Kernel Mode, it
cannot be arbitrarily suspended and substituted with another process. Therefore, on
a uniprocessor system, all kernel data structures that are not updated by interrupts or
exception handlers are safe for the kernel to access.

Of course, a process in Kernel Mode can voluntarily relinquish the CPU, but in this
case, it must ensure that all data structures are left in a consistent state. Moreover,
when it resumes its execution, it must recheck the value of any previously accessed
data structures that could be changed.

* Synchronization problems have been fully described in other works; we refer the interested reader to books
on the Unix operating systems (see the Bibliography).
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A synchronization mechanism applicable to preemptive kernels consists of disabling
kernel preemption before entering a critical region and reenabling it right after leav-
ing the region.

Nonpreemptability is not enough for multiprocessor systems, because two kernel
control paths running on different CPUs can concurrently access the same data
structure.

Interrupt disabling

Another synchronization mechanism for uniprocessor systems consists of disabling
all hardware interrupts before entering a critical region and reenabling them right
after leaving it. This mechanism, while simple, is far from optimal. If the critical
region is large, interrupts can remain disabled for a relatively long time, potentially
causing all hardware activities to freeze.

Moreover, on a multiprocessor system, disabling interrupts on the local CPU is not
sufficient, and other synchronization techniques must be used.

Semaphores

A widely used mechanism, effective in both uniprocessor and multiprocessor sys-
tems, relies on the use of semaphores. A semaphore is simply a counter associated
with a data structure; it is checked by all kernel threads before they try to access the
data structure. Each semaphore may be viewed as an object composed of:

* An integer variable
* A list of waiting processes

* Two atomic methods: down( ) and up()

The down( ) method decreases the value of the semaphore. If the new value is less
than 0, the method adds the running process to the semaphore list and then blocks
(i.e., invokes the scheduler). The up() method increases the value of the semaphore
and, if its new value is greater than or equal to 0, reactivates one or more processes in
the semaphore list.

Each data structure to be protected has its own semaphore, which is initialized to 1.
When a kernel control path wishes to access the data structure, it executes the down()
method on the proper semaphore. If the value of the new semaphore isn’t negative,
access to the data structure is granted. Otherwise, the process that is executing the
kernel control path is added to the semaphore list and blocked. When another pro-
cess executes the up( ) method on that semaphore, one of the processes in the sema-
phore list is allowed to proceed.

Spin locks

In multiprocessor systems, semaphores are not always the best solution to the syn-
chronization problems. Some kernel data structures should be protected from being
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concurrently accessed by kernel control paths that run on different CPUs. In this
case, if the time required to update the data structure is short, a semaphore could be
very inefficient. To check a semaphore, the kernel must insert a process in the sema-
phore list and then suspend it. Because both operations are relatively expensive, in
the time it takes to complete them, the other kernel control path could have already
released the semaphore.

In these cases, multiprocessor operating systems use spin locks. A spin lock is very
similar to a semaphore, but it has no process list; when a process finds the lock
closed by another process, it “spins” around repeatedly, executing a tight instruction
loop until the lock becomes open.

Of course, spin locks are useless in a uniprocessor environment. When a kernel con-
trol path tries to access a locked data structure, it starts an endless loop. Therefore,
the kernel control path that is updating the protected data structure would not have
a chance to continue the execution and release the spin lock. The final result would
be that the system hangs.

Avoiding deadlocks

Processes or kernel control paths that synchronize with other control paths may eas-
ily enter a deadlock state. The simplest case of deadlock occurs when process p1
gains access to data structure a and process p2 gains access to b, but pl then waits
for b and p2 waits for a. Other more complex cyclic waits among groups of pro-
cesses also may occur. Of course, a deadlock condition causes a complete freeze of
the affected processes or kernel control paths.

As far as kernel design is concerned, deadlocks become an issue when the number of
kernel locks used is high. In this case, it may be quite difficult to ensure that no dead-
lock state will ever be reached for all possible ways to interleave kernel control paths.
Several operating systems, including Linux, avoid this problem by requesting locks in
a predefined order.

Signals and Interprocess Communication

Unix signals provide a mechanism for notifying processes of system events. Each
event has its own signal number, which is usually referred to by a symbolic constant
such as SIGTERM. There are two kinds of system events:

Asynchronous notifications
For instance, a user can send the interrupt signal SIGINT to a foreground process
by pressing the interrupt keycode (usually Ctrl-C) at the terminal.

Synchronous notifications
For instance, the kernel sends the signal SIGSEGV to a process when it accesses a
memory location at an invalid address.
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The POSIX standard defines about 20 different signals, 2 of which are user-definable
and may be used as a primitive mechanism for communication and synchronization
among processes in User Mode. In general, a process may react to a signal delivery in
two possible ways:

* Ignore the signal.

* Asynchronously execute a specified procedure (the signal handler).

If the process does not specify one of these alternatives, the kernel performs a default
action that depends on the signal number. The five possible default actions are:

* Terminate the process.

* Write the execution context and the contents of the address space in a file (core
dump) and terminate the process.

* Ignore the signal.
* Suspend the process.

* Resume the process’s execution, if it was stopped.

Kernel signal handling is rather elaborate, because the POSIX semantics allows pro-
cesses to temporarily block signals. Moreover, the SICKILL and SIGSTOP signals can-
not be directly handled by the process or ignored.

AT&T’s Unix System V introduced other kinds of interprocess communication
among processes in User Mode, which have been adopted by many Unix kernels:
semaphores, message queues, and shared memory. They are collectively known as Sys-
tem V IPC.

The kernel implements these constructs as IPC resources. A process acquires a
resource by invoking a shmget( ), semget(), or msgget() system call. Just like files,
IPC resources are persistent: they must be explicitly deallocated by the creator pro-
cess, by the current owner, or by a superuser process.

Semaphores are similar to those described in the section “Synchronization and Criti-
cal Regions,” earlier in this chapter, except that they are reserved for processes in
User Mode. Message queues allow processes to exchange messages by using the
msgsnd( ) and msgrcv() system calls, which insert a message into a specific message
queue and extract a message from it, respectively.

The POSIX standard (IEEE Std 1003.1-2001) defines an IPC mechanism based on
message queues, which is usually known as POSIX message queues. They are similar
to the System V IPC’s message queues, but they have a much simpler file-based inter-
face to the applications.

Shared memory provides the fastest way for processes to exchange and share data. A
process starts by issuing a shmget () system call to create a new shared memory hav-
ing a required size. After obtaining the IPC resource identifier, the process invokes
the shmat (') system call, which returns the starting address of the new region within
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the process address space. When the process wishes to detach the shared memory
from its address space, it invokes the shmdt() system call. The implementation of
shared memory depends on how the kernel implements process address spaces.

Process Management

Unix makes a neat distinction between the process and the program it is executing.
To that end, the fork() and _exit() system calls are used respectively to create a
new process and to terminate it, while an exec()-like system call is invoked to load a
new program. After such a system call is executed, the process resumes execution
with a brand new address space containing the loaded program.

The process that invokes a fork() is the parent, while the new process is its child.
Parents and children can find one another because the data structure describing each

process includes a pointer to its immediate parent and pointers to all its immediate
children.

A naive implementation of the fork() would require both the parent’s data and the
parent’s code to be duplicated and the copies assigned to the child. This would be
quite time consuming. Current kernels that can rely on hardware paging units fol-
low the Copy-On-Write approach, which defers page duplication until the last
moment (i.e., until the parent or the child is required to write into a page). We shall
describe how Linux implements this technique in the section “Copy On Write” in
Chapter 9.

The _exit() system call terminates a process. The kernel handles this system call by
releasing the resources owned by the process and sending the parent process a
SIGCHLD signal, which is ignored by default.

Zombie processes

How can a parent process inquire about termination of its children? The wait4() sys-
tem call allows a process to wait until one of its children terminates; it returns the
process ID (PID) of the terminated child.

When executing this system call, the kernel checks whether a child has already ter-
minated. A special zombie process state is introduced to represent terminated pro-
cesses: a process remains in that state until its parent process executes a wait4()
system call on it. The system call handler extracts data about resource usage from the
process descriptor fields; the process descriptor may be released once the data is col-
lected. If no child process has already terminated when the wait4() system call is
executed, the kernel usually puts the process in a wait state until a child terminates.

Many kernels also implement a waitpid( ) system call, which allows a process to wait
for a specific child process. Other variants of wait4() system calls are also quite
common.
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It’s good practice for the kernel to keep around information on a child process until
the parent issues its wait4( ) call, but suppose the parent process terminates without
issuing that call? The information takes up valuable memory slots that could be used
to serve living processes. For example, many shells allow the user to start a com-
mand in the background and then log out. The process that is running the com-
mand shell terminates, but its children continue their execution.

The solution lies in a special system process called init, which is created during sys-
tem initialization. When a process terminates, the kernel changes the appropriate
process descriptor pointers of all the existing children of the terminated process to
make them become children of init. This process monitors the execution of all its
children and routinely issues wait4 () system calls, whose side effect is to get rid of all
orphaned zombies.

Process groups and login sessions

Modern Unix operating systems introduce the notion of process groups to represent a
“job” abstraction. For example, in order to execute the command line:

$ 1s | sort | more

a shell that supports process groups, such as bash, creates a new group for the three
processes corresponding to 1s, sort, and more. In this way, the shell acts on the three
processes as if they were a single entity (the job, to be precise). Each process descrip-
tor includes a field containing the process group ID. Each group of processes may
have a group leader, which is the process whose PID coincides with the process group
ID. A newly created process is initially inserted into the process group of its parent.

Modern Unix kernels also introduce login sessions. Informally, a login session con-
tains all processes that are descendants of the process that has started a working ses-
sion on a specific terminal—usually, the first command shell process created for the
user. All processes in a process group must be in the same login session. A login ses-
sion may have several process groups active simultaneously; one of these process
groups is always in the foreground, which means that it has access to the terminal.
The other active process groups are in the background. When a background process
tries to access the terminal, it receives a SIGTTIN or SIGTTOUT signal. In many com-
mand shells, the internal commands bg and fg can be used to put a process group in
either the background or the foreground.

Memory Management

Memory management is by far the most complex activity in a Unix kernel. More
than a third of this book is dedicated just to describing how Linux handles memory
management. This section illustrates some of the main issues related to memory
management.
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Virtual memory

All recent Unix systems provide a useful abstraction called virtual memory. Virtual
memory acts as a logical layer between the application memory requests and the
hardware Memory Management Unit (MMU). Virtual memory has many purposes
and advantages:

* Several processes can be executed concurrently.

* It is possible to run applications whose memory needs are larger than the avail-
able physical memory.

* Processes can execute a program whose code is only partially loaded in memory.
* Each process is allowed to access a subset of the available physical memory.
* Processes can share a single memory image of a library or program.

* Programs can be relocatable—that is, they can be placed anywhere in physical
memory.

* Programmers can write machine-independent code, because they do not need to
be concerned about physical memory organization.

The main ingredient of a virtual memory subsystem is the notion of virtual address
space. The set of memory references that a process can use is different from physical
memory addresses. When a process uses a virtual address,” the kernel and the MMU
cooperate to find the actual physical location of the requested memory item.

Today’s CPUs include hardware circuits that automatically translate the virtual
addresses into physical ones. To that end, the available RAM is partitioned into page
frames—typically 4 or 8 KB in length—and a set of Page Tables is introduced to spec-
ify how virtual addresses correspond to physical addresses. These circuits make
memory allocation simpler, because a request for a block of contiguous virtual
addresses can be satisfied by allocating a group of page frames having noncontiguous
physical addresses.

Random access memory usage

All Unix operating systems clearly distinguish between two portions of the random
access memory (RAM). A few megabytes are dedicated to storing the kernel image (i.e.,
the kernel code and the kernel static data structures). The remaining portion of RAM is
usually handled by the virtual memory system and is used in three possible ways:

* To satisfy kernel requests for buffers, descriptors, and other dynamic kernel data
structures

* To satisfy process requests for generic memory areas and for memory mapping
of files

* These addresses have different nomenclatures, depending on the computer architecture. As we’ll see in
Chapter 2, Intel manuals refer to them as “logical addresses.”
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* To get better performance from disks and other buffered devices by means of
caches

Each request type is valuable. On the other hand, because the available RAM is lim-
ited, some balancing among request types must be done, particularly when little avail-
able memory is left. Moreover, when some critical threshold of available memory is
reached and a page-frame-reclaiming algorithm is invoked to free additional memory,
which are the page frames most suitable for reclaiming? As we will see in Chapter 17,
there is no simple answer to this question and very little support from theory. The
only available solution lies in developing carefully tuned empirical algorithms.

One major problem that must be solved by the virtual memory system is memory
fragmentation. Ideally, a memory request should fail only when the number of free
page frames is too small. However, the kernel is often forced to use physically contig-
uous memory areas. Hence the memory request could fail even if there is enough
memory available, but it is not available as one contiguous chunk.

Kernel Memory Allocator

The Kernel Memory Allocator (KMA) is a subsystem that tries to satisfy the requests
for memory areas from all parts of the system. Some of these requests come from
other kernel subsystems needing memory for kernel use, and some requests come via
system calls from user programs to increase their processes’ address spaces. A good
KMA should have the following features:

* It must be fast. Actually, this is the most crucial attribute, because it is invoked
by all kernel subsystems (including the interrupt handlers).

* It should minimize the amount of wasted memory.

* It should try to reduce the memory fragmentation problem.

* It should be able to cooperate with the other memory management subsystems
to borrow and release page frames from them.

Several proposed KMAs, which are based on a variety of different algorithmic tech-
niques, include:

* Resource map allocator

* Power-of-two free lists

* McKusick-Karels allocator

* Buddy system

* Mach’s Zone allocator

* Dynix allocator

* Solaris’s Slab allocator

As we will see in Chapter 8, Linux’s KMA uses a Slab allocator on top of a buddy
system.
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Process virtual address space handling

The address space of a process contains all the virtual memory addresses that the
process is allowed to reference. The kernel usually stores a process virtual address
space as a list of memory area descriptors. For example, when a process starts the
execution of some program via an exec( )-like system call, the kernel assigns to the
process a virtual address space that comprises memory areas for:

* The executable code of the program

* The initialized data of the program

* The uninitialized data of the program

* The initial program stack (i.e., the User Mode stack)

* The executable code and data of needed shared libraries

* The heap (the memory dynamically requested by the program)

All recent Unix operating systems adopt a memory allocation strategy called demand
paging. With demand paging, a process can start program execution with none of its
pages in physical memory. As it accesses a nonpresent page, the MMU generates an
exception; the exception handler finds the affected memory region, allocates a free
page, and initializes it with the appropriate data. In a similar fashion, when the pro-
cess dynamically requires memory by using malloc(), or the brk() system call
(which is invoked internally by malloc( )), the kernel just updates the size of the heap
memory region of the process. A page frame is assigned to the process only when it
generates an exception by trying to refer its virtual memory addresses.

Virtual address spaces also allow other efficient strategies, such as the Copy On
Write strategy mentioned earlier. For example, when a new process is created, the
kernel just assigns the parent’s page frames to the child address space, but marks
them read-only. An exception is raised as soon as the parent or the child tries to
modify the contents of a page. The exception handler assigns a new page frame to
the affected process and initializes it with the contents of the original page.

Caching

A good part of the available physical memory is used as cache for hard disks and
other block devices. This is because hard drives are very slow: a disk access requires
several milliseconds, which is a very long time compared with the RAM access time.
Therefore, disks are often the bottleneck in system performance. As a general rule,
one of the policies already implemented in the earliest Unix system is to defer writing
to disk as long as possible. As a result, data read previously from disk and no longer
used by any process continue to stay in RAM.

This strategy is based on the fact that there is a good chance that new processes will
require data read from or written to disk by processes that no longer exist. When a
process asks to access a disk, the kernel checks first whether the required data are in
the cache. Each time this happens (a cache hit), the kernel is able to service the pro-
cess request without accessing the disk.
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The sync() system call forces disk synchronization by writing all of the “dirty” buff-
ers (i.e., all the buffers whose contents differ from that of the corresponding disk
blocks) into disk. To avoid data loss, all operating systems take care to periodically
write dirty buffers back to disk.

Device Drivers

The kernel interacts with I/O devices by means of device drivers. Device drivers are
included in the kernel and consist of data structures and functions that control one
or more devices, such as hard disks, keyboards, mouses, monitors, network inter-
faces, and devices connected to an SCSI bus. Each driver interacts with the remain-
ing part of the kernel (even with other drivers) through a specific interface. This
approach has the following advantages:

* Device-specific code can be encapsulated in a specific module.

* Vendors can add new devices without knowing the kernel source code; only the
interface specifications must be known.

* The kernel deals with all devices in a uniform way and accesses them through
the same interface.

* It is possible to write a device driver as a module that can be dynamically loaded
in the kernel without requiring the system to be rebooted. It is also possible to
dynamically unload a module that is no longer needed, therefore minimizing the
size of the kernel image stored in RAM.

Figure 1-4 illustrates how device drivers interface with the rest of the kernel and with
the processes.

Device driver interface

System call interface

| Virtual File System |
Kernel ( character device files ) ( block device files )

tty Sound Disk
driver driver driver

| tty l | tty | | Mic. | |Speaker| | Disk | | Disk |

Figure 1-4. Device driver interface
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Some user programs (P) wish to operate on hardware devices. They make requests to
the kernel using the usual file-related system calls and the device files normally found
in the /dev directory. Actually, the device files are the user-visible portion of the device
driver interface. Each device file refers to a specific device driver, which is invoked by
the kernel to perform the requested operation on the hardware component.

At the time Unix was introduced, graphical terminals were uncommon and expen-
sive, so only alphanumeric terminals were handled directly by Unix kernels. When
graphical terminals became widespread, ad hoc applications such as the X Window
System were introduced that ran as standard processes and accessed the I/O ports of
the graphics interface and the RAM video area directly. Some recent Unix kernels,
such as Linux 2.6, provide an abstraction for the frame buffer of the graphic card and
allow application software to access them without needing to know anything about
the I/0 ports of the graphics interface (see the section “Levels of Kernel Support” in
Chapter 13.)
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CHAPTER 2

Memory Addressing

This chapter deals with addressing techniques. Luckily, an operating system is not
forced to keep track of physical memory all by itself; today’s microprocessors include
several hardware circuits to make memory management both more efficient and
more robust so that programming errors cannot cause improper accesses to memory
outside the program.

As in the rest of this book, we offer details in this chapter on how 80X 86 micropro-
cessors address memory chips and how Linux uses the available addressing circuits.
You will find, we hope, that when you learn the implementation details on Linux’s
most popular platform you will better understand both the general theory of paging
and how to research the implementation on other platforms.

This is the first of three chapters related to memory management; Chapter 8 dis-
cusses how the kernel allocates main memory to itself, while Chapter 9 considers
how linear addresses are assigned to processes.

Memory Addresses

Programmers casually refer to a memory address as the way to access the contents of
a memory cell. But when dealing with 80x86 microprocessors, we have to distin-
guish three kinds of addresses:

Logical address
Included in the machine language instructions to specify the address of an oper-
and or of an instruction. This type of address embodies the well-known 80 x 86
segmented architecture that forces MS-DOS and Windows programmers to
divide their programs into segments. Each logical address consists of a segment
and an offset (or displacement) that denotes the distance from the start of the seg-
ment to the actual address.
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Linear address (also known as virtual address)
A single 32-bit unsigned integer that can be used to address up to 4 GB—that is,
up to 4,294,967,296 memory cells. Linear addresses are usually represented in
hexadecimal notation; their values range from 0x00000000 to Oxffffffff.

Physical address
Used to address memory cells in memory chips. They correspond to the electri-
cal signals sent along the address pins of the microprocessor to the memory bus.
Physical addresses are represented as 32-bit or 36-bit unsigned integers.

The Memory Management Unit (MMU) transforms a logical address into a linear
address by means of a hardware circuit called a segmentation unit; subsequently, a
second hardware circuit called a paging unit transforms the linear address into a
physical address (see Figure 2-1).

| |
Logical address SEGMS “ |Tft\ TION Linear address Pﬁﬂ#(i Physical address

— —

Figure 2-1. Logical address translation

In multiprocessor systems, all CPUs usually share the same memory; this means that
RAM chips may be accessed concurrently by independent CPUs. Because read or
write operations on a RAM chip must be performed serially, a hardware circuit called
a memory arbiter is inserted between the bus and every RAM chip. Its role is to grant
access to a CPU if the chip is free and to delay it if the chip is busy servicing a request
by another processor. Even uniprocessor systems use memory arbiters, because they
include specialized processors called DMA controllers that operate concurrently with
the CPU (see the section “Direct Memory Access (DMA)” in Chapter 13). In the case
of multiprocessor systems, the structure of the arbiter is more complex because it has
more input ports. The dual Pentium, for instance, maintains a two-port arbiter at
each chip entrance and requires that the two CPUs exchange synchronization mes-
sages before attempting to use the common bus. From the programming point of
view, the arbiter is hidden because it is managed by hardware circuits.

Segmentation in Hardware

Starting with the 80286 model, Intel microprocessors perform address translation in
two different ways called real mode and protected mode. We'll focus in the next sec-
tions on address translation when protected mode is enabled. Real mode exists
mostly to maintain processor compatibility with older models and to allow the oper-
ating system to bootstrap (see Appendix A for a short description of real mode).
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Segment Selectors and Segmentation Registers

A logical address consists of two parts: a segment identifier and an offset that speci-
fies the relative address within the segment. The segment identifier is a 16-bit field
called the Segment Selector (see Figure 2-2), while the offset is a 32-bit field. We’ll
describe the fields of Segment Selectors in the section “Fast Access to Segment
Descriptors” later in this chapter.

15 3210
RPL Tl =Table Indicator

Segment Selector index |TI |
RPL = Requestor Privilege Level

Figure 2-2. Segment Selector format

To make it easy to retrieve segment selectors quickly, the processor provides segmen-
tation registers whose only purpose is to hold Segment Selectors; these registers are
called cs, ss, ds, es, fs, and gs. Although there are only six of them, a program can
reuse the same segmentation register for different purposes by saving its content in
memory and then restoring it later.

Three of the six segmentation registers have specific purposes:

cs The code segment register, which points to a segment containing program
instructions

ss The stack segment register, which points to a segment containing the current
program stack

ds The data segment register, which points to a segment containing global and
static data

The remaining three segmentation registers are general purpose and may refer to
arbitrary data segments.

The cs register has another important function: it includes a 2-bit field that specifies
the Current Privilege Level (CPL) of the CPU. The value O denotes the highest privi-
lege level, while the value 3 denotes the lowest one. Linux uses only levels 0 and 3,
which are respectively called Kernel Mode and User Mode.

Segment Descriptors

Each segment is represented by an 8-byte Segment Descriptor that describes the seg-
ment characteristics. Segment Descriptors are stored either in the Global Descriptor
Table (GDT) or in the Local Descriptor Table (LDT).

Usually only one GDT is defined, while each process is permitted to have its own LDT if
it needs to create additional segments besides those stored in the GDT. The address and
size of the GDT in main memory are contained in the gdtr control register, while the
address and size of the currently used LDT are contained in the 1dtr control register.
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Figure 2-3 illustrates the format of a Segment Descriptor; the meaning of the various
fields is explained in Table 2-1.

Table 2-1. Segment Descriptor fields

Field name Description

Base Contains the linear address of the first byte of the segment.

G Granularity flag: if it is cleared (equal to 0), the segment size is expressed in bytes; otherwise, it is expressed
in multiples of 4096 bytes.

Limit Holds the offset of the last memory cell in the segment, thus binding the segment length. When Gis set to 0,
the size of a segment may vary between 1 byte and 1 MB; otherwise, it may vary between 4 KB and 4 GB.

S System flag: if it is cleared, the segment is a system segment that stores critical data structures such as the
Local Descriptor Table; otherwise, it is a normal code or data segment.

Type Characterizes the segment type and its access rights (see the text that follows this table).

DPL Descriptor Privilege Level- used to restrict accesses to the segment. It represents the minimal CPU privilege level

requested for accessing the segment. Therefore, a segment with its DPL set to 0 is accessible only when the CPL
is 0—that is, in Kernel Mode — while a segment with its DPL set to 3 is accessible with every CPL value.

p Segment-Present flag: is equal to 0 if the segment is not stored currently in main memory. Linux always sets
this flag (bit 47) to 1, because it never swaps out whole segments to disk.

DorB Called D or B depending on whether the segment contains code or data. Its meaning is slightly different in
the two cases, but it is basically set (equal to 1) if the addresses used as segment offsets are 32 bits long, and
itis cleared if they are 16 bits long (see the Intel manual for further details).

AVL May be used by the operating system, but it is ignored by Linux.

There are several types of segments, and thus several types of Segment Descriptors.
The following list shows the types that are widely used in Linux.

Code Segment Descriptor
Indicates that the Segment Descriptor refers to a code segment; it may be
included either in the GDT or in the LDT. The descriptor has the S flag set (non-
system segment).

Data Segment Descriptor
Indicates that the Segment Descriptor refers to a data segment; it may be
included either in the GDT or in the LDT. The descriptor has the S flag set.
Stack segments are implemented by means of generic data segments.

Task State Segment Descriptor (TSSD)
Indicates that the Segment Descriptor refers to a Task State Segment (TSS)—
that is, a segment used to save the contents of the processor registers (see the
section “Task State Segment” in Chapter 3); it can appear only in the GDT. The
corresponding Type field has the value 11 or 9, depending on whether the corre-
sponding process is currently executing on a CPU. The S flag of such descriptors
is set to 0.
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Data Segment Descriptor
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Figure 2-3. Segment Descriptor format

Local Descriptor Table Descriptor (LDTD)
Indicates that the Segment Descriptor refers to a segment containing an LDT; it
can appear only in the GDT. The corresponding Type field has the value 2. The S
flag of such descriptors is set to 0. The next section shows how 80x 86 proces-
sors are able to decide whether a segment descriptor is stored in the GDT or in
the LDT of the process.

Fast Access to Segment Descriptors

We recall that logical addresses consist of a 16-bit Segment Selector and a 32-bit Oftf-
set, and that segmentation registers store only the Segment Selector.

To speed up the translation of logical addresses into linear addresses, the 80x 86 pro-
cessor provides an additional nonprogrammable register—that is, a register that can-
not be set by a programmer—for each of the six programmable segmentation
registers. Each nonprogrammable register contains the 8-byte Segment Descriptor
(described in the previous section) specified by the Segment Selector contained in the
corresponding segmentation register. Every time a Segment Selector is loaded in a seg-
mentation register, the corresponding Segment Descriptor is loaded from memory
into the matching nonprogrammable CPU register. From then on, translations of logi-
cal addresses referring to that segment can be performed without accessing the GDT
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or LDT stored in main memory; the processor can refer only directly to the CPU reg-
ister containing the Segment Descriptor. Accesses to the GDT or LDT are necessary
only when the contents of the segmentation registers change (see Figure 2-4).

Descriptor Table Segment
( \ e » TN .

Segment
Descriptor

N—

Segmentation Register Nonprogrammable Register

Segment Selector I'l Segment Descriptor h ............ i

Figure 2-4. Segment Selector and Segment Descriptor
Any Segment Selector includes three fields that are described in Table 2-2.

Table 2-2. Segment Selector fields

Field name Description

index Identifies the Segment Descriptor entry contained in the GDT or in the LDT (described further in the text
following this table).

TI Table Indicator: specifies whether the Segment Descriptor is included in the GDT (Tl =0) or in the LDT
T=1).

RPL Requestor Privilege Level: specifies the Current Privilege Level of the CPU when the corresponding Seg-

ment Selector is loaded into the cs register; it also may be used to selectively weaken the processor priv-
ilege level when accessing data segments (see Intel documentation for details).

Because a Segment Descriptor is 8 bytes long, its relative address inside the GDT or
the LDT is obtained by multiplying the 13-bit index field of the Segment Selector by
8. For instance, if the GDT is at 0x00020000 (the value stored in the gdtr register) and
the index specified by the Segment Selector is 2, the address of the corresponding
Segment Descriptor is 0x00020000 + (2 X 8), or 0x00020010.

The first entry of the GDT is always set to 0. This ensures that logical addresses with
a null Segment Selector will be considered invalid, thus causing a processor excep-

tion. The maximum number of Segment Descriptors that can be stored in the GDT is
8,191 (i.e., 213-1).

Segmentation Unit

Figure 2-5 shows in detail how a logical address is translated into a corresponding
linear address. The segmentation unit performs the following operations:
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* Examines the TI field of the Segment Selector to determine which Descriptor
Table stores the Segment Descriptor. This field indicates that the Descriptor is
either in the GDT (in which case the segmentation unit gets the base linear
address of the GDT from the gdtr register) or in the active LDT (in which case the
segmentation unit gets the base linear address of that LDT from the ldtr register).

* Computes the address of the Segment Descriptor from the index field of the Seg-
ment Selector. The index field is multiplied by 8 (the size of a Segment Descrip-
tor), and the result is added to the content of the gdtr or 1dtr register.

* Adds the offset of the logical address to the Base field of the Segment Descriptor,
thus obtaining the linear address.

gdt or Idt Linear Address

| —

Descriptor

N
gdtror Idtr

LJ‘;

I Selector offset
| Index | Tl I'I : | I'I

Logical Address

Figure 2-5. Translating a logical address

Notice that, thanks to the nonprogrammable registers associated with the segmenta-
tion registers, the first two operations need to be performed only when a segmenta-
tion register has been changed.

Segmentation in Linux

Segmentation has been included in 80x 86 microprocessors to encourage program-
mers to split their applications into logically related entities, such as subroutines or
global and local data areas. However, Linux uses segmentation in a very limited way.
In fact, segmentation and paging are somewhat redundant, because both can be used
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to separate the physical address spaces of processes: segmentation can assign a differ-
ent linear address space to each process, while paging can map the same linear
address space into different physical address spaces. Linux prefers paging to segmen-
tation for the following reasons:

* Memory management is simpler when all processes use the same segment regis-
ter values—that is, when they share the same set of linear addresses.

* One of the design objectives of Linux is portability to a wide range of architec-
tures; RISC architectures in particular have limited support for segmentation.

The 2.6 version of Linux uses segmentation only when required by the 80x 86 archi-
tecture.

All Linux processes running in User Mode use the same pair of segments to address
instructions and data. These segments are called user code segment and user data seg-
ment, respectively. Similarly, all Linux processes running in Kernel Mode use the
same pair of segments to address instructions and data: they are called kernel code
segment and kernel data segment, respectively. Table 2-3 shows the values of the Seg-
ment Descriptor fields for these four crucial segments.

Table 2-3. Values of the Segment Descriptor fields for the four main Linux segments

Segment Base G Limit S Type DPL D/B P
user code 0x00000000 1 oxffff 1 10 3 1 1
user data 0x00000000 1 oxffFfff 1 2 3 1 1
kernel code 0x00000000 1 Oxffff 1 10 0 1 1
kernel data 0x00000000 1 oxffff 1 2 0 1 1

The corresponding Segment Selectors are defined by the macros _USER_CS, USER DS,
__KERNEL_CS, and __KERNEL_DS, respectively. To address the kernel code segment, for
instance, the kernel just loads the value yielded by the = KERNEL_CS macro into the cs
segmentation register.

Notice that the linear addresses associated with such segments all start at 0 and reach
the addressing limit of 232 —1. This means that all processes, either in User Mode or
in Kernel Mode, may use the same logical addresses.

Another important consequence of having all segments start at 0x00000000 is that in
Linux, logical addresses coincide with linear addresses; that is, the value of the Off-
set field of a logical address always coincides with the value of the corresponding lin-
ear address.

As stated earlier, the Current Privilege Level of the CPU indicates whether the proces-
sor is in User or Kernel Mode and is specified by the RPL field of the Segment Selector
stored in the cs register. Whenever the CPL is changed, some segmentation registers
must be correspondingly updated. For instance, when the CPL is equal to 3 (User
Mode), the ds register must contain the Segment Selector of the user data segment,
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but when the CPL is equal to 0, the ds register must contain the Segment Selector of
the kernel data segment.

A similar situation occurs for the ss register. It must refer to a User Mode stack
inside the user data segment when the CPL is 3, and it must refer to a Kernel Mode
stack inside the kernel data segment when the CPL is 0. When switching from User
Mode to Kernel Mode, Linux always makes sure that the ss register contains the Seg-
ment Selector of the kernel data segment.

When saving a pointer to an instruction or to a data structure, the kernel does not
need to store the Segment Selector component of the logical address, because the ss
register contains the current Segment Selector. As an example, when the kernel
invokes a function, it executes a call assembly language instruction specifying just
the Offset component of its logical address; the Segment Selector is implicitly selected
as the one referred to by the cs register. Because there is just one segment of type
“executable in Kernel Mode,” namely the code segment identified by _ KERNEL_CS, it
is sufficient to load _ KERNEL_CS into cs whenever the CPU switches to Kernel Mode.
The same argument goes for pointers to kernel data structures (implicitly using the ds
register), as well as for pointers to user data structures (the kernel explicitly uses the
es register).

Besides the four segments just described, Linux makes use of a few other specialized
segments. We’ll introduce them in the next section while describing the Linux GDT.

The Linux GDT

In uniprocessor systems there is only one GDT, while in multiprocessor systems
there is one GDT for every CPU in the system. All GDTs are stored in the cpu_gdt_
table array, while the addresses and sizes of the GDTs (used when initializing the
gdtr registers) are stored in the cpu_gdt descr array. If you look in the Source Code
Index, you can see that these symbols are defined in the file arch/i386/kernel/head.S.
Every macro, function, and other symbol in this book is listed in the Source Code
Index, so you can quickly find it in the source code.

The layout of the GDTs is shown schematically in Figure 2-6. Each GDT includes 18
segment descriptors and 14 null, unused, or reserved entries. Unused entries are
inserted on purpose so that Segment Descriptors usually accessed together are kept
in the same 32-byte line of the hardware cache (see the section “Hardware Cache”
later in this chapter).

The 18 segment descriptors included in each GDT point to the following segments:

* Four user and kernel code and data segments (see previous section).

* A Task State Segment (TSS), different for each processor in the system. The lin-
ear address space corresponding to a TSS is a small subset of the linear address
space corresponding to the kernel data segment. The Task State Segments are
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Linux’s GDT Segment Selectors Linux’s GDT Segment Selectors

null 0x0 TSS 0x80
reserved LDT 0x88
reserved PNPBIOS 32-bit code 0x90
reserved PNPBIOS 16-bit code 0x98
not used PNPBIOS 16-bit data 0xa0
not used PNPBIOS 16-bit data 0xa8
TLS #1 0x33 PNPBIOS 16-bit data 0xbo
TLS#2 0x3b APMBIOS 32-bit code 0xb8
TLS#3 0x43 APMBIOS 16-bit code 0xco
reserved APMBIOS data 0xc8
reserved not used
reserved not used
kernel code 0x60 (__KERNEL_CS) not used
kernel data 0x68 (__KERNEL_DS) not used
user code 0x73 (__USER_CS) not used
user data ox7b (__USER_DS) double fault TSS oxf8

Figure 2-6. The Global Descriptor Table

sequentially stored in the init_tss array; in particular, the Base field of the TSS
descriptor for the nth CPU points to the nth component of the init_tss array.
The G (granularity) flag is cleared, while the Limit field is set to Oxeb, because the
TSS segment is 236 bytes long. The Type field is set to 9 or 11 (available 32-bit
TSS), and the DPL is set to 0, because processes in User Mode are not allowed to
access TSS segments. You will find details on how Linux uses TSSs in the sec-
tion “Task State Segment” in Chapter 3.

A segment including the default Local Descriptor Table (LDT), usually shared by
all processes (see the next section).

Three Thread-Local Storage (TLS) segments: this is a mechanism that allows
multithreaded applications to make use of up to three segments containing data
local to each thread. The set_thread area() and get_thread area() system calls,
respectively, create and release a TLS segment for the executing process.

Three segments related to Advanced Power Management (APM): the BIOS code
makes use of segments, so when the Linux APM driver invokes BIOS functions to
get or set the status of APM devices, it may use custom code and data segments.

Five segments related to Plug and Play (PnP) BIOS services. As in the previous
case, the BIOS code makes use of segments, so when the Linux PnP driver
invokes BIOS functions to detect the resources used by PnP devices, it may use
custom code and data segments.
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* A special TSS segment used by the kernel to handle “Double fault” exceptions
(see “Exceptions” in Chapter 4).

As stated earlier, there is a copy of the GDT for each processor in the system. All
copies of the GDT store identical entries, except for a few cases. First, each proces-
sor has its own TSS segment, thus the corresponding GDT’s entries differ. More-
over, a few entries in the GDT may depend on the process that the CPU is executing
(LDT and TLS Segment Descriptors). Finally, in some cases a processor may tempo-
rarily modify an entry in its copy of the GDT; this happens, for instance, when
invoking an APM’s BIOS procedure.

The Linux LDTs

Most Linux User Mode applications do not make use of a Local Descriptor Table,
thus the kernel defines a default LDT to be shared by most processes. The default
Local Descriptor Table is stored in the default_ldt array. It includes five entries, but
only two of them are effectively used by the kernel: a call gate for iBCS executables,
and a call gate for Solaris/x86 executables (see the section “Execution Domains” in
Chapter 20). Call gates are a mechanism provided by 80x86 microprocessors to
change the privilege level of the CPU while invoking a predefined function; as we
won’t discuss them further, you should consult the Intel documentation for more
details.

In some cases, however, processes may require to set up their own LDT. This turns
out to be useful to applications (such as Wine) that execute segment-oriented
Microsoft Windows applications. The modify 1dt() system call allows a process to

do this.

Any custom LDT created by modify 1dt() also requires its own segment. When a
processor starts executing a process having a custom LDT, the LDT entry in the
CPU-specific copy of the GDT is changed accordingly.

User Mode applications also may allocate new segments by means of modify 1dt();
the kernel, however, never makes use of these segments, and it does not have to keep
track of the corresponding Segment Descriptors, because they are included in the
custom LDT of the process.

Paging in Hardware

The paging unit translates linear addresses into physical ones. One key task in the
unit is to check the requested access type against the access rights of the linear
address. If the memory access is not valid, it generates a Page Fault exception (see
Chapter 4 and Chapter 8).
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For the sake of efficiency, linear addresses are grouped in fixed-length intervals called
pages; contiguous linear addresses within a page are mapped into contiguous physi-
cal addresses. In this way, the kernel can specify the physical address and the access
rights of a page instead of those of all the linear addresses included in it. Following
the usual convention, we shall use the term “page” to refer both to a set of linear
addresses and to the data contained in this group of addresses.

The paging unit thinks of all RAM as partitioned into fixed-length page frames
(sometimes referred to as physical pages). Each page frame contains a page—that is,
the length of a page frame coincides with that of a page. A page frame is a constitu-
ent of main memory, and hence it is a storage area. It is important to distinguish a
page from a page frame; the former is just a block of data, which may be stored in
any page frame or on disk.

The data structures that map linear to physical addresses are called page tables; they
are stored in main memory and must be properly initialized by the kernel before
enabling the paging unit.

Starting with the 80386, all 80 x 86 processors support paging; it is enabled by set-
ting the PG flag of a control register named cr0. When PG = 0, linear addresses are
interpreted as physical addresses.

Regular Paging
Starting with the 80386, the paging unit of Intel processors handles 4 KB pages.
The 32 bits of a linear address are divided into three fields:
Directory
The most significant 10 bits
Table
The intermediate 10 bits

Offset

The least significant 12 bits

The translation of linear addresses is accomplished in two steps, each based on a
type of translation table. The first translation table is called the Page Directory, and
the second is called the Page Table.”

The aim of this two-level scheme is to reduce the amount of RAM required for per-
process Page Tables. If a simple one-level Page Table was used, then it would require

* In the discussion that follows, the lowercase “page table” term denotes any page storing the mapping
between linear and physical addresses, while the capitalized “Page Table” term denotes a page in the last
level of page tables.
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up to 220 entries (i.e., at 4 bytes per entry, 4 MB of RAM) to represent the Page Table
for each process (if the process used a full 4 GB linear address space), even though a
process does not use all addresses in that range. The two-level scheme reduces the
memory by requiring Page Tables only for those virtual memory regions actually
used by a process.

Each active process must have a Page Directory assigned to it. However, there is no
need to allocate RAM for all Page Tables of a process at once; it is more efficient to
allocate RAM for a Page Table only when the process effectively needs it.

The physical address of the Page Directory in use is stored in a control register
named cr3. The Directory field within the linear address determines the entry in the
Page Directory that points to the proper Page Table. The address’s Table field, in
turn, determines the entry in the Page Table that contains the physical address of the
page frame containing the page. The Offset field determines the relative position
within the page frame (see Figure 2-7). Because it is 12 bits long, each page consists
of 4096 bytes of data.

Linear Address
31 22 21 12 N 0
DIRECTORY TABLE OFFSET

Page

+

Page Table
)

v

Page Directory
— 0—» >

o1

Figure 2-7. Paging by 80x 86 processors

Both the Directory and the Table fields are 10 bits long, so Page Directories and Page
Tables can include up to 1,024 entries. It follows that a Page Directory can address
up to 1024 x 1024 x 4096=232 memory cells, as you’d expect in 32-bit addresses.
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The entries of Page Directories and Page Tables have the same structure. Each entry
includes the following fields:

Present flag

If it is set, the referred-to page (or Page Table) is contained in main memory; if
the flag is 0, the page is not contained in main memory and the remaining entry
bits may be used by the operating system for its own purposes. If the entry of a
Page Table or Page Directory needed to perform an address translation has the
Present flag cleared, the paging unit stores the linear address in a control register
named cr2 and generates exception 14: the Page Fault exception. (We will see in
Chapter 17 how Linux uses this field.)

Field containing the 20 most significant bits of a page frame physical address
Because each page frame has a 4-KB capacity, its physical address must be a mul-
tiple of 4096, so the 12 least significant bits of the physical address are always
equal to 0. If the field refers to a Page Directory, the page frame contains a Page
Table; if it refers to a Page Table, the page frame contains a page of data.

Accessed flag
Set each time the paging unit addresses the corresponding page frame. This flag
may be used by the operating system when selecting pages to be swapped out.
The paging unit never resets this flag; this must be done by the operating system.
Dirty flag
Applies only to the Page Table entries. It is set each time a write operation is per-
formed on the page frame. As with the Accessed flag, Dirty may be used by the
operating system when selecting pages to be swapped out. The paging unit never
resets this flag; this must be done by the operating system.

Read/write flag
Contains the access right (Read/Write or Read) of the page or of the Page Table
(see the section “Hardware Protection Scheme” later in this chapter).

User/Supervisor flag
Contains the privilege level required to access the page or Page Table (see the
later section “Hardware Protection Scheme”).

PCD and PWT flags
Controls the way the page or Page Table is handled by the hardware cache (see
the section “Hardware Cache” later in this chapter).

Page Size flag
Applies only to Page Directory entries. If it is set, the entry refers to a 2 MB—or 4
MB-long page frame (see the following sections).

Global flag
Applies only to Page Table entries. This flag was introduced in the Pentium Pro
to prevent frequently used pages from being flushed from the TLB cache (see the
section “Translation Lookaside Buffers (TLB)” later in this chapter). It works
only if the Page Global Enable (PGE) flag of register cr4 is set.
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Extended Paging

Starting with the Pentium model, 80x 86 microprocessors introduce extended pag-
ing, which allows page frames to be 4 MB instead of 4 KB in size (see Figure 2-8).
Extended paging is used to translate large contiguous linear address ranges into cor-
responding physical ones; in these cases, the kernel can do without intermediate
Page Tables and thus save memory and preserve TLB entries (see the section “Trans-
lation Lookaside Buffers (TLB)”).

Linear Address
31 2 2 0

| DIRECTORY | OFFSET '

4MB Page

Y

O

Page Directory
)

1|

Figure 2-8. Extended paging

As mentioned in the previous section, extended paging is enabled by setting the Page
Size flag of a Page Directory entry. In this case, the paging unit divides the 32 bits of
a linear address into two fields:

Directory
The most significant 10 bits

Offset
The remaining 22 bits

Page Directory entries for extended paging are the same as for normal paging, except
that:

* The Page Size flag must be set.

* Only the 10 most significant bits of the 20-bit physical address field are signifi-
cant. This is because each physical address is aligned on a 4-MB boundary, so
the 22 least significant bits of the address are 0.
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Extended paging coexists with regular paging; it is enabled by setting the PSE flag of
the cr4 processor register.

Hardware Protection Scheme

The paging unit uses a different protection scheme from the segmentation unit.
While 80x 86 processors allow four possible privilege levels to a segment, only two
privilege levels are associated with pages and Page Tables, because privileges are con-
trolled by the User/Supervisor flag mentioned in the earlier section “Regular Paging.”
When this flag is 0, the page can be addressed only when the CPL is less than 3 (this
means, for Linux, when the processor is in Kernel Mode). When the flag is 1, the
page can always be addressed.

Furthermore, instead of the three types of access rights (Read, Write, and Execute)
associated with segments, only two types of access rights (Read and Write) are asso-
ciated with pages. If the Read/Write flag of a Page Directory or Page Table entry is
equal to 0, the corresponding Page Table or page can only be read; otherwise it can
be read and written.”

An Example of Regular Paging

A simple example will help in clarifying how regular paging works. Let’s assume that
the kernel assigns the linear address space between 0x20000000 and 0x2003ffff to a
running process.t This space consists of exactly 64 pages. We don’t care about the
physical addresses of the page frames containing the pages; in fact, some of them
might not even be in main memory. We are interested only in the remaining fields of
the Page Table entries.

Let’s start with the 10 most significant bits of the linear addresses assigned to the
process, which are interpreted as the Directory field by the paging unit. The
addresses start with a 2 followed by zeros, so the 10 bits all have the same value,
namely 0x080 or 128 decimal. Thus the Directory field in all the addresses refers to
the 129th entry of the process Page Directory. The corresponding entry must contain
the physical address of the Page Table assigned to the process (see Figure 2-9). If no
other linear addresses are assigned to the process, all the remaining 1,023 entries of
the Page Directory are filled with zeros.

* Recent Intel Pentium 4 processors sport an NX (No eXecute) flag in each 64-bit Page Table entry (PAE must
be enabled, see the section “The Physical Address Extension (PAE) Paging Mechanism” later in this chapter).
Linux 2.6.11 supports this hardware feature.

T As we shall see in the following chapters, the 3 GB linear address space is an upper limit, but a User Mode
process is allowed to reference only a subset of it.
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128 (0x080)

Figure 2-9. An example of paging

The values assumed by the intermediate 10 bits, (that is, the values of the Table field)
range from O to 0x03f, or from O to 63 decimal. Thus, only the first 64 entries of the
Page Table are valid. The remaining 960 entries are filled with zeros.

Suppose that the process needs to read the byte at linear address 0x20021406. This
address is handled by the paging unit as follows:

1. The Directory field 0x80 is used to select entry 0x80 of the Page Directory, which
points to the Page Table associated with the process’s pages.

2. The Table field 0x21 is used to select entry 0x21 of the Page Table, which points
to the page frame containing the desired page.

3. Finally, the Offset field 0x406 is used to select the byte at offset 0x406 in the
desired page frame.

If the Present flag of the 0x21 entry of the Page Table is cleared, the page is not
present in main memory; in this case, the paging unit issues a Page Fault exception
while translating the linear address. The same exception is issued whenever the pro-
cess attempts to access linear addresses outside of the interval delimited by
0x20000000 and 0x2003ffff, because the Page Table entries not assigned to the pro-
cess are filled with zeros; in particular, their Present flags are all cleared.

The Physical Address Extension (PAE) Paging Mechanism

The amount of RAM supported by a processor is limited by the number of address
pins connected to the address bus. Older Intel processors from the 80386 to the Pen-
tium used 32-bit physical addresses. In theory, up to 4 GB of RAM could be installed
on such systems; in practice, due to the linear address space requirements of User
Mode processes, the kernel cannot directly address more than 1 GB of RAM, as we
will see in the later section “Paging in Linux.”

However, big servers that need to run hundreds or thousands of processes at the same
time require more than 4 GB of RAM, and in recent years this created a pressure on
Intel to expand the amount of RAM supported on the 32-bit 80 x 86 architecture.
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Intel has satisfied these requests by increasing the number of address pins on its pro-
cessors from 32 to 36. Starting with the Pentium Pro, all Intel processors are now
able to address up to 236 = 64 GB of RAM. However, the increased range of physical
addresses can be exploited only by introducing a new paging mechanism that trans-
lates 32-bit linear addresses into 36-bit physical ones.

With the Pentium Pro processor, Intel introduced a mechanism called Physical
Address Extension (PAE). Another mechanism, Page Size Extension (PSE-36), was
introduced in the Pentium III processor, but Linux does not use it, and we won’t dis-
cuss it further in this book.

PAE is activated by setting the Physical Address Extension (PAE) flag in the cr4 con-
trol register. The Page Size (PS) flag in the page directory entry enables large page
sizes (2 MB when PAE is enabled).

Intel has changed the paging mechanism in order to support PAE.

* The 64 GB of RAM are split into 224 distinct page frames, and the physical
address field of Page Table entries has been expanded from 20 to 24 bits.
Because a PAE Page Table entry must include the 12 flag bits (described in the
earlier section “Regular Paging”) and the 24 physical address bits, for a grand
total of 36, the Page Table entry size has been doubled from 32 bits to 64 bits. As
a result, a 4-KB PAE Page Table includes 512 entries instead of 1,024.

* A new level of Page Table called the Page Directory Pointer Table (PDPT) con-
sisting of four 64-bit entries has been introduced.

* The cr3 control register contains a 27-bit Page Directory Pointer Table base
address field. Because PDPTs are stored in the first 4 GB of RAM and aligned to
a multiple of 32 bytes (25), 27 bits are sufficient to represent the base address of
such tables.

* When mapping linear addresses to 4 KB pages (PS flag cleared in Page Directory
entry), the 32 bits of a linear address are interpreted in the following way:

cr3

Points to a PDPT
bits 31-30

Point to 1 of 4 possible entries in PDPT
bits 29-21

Point to 1 of 512 possible entries in Page Directory
bits 20-12

Point to 1 of 512 possible entries in Page Table
bits 11-0

Offset of 4-KB page
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* When mapping linear addresses to 2-MB pages (PS flag set in Page Directory
entry), the 32 bits of a linear address are interpreted in the following way:

cr3
Points to a PDPT
bits 31-30
Point to 1 of 4 possible entries in PDPT
bits 29-21
Point to 1 of 512 possible entries in Page Directory
bits 20-0

Offset of 2-MB page

To summarize, once cr3 is set, it is possible to address up to 4 GB of RAM. If we
want to address more RAM, we’ll have to put a new value in cr3 or change the con-
tent of the PDPT. However, the main problem with PAE is that linear addresses are
still 32 bits long. This forces kernel programmers to reuse the same linear addresses
to map different areas of RAM. We’ll sketch how Linux initializes Page Tables when
PAE is enabled in the later section, “Final kernel Page Table when RAM size is more
than 4096 MB.” Clearly, PAE does not enlarge the linear address space of a process,
because it deals only with physical addresses. Furthermore, only the kernel can mod-
ify the page tables of the processes, thus a process running in User Mode cannot use
a physical address space larger than 4 GB. On the other hand, PAE allows the kernel
to exploit up to 64 GB of RAM, and thus to increase significantly the number of pro-
cesses in the system.

Paging for 64-bit Architectures

As we have seen in the previous sections, two-level paging is commonly used by 32-
bit microprocessors”. Two-level paging, however, is not suitable for computers that
adopt a 64-bit architecture. Let’s use a thought experiment to explain why:

Start by assuming a standard page size of 4 KB. Because 1 KB covers a range of 210
addresses, 4 KB covers 212 addresses, so the Offset field is 12 bits. This leaves up to
52 bits of the linear address to be distributed between the Table and the Directory
fields. If we now decide to use only 48 of the 64 bits for addressing (this restriction
leaves us with a comfortable 256 TB address space!), the remaining 48-12 = 36 bits
will have to be split among Table and the Directory fields. If we now decide to reserve
18 bits for each of these two fields, both the Page Directory and the Page Tables of
each process should include 218 entries—that is, more than 256,000 entries.

* The third level of paging present in 80x86 processors with PAE enabled has been introduced only to lower
from 1024 to 512 the number of entries in the Page Directory and Page Tables. This enlarges the Page Table
entries from 32 bits to 64 bits so that they can store the 24 most significant bits of the physical address.
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For that reason, all hardware paging systems for 64-bit processors make use of addi-
tional paging levels. The number of levels used depends on the type of processor.
Table 2-4 summarizes the main characteristics of the hardware paging systems used
by some 64-bit platforms supported by Linux. Please refer to the section “Hardware
Dependency” in Chapter 1 for a short description of the hardware associated with
the platform name.

Table 2-4. Paging levels in some 64-bit architectures

Platformname  Pagesize  Number of address bitsused ~ Number of paging levels  Linear address splitting

alpha 8KBa 43 3 10+10+10+13
ia64 4KBa 39 3 9+9+9+12
ppco4 4KB 41 3 10+10+9+12
sh64 4KB 4 3 10+10+9+12
x86_64 4KB 48 4 9+9+9+9+12

a This architecture supports different page sizes; we select a typical page size adopted by Linux.

As we will see in the section “Paging in Linux” later in this chapter, Linux succeeds
in providing a common paging model that fits most of the supported hardware pag-
ing systems.

Hardware Cache

Today’s microprocessors have clock rates of several gigahertz, while dynamic RAM
(DRAM) chips have access times in the range of hundreds of clock cycles. This
means that the CPU may be held back considerably while executing instructions that
require fetching operands from RAM and/or storing results into RAM.

Hardware cache memories were introduced to reduce the speed mismatch between
CPU and RAM. They are based on the well-known locality principle, which holds
both for programs and data structures. This states that because of the cyclic struc-
ture of programs and the packing of related data into linear arrays, addresses close to
the ones most recently used have a high probability of being used in the near future.
It therefore makes sense to introduce a smaller and faster memory that contains the
most recently used code and data. For this purpose, a new unit called the line was
introduced into the 80x 86 architecture. It consists of a few dozen contiguous bytes
that are transferred in burst mode between the slow DRAM and the fast on-chip
static RAM (SRAM) used to implement caches.

The cache is subdivided into subsets of lines. At one extreme, the cache can be direct
mapped, in which case a line in main memory is always stored at the exact same loca-
tion in the cache. At the other extreme, the cache is fully associative, meaning that
any line in memory can be stored at any location in the cache. But most caches are to
some degree N-way set associative, where any line of main memory can be stored in
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any one of N lines of the cache. For instance, a line of memory can be stored in two
different lines of a two-way set associative cache.

As shown in Figure 2-10, the cache unit is inserted between the paging unit and the
main memory. It includes both a hardware cache memory and a cache controller. The
cache memory stores the actual lines of memory. The cache controller stores an array
of entries, one entry for each line of the cache memory. Each entry includes a tag and
a few flags that describe the status of the cache line. The tag consists of some bits
that allow the cache controller to recognize the memory location currently mapped
by the line. The bits of the memory’s physical address are usually split into three
groups: the most significant ones correspond to the tag, the middle ones to the cache
controller subset index, and the least significant ones to the offset within the line.

(PU

SRAM Paging
cache unit

DRAM
Main memory

Cache controller

Figure 2-10. Processor hardware cache

When accessing a RAM memory cell, the CPU extracts the subset index from the
physical address and compares the tags of all lines in the subset with the high-order
bits of the physical address. If a line with the same tag as the high-order bits of the
address is found, the CPU has a cache hit; otherwise, it has a cache miss.

When a cache hit occurs, the cache controller behaves differently, depending on the
access type. For a read operation, the controller selects the data from the cache line
and transfers it into a CPU register; the RAM is not accessed and the CPU saves time,
which is why the cache system was invented. For a write operation, the controller
may implement one of two basic strategies called write-through and write-back. In a
write-through, the controller always writes into both RAM and the cache line, effec-
tively switching off the cache for write operations. In a write-back, which offers more
immediate efficiency, only the cache line is updated and the contents of the RAM are
left unchanged. After a write-back, of course, the RAM must eventually be updated.
The cache controller writes the cache line back into RAM only when the CPU exe-
cutes an instruction requiring a flush of cache entries or when a FLUSH hardware
signal occurs (usually after a cache miss).

When a cache miss occurs, the cache line is written to memory, if necessary, and the
correct line is fetched from RAM into the cache entry.
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Multiprocessor systems have a separate hardware cache for every processor, and
therefore they need additional hardware circuitry to synchronize the cache contents.
As shown in Figure 2-11, each CPU has its own local hardware cache. But now
updating becomes more time consuming: whenever a CPU modifies its hardware
cache, it must check whether the same data is contained in the other hardware
cache; if so, it must notify the other CPU to update it with the proper value. This
activity is often called cache snooping. Luckily, all this is done at the hardware level
and is of no concern to the kernel.

(PUO (PUT
Hardware Hardware
Cache Cache
A L
v

RAM

Figure 2-11. The caches in a dual processor

Cache technology is rapidly evolving. For example, the first Pentium models included
a single on-chip cache called the L1-cache. More recent models also include other
larger, slower on-chip caches called the L2-cache, L3-cache, etc. The consistency
between the cache levels is implemented at the hardware level. Linux ignores these
hardware details and assumes there is a single cache.

The D flag of the cr0 processor register is used to enable or disable the cache cir-
cuitry. The NW flag, in the same register, specifies whether the write-through or the
write-back strategy is used for the caches.

Another interesting feature of the Pentium cache is that it lets an operating system
associate a different cache management policy with each page frame. For this pur-
pose, each Page Directory and each Page Table entry includes two flags: PCD (Page
Cache Disable), which specifies whether the cache must be enabled or disabled while
accessing data included in the page frame; and PWT (Page Write-Through), which
specifies whether the write-back or the write-through strategy must be applied while
writing data into the page frame. Linux clears the PCD and PWT flags of all Page Direc-
tory and Page Table entries; as a result, caching is enabled for all page frames, and
the write-back strategy is always adopted for writing.
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Translation Lookaside Buffers (TLB)

Besides general-purpose hardware caches, 80x 86 processors include another cache
called Translation Lookaside Buffers (TLB) to speed up linear address translation.
When a linear address is used for the first time, the corresponding physical address is
computed through slow accesses to the Page Tables in RAM. The physical address is
then stored in a TLB entry so that further references to the same linear address can
be quickly translated.

In a multiprocessor system, each CPU has its own TLB, called the local TLB of the
CPU. Contrary to the hardware cache, the corresponding entries of the TLB need not
be synchronized, because processes running on the existing CPUs may associate the
same linear address with different physical ones.

When the cr3 control register of a CPU is modified, the hardware automatically
invalidates all entries of the local TLB, because a new set of page tables is in use and
the TLBs are pointing to old data.

Paging in Linux

Linux adopts a common paging model that fits both 32-bit and 64-bit architectures.
As explained in the earlier section “Paging for 64-bit Architectures,” two paging lev-
els are sufficient for 32-bit architectures, while 64-bit architectures require a higher
number of paging levels. Up to version 2.6.10, the Linux paging model consisted of
three paging levels. Starting with version 2.6.11, a four-level paging model has been
adopted.” The four types of page tables illustrated in Figure 2-12 are called:

* Page Global Directory
* Page Upper Directory

* Page Middle Directory
* Page Table

The Page Global Directory includes the addresses of several Page Upper Directories,
which in turn include the addresses of several Page Middle Directories, which in
turn include the addresses of several Page Tables. Each Page Table entry points to a
page frame. Thus the linear address can be split into up to five parts. Figure 2-12
does not show the bit numbers, because the size of each part depends on the com-
puter architecture.

For 32-bit architectures with no Physical Address Extension, two paging levels are
sufficient. Linux essentially eliminates the Page Upper Directory and the Page Mid-
dle Directory fields by saying that they contain zero bits. However, the positions of

* This change has been made to fully support the linear address bit splitting used by the x86_64 platform (see
Table 2-4).
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Figure 2-12. The Linux paging model

the Page Upper Directory and the Page Middle Directory in the sequence of pointers
are kept so that the same code can work on 32-bit and 64-bit architectures. The ker-
nel keeps a position for the Page Upper Directory and the Page Middle Directory by
setting the number of entries in them to 1 and mapping these two entries into the
proper entry of the Page Global Directory.

For 32-bit architectures with the Physical Address Extension enabled, three paging
levels are used. The Linux’s Page Global Directory corresponds to the 80 x 86’s Page
Directory Pointer Table, the Page Upper Directory is eliminated, the Page Middle
Directory corresponds to the 80x86’s Page Directory, and the Linux’s Page Table
corresponds to the 80 x 86’s Page Table.

Finally, for 64-bit architectures three or four levels of paging are used depending on
the linear address bit splitting performed by the hardware (see Table 2-4).

Linux’s handling of processes relies heavily on paging. In fact, the automatic transla-
tion of linear addresses into physical ones makes the following design objectives
feasible:

* Assign a different physical address space to each process, ensuring an efficient
protection against addressing errors.

* Distinguish pages (groups of data) from page frames (physical addresses in main
memory). This allows the same page to be stored in a page frame, then saved to
disk and later reloaded in a different page frame. This is the basic ingredient of
the virtual memory mechanism (see Chapter 17).
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In the remaining part of this chapter, we will refer for the sake of concreteness to the
paging circuitry used by the 80 x 86 processors.

As we will see in Chapter 9, each process has its own Page Global Directory and its
own set of Page Tables. When a process switch occurs (see the section “Process
Switch” in Chapter 3), Linux saves the cr3 control register in the descriptor of the
process previously in execution and then loads cr3 with the value stored in the
descriptor of the process to be executed next. Thus, when the new process resumes
its execution on the CPU, the paging unit refers to the correct set of Page Tables.

Mapping linear to physical addresses now becomes a mechanical task, although it is
still somewhat complex. The next few sections of this chapter are a rather tedious list
of functions and macros that retrieve information the kernel needs to find addresses
and manage the tables; most of the functions are one or two lines long. You may
want to only skim these sections now, but it is useful to know the role of these func-
tions and macros, because you’ll see them often in discussions throughout this book.

The Linear Address Fields

The following macros simplify Page Table handling:

PAGE_SHIFT

Specifies the length in bits of the Offset field; when applied to 80x 86 proces-
sors, it yields the value 12. Because all the addresses in a page must fit in the Off-
set field, the size of a page on 80x 86 systems is 212 or the familiar 4,096 bytes;
the PAGE_SHIFT of 12 can thus be considered the logarithm base 2 of the total
page size. This macro is used by PAGE_SIZE to return the size of the page. Finally,
the PAGE_MASK macro yields the value oxfffff000 and is used to mask all the bits
of the Offset field.

PMD SHIFT
The total length in bits of the Offset and Table fields of a linear address; in other
words, the logarithm of the size of the area a Page Middle Directory entry can
map. The PMD_SIZE macro computes the size of the area mapped by a single entry
of the Page Middle Directory—that is, of a Page Table. The PMD_MASK macro is
used to mask all the bits of the Offset and Table fields.

When PAE is disabled, PMD_SHIFT yields the value 22 (12 from Offset plus 10
from Table), PMD_SIZE yields 222 or 4 MB, and PMD_MASK yields 0xffc00000. Con-
versely, when PAE is enabled, PMD_SHIFT yields the value 21 (12 from Offset plus
9 from Table), PMD_SIZE yields 221 or 2 MB, and PMD_MASK yields oxffe00000.
Large pages do not make use of the last level of page tables, thus LARGE_PAGE
SIZE, which yields the size of a large page, is equal to PMD_SIZE (2PMD_SHIFT)
while LARGE_PAGE_MASK, which is used to mask all the bits of the Offset and Table
fields in a large page address, is equal to PMD_MASK.
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PUD SHIFT
Determines the logarithm of the size of the area a Page Upper Directory entry
can map. The PUD_SIZE macro computes the size of the area mapped by a single
entry of the Page Global Directory. The PUD_MASK macro is used to mask all the
bits of the Offset, Table, Middle Air, and Upper Air fields.

On the 80x 86 processors, PUD_SHIFT is always equal to PMD_SHIFT and PUD SIZE
is equal to 4 MB or 2 MB.

PGDIR_SHIFT
Determines the logarithm of the size of the area that a Page Global Directory
entry can map. The PGDIR_SIZE macro computes the size of the area mapped by a
single entry of the Page Global Directory. The PGDIR_MASK macro is used to mask
all the bits of the Offset, Table, Middle Air, and Upper Air fields.

When PAE is disabled, PGDIR_SHIFT yields the value 22 (the same value yielded
by PMD_SHIFT and by PUD_SHIFT), PGDIR_SIZE yields 222 or 4 MB, and PGDIR_MASK
yields oxffc00000. Conversely, when PAE is enabled, PGDIR_SHIFT yields the value
30 (12 from Offset plus 9 from Table plus 9 from Middle Air), PGDIR_SIZE yields
230 or 1 GB, and PGDIR_MASK yields 0xc0000000.

PTRS_PER_PTE, PTRS_PER_PMD, PTRS_PER_PUD, and PTRS_PER_PGD
Compute the number of entries in the Page Table, Page Middle Directory, Page
Upper Directory, and Page Global Directory. They yield the values 1,024, 1, 1,
and 1,024, respectively, when PAE is disabled; and the values 512, 512, 1, and 4,
respectively, when PAE is enabled.

Page Table Handling

pte t, pmd_t, pud_t, and pgd t describe the format of, respectively, a Page Table, a
Page Middle Directory, a Page Upper Directory, and a Page Global Directory entry.
They are 64-bit data types when PAE is enabled and 32-bit data types otherwise.
pgprot_t is another 64-bit (PAE enabled) or 32-bit (PAE disabled) data type that rep-
resents the protection flags associated with a single entry.

Five type-conversion macros—__pte, _pmd, _pud, _pgd, and __pgprot—cast an
unsigned integer into the required type. Five other type-conversion macros—pte_
val, pmd_val, pud val, pgd val, and pgprot val—perform the reverse casting from
one of the four previously mentioned specialized types into an unsigned integer.

The kernel also provides several macros and functions to read or modify page table
entries:

* pte none, pmd_none, pud none, and pgd_none yield the value 1 if the correspond-
ing entry has the value 0; otherwise, they yield the value 0.

* pte clear, pmd_clear, pud_clear, and pgd clear clear an entry of the correspond-
ing page table, thus forbidding a process to use the linear addresses mapped by
the page table entry. The ptep get and clear() function clears a Page Table
entry and returns the previous value.
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* set pte, set pmd, set_pud, and set_pgd write a given value into a page table
entry; set_pte atomic is identical to set_pte, but when PAE is enabled it also
ensures that the 64-bit value is written atomically.

* pte same(a,b) returns 1 if two Page Table entries a and b refer to the same page
and specify the same access privileges, 0 otherwise.

* pmd_large(e) returns 1 if the Page Middle Directory entry e refers to a large page
(2 MB or 4 MB), 0 otherwise.

The pmd_bad macro is used by functions to check Page Middle Directory entries
passed as input parameters. It yields the value 1 if the entry points to a bad Page
Table—that is, if at least one of the following conditions applies:

* The page is not in main memory (Present flag cleared).
* The page allows only Read access (Read/Write flag cleared).

* Either Accessed or Dirty is cleared (Linux always forces these flags to be set for
every existing Page Table).

The pud _bad and pgd bad macros always yield 0. No pte_bad macro is defined,
because it is legal for a Page Table entry to refer to a page that is not present in main
memory, not writable, or not accessible at all.

The pte_present macro yields the value 1 if either the Present flag or the Page Size
flag of a Page Table entry is equal to 1, the value O otherwise. Recall that the Page
Size flag in Page Table entries has no meaning for the paging unit of the micropro-
cessor; the kernel, however, marks Present equal to 0 and Page Size equal to 1 for
the pages present in main memory but without read, write, or execute privileges. In
this way, any access to such pages triggers a Page Fault exception because Present is
cleared, and the kernel can detect that the fault is not due to a missing page by
checking the value of Page Size.

The pmd_present macro yields the value 1 if the Present flag of the corresponding
entry is equal to 1—that is, if the corresponding page or Page Table is loaded in
main memory. The pud_present and pgd present macros always yield the value 1.

The functions listed in Table 2-5 query the current value of any of the flags included
in a Page Table entry; with the exception of pte_file(), these functions work prop-
erly only on Page Table entries for which pte_present returns 1.

Table 2-5. Page flag reading functions

Function name Description

pte_user() Reads the Usexr/Supervisor flag

pte_read() Reads the User/Supervisor flag (pages on the 80 X 86 processor can-
not be protected against reading)

pte write() Reads the Read/Write flag

pte_exec() Reads the Usex/Supervisor flag (pages on the 80x 86 processor cannot be

protected against code execution)
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Table 2-5. Page flag reading functions (continued)

Function name
pte_dirty()
pte_young()
pte file()

Description
Reads the Dirty flag
Reads the Accessed flag

Reads the Dirty flag (when the Present flag s cleared and the Dirty flag
is set, the page belongs to a non-linear disk file mapping; see Chapter 16)

Another group of functions listed in Table 2-6 sets the value of the flags in a Page

Table entry.

Table 2-6. Page flag setting functions

Function name
mk_pte_huge()
pte wrprotect()
pte rdprotect()
pte_exprotect()
pte_mkwrite()
pte mkread()
pte_mkexec( )
pte_mkclean()
pte_mkdirty()
pte_mkold()
pte_mkyoung( )
pte modify(p,v)

ptep_set wrprotect()
ptep_set_access_flags()

ptep_mkdirty()

ptep_test and clear dirty()

ptep_test and_clear young()

Description

Sets the Page Size and Present flags of a Page Table entry
Clears the Read/Write flag

(lears the Usex/Supervisor flag

Clears the User/Supervisor flag

Sets the Read/Write flag

Sets the User/Supervisor flag

Sets the User/Supervisor flag

Clears the Dirty flag

Sets the Dirty flag

Clears the Accessed flag (makes the page old)

Sets the Accessed flag (makes the page young)

Sets all access rights in a Page Table entry p to a specified value v
Like pte_wrprotect( ), butacts on a pointer to a Page Table entry

Ifthe Dirty flag is set, sets the page’s access rights to a specified value and
invokes flush_t1lb_page() (seethe section “Translation Lookaside Buffers
(TLB)” later in this chapter)

Like pte_mkdirty (') butacts on a pointer to a Page Table entry

Like pte_mkclean( ) butactsona pointer to a Page Table entry and returns
the old value of the flag

Like pte_mkold(') butactson a pointer to a Page Table entry and returns
the old value of the flag

Now, let’s discuss the macros listed in Table 2-7 that combine a page address and a
group of protection flags into a page table entry or perform the reverse operation of
extracting the page address from a page table entry. Notice that some of these mac-
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ros refer to a page through the linear address of its “page descriptor” (see the section
“Page Descriptors” in Chapter 8) rather than the linear address of the page itself.

Table 2-7. Macros acting on Page Table entries

Macro name

pgd_index(addr)

pgd_offset(mm, addr)

pgd offset_k(addr)

pgd_page(pgd)

pud_offset(pgd, addr)

pud_page(pud)

pmd_index(addr)

pmd_offset(pud, addr)

pmd_page (pmd)

mk_pte(p,prot)
pte_index(addr)

pte offset kernel(dir, addr)

Description

Yields the index (relative position) of the entry in the Page Global Directory
that maps the linear address addr.

Receives as parameters the address of a memory descriptor cw (see

Chapter 9) and a linear address addx. The macro yields the linear address of
the entry in a Page Global Directory that corresponds to the address addr;
the Page Global Directory is found through a pointer within the memory
descriptor.

Yields the linear address of the entry in the master kernel Page Global Direc-
tory that corresponds to the address addx (see the later section “Kernel Page
Tables”).

Yields the page descriptor address of the page frame containing the Page
Upper Directory referred to by the Page Global Directory entry pgd. In a two-
or three-level paging system, this macro is equivalent to pud_page()
applied to the folded Page Upper Directory entry.

Receives as parameters a pointer pgd to a Page Global Directory entry and a
linear address addx. The macro yields the linear address of the entryina
Page Upper Directory that corresponds to addr. In a two- or three-level pag-
ing system, this macro yields pgd, the address of a Page Global Directory
entry.

Yields the linear address of the Page Middle Directory referred to by the Page
Upper Directory entry pud. In a two-level paging system, this macro is equiv-
alent to pmd_page () applied to the folded Page Middle Directory entry.

Yields the index (relative position) of the entry in the Page Middle Directory
that maps the linear address addr.

Receives as parameters a pointer pud to a Page Upper Directory entry and a
linear address addx. The macro yields the address of the entry in a Page Mid-
dle Directory that corresponds to addx. In a two-level paging system, it yields
pud, the address of a Page Global Directory entry.

Yields the page descriptor address of the Page Table referred to by the Page
Middle Directory entry pmd. In a two-level paging system, pmd is actually an
entry of a Page Global Directory.

Receives as parameters the address of a page descriptor p and a group of
access rights prot, and builds the corresponding Page Table entry.

Yields the index (relative position) of the entry in the Page Table that maps
the linear address addr.

Yields the linear address of the Page Table that corresponds to the linear
address addr mapped by the Page Middle Directory dir. Used only on the
master kernel page tables (see the later section “Kernel Page Tables”).
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Table 2-7. Macros acting on Page Table entries (continued)

Macro name Description

pte_offset map(dir, addr) Receives as parameters a pointer dir to a Page Middle Directory entry and a
linear address add; it yields the linear address of the entry in the Page Table
that corresponds to the linear address addr. If the Page Table is kept in high
memory, the kernel establishes a temporary kernel mapping (see the section
“Kernel Mappings of High-Memory Page Frames” in Chapter 8), to be released
by means of pte_unmap. The macros pte_offset map nestedand
pte_unmap_nested are identical, but they use a different temporary ker-

nel mapping.

pte_page(x) Returns the page descriptor address of the page referenced by the Page Table
entry x.

pte_to pgoff(pte) Extracts from the content pte of a Page Table entry the file offset corre-

sponding to a page belonging to a non-linear file memory mapping (see the
section “Non-Linear Memory Mappings” in Chapter 16).

pgoff_to_pte(offset) Sets up the content of a Page Table entry for a page belonging to a non-linear
file memory mapping.

The last group of functions of this long list was introduced to simplify the creation
and deletion of page table entries.

When two-level paging is used, creating or deleting a Page Middle Directory entry is
trivial. As we explained earlier in this section, the Page Middle Directory contains a
single entry that points to the subordinate Page Table. Thus, the Page Middle Direc-
tory entry is the entry within the Page Global Directory, too. When dealing with Page
Tables, however, creating an entry may be more complex, because the Page Table
that is supposed to contain it might not exist. In such cases, it is necessary to allo-
cate a new page frame, fill it with zeros, and add the entry.

If PAE is enabled, the kernel uses three-level paging. When the kernel creates a new
Page Global Directory, it also allocates the four corresponding Page Middle Directo-
ries; these are freed only when the parent Page Global Directory is released.

When two or three-level paging is used, the Page Upper Directory entry is always
mapped as a single entry within the Page Global Directory.

As usual, the description of the functions listed in Table 2-8 refers to the 80x86
architecture.

Table 2-8. Page allocation functions

Function name Description

pgd_alloc(mm) Allocates a new Page Global Directory; if PAE is enabled, it also allocates the
three children Page Middle Directories that map the User Mode linear
addresses. The argument mm (the address of a memory descriptor) is ignored
on the 80x 86 architecture.

pgd free(pgd) Releases the Page Global Directory at address pgd; if PAE is enabled, it also
releases the three Page Middle Directories that map the User Mode linear
addresses.
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Table 2-8. Page allocation functions (continued)

Function name Description

pud_alloc(mm, pgd, addr) In a two- or three-level paging system, this function does nothing: it simply
returns the linear address of the Page Global Directory entry pgd.

pud_free(x) In a two- or three-level paging system, this macro does nothing.

pmd_alloc(mm, pud, addr) Defined so generic three-level paging systems can allocate a new Page Middle

Directory for the linear address addx. If PAE is not enabled, the function simply
returns the input parameter pud — that is, the address of the entry in the
Page Global Directory. If PAE is enabled, the function returns the linear address
of the Page Middle Directory entry that maps the linear address addr. The
argument cw is ignored.

pmd_free(x ) Does nothing, because Page Middle Directories are allocated and deallocated
together with their parent Page Global Directory.

pte_alloc_map(mm, pmd, addr) Receives as parameters the address of a Page Middle Directory entry pmd and a
linear address addx, and returns the address of the Page Table entry corre-
sponding to addx. If the Page Middle Directory entry is null, the function allo-
cates anew Page Table by invoking pte_alloc_one( ). Ifanew Page Table
is allocated, the entry corresponding to addr is initialized and the Usex/
Supervisor flagis set. If the Page Table is kept in high memory, the kernel
establishes a temporary kernel mapping (see the section “Kernel Mappings of
High-Memory Page Frames” in Chapter 8), to be released by pte_unmap.

pte_alloc_kernel(mm, pmd, If the Page Middle Directory entry pmd associated with the address addx is

addr) null, the function allocates a new Page Table. It then returns the linear address
of the Page Table entry associated with addz. Used only for master kernel
page tables (see the later section “Kernel Page Tables”).

pte free(pte) Releases the Page Table associated with the pte page descriptor pointer.
pte free kernel(pte) Equivalent to pte_free( ), but used for master kernel page tables.
clear_page range(mmu, Clears the contents of the page tables of a process from linear address
start,end) start to end by iteratively releasing its Page Tables and clearing the Page

Middle Directory entries.

Physical Memory Layout

During the initialization phase the kernel must build a physical addresses map that
specifies which physical address ranges are usable by the kernel and which are
unavailable (either because they map hardware devices’ I/O shared memory or
because the corresponding page frames contain BIOS data).

The kernel considers the following page frames as reserved:

* Those falling in the unavailable physical address ranges

* Those containing the kernel’s code and initialized data structures

A page contained in a reserved page frame can never be dynamically assigned or
swapped to disk.
